首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The maize orange leafhopper Cicadulina bipunctata (Hemiptera: Cicadellidae) induces galls characterized by growth stunting and severe swelling of leaf veins on various plants of Poaceae. Previous studies revealed that galls are induced not on feeding site but on distant, newly extended leaves during the feeding, and strongly suggested that some chemicals injected by the leafhopper affect at the leaf primordia. To approach the mechanism underlying gall induction by C. bipunctata, we examined physiological response of plants to feeding by the leafhopper. We performed high-throughput and comprehensive plant hormone analyses using LC-ESI-MS/MS. Galled maize leaves contained higher contents of abscisic acid (ABA) and trans-Zeatin (tZ) and lower contents of gibberellins (GA1 and GA4) than ungalled maize leaves. Leafhopper treatment significantly increased ABA and tZ contents and decreased GA1 and GA4 contents in extending leaves. After the removal of leafhoppers, contents of tZ and gibberellins in extending leaves soon became similar to the control values. ABA content was gradually decreased after the removal of leafhoppers. Such hormonal changes were not observed in leafhopper treatment on leaves of resistant maize variety. Water contents of galled leaves were significantly lower than control leaves, suggesting water stress of galled leaves and possible reason of the increase in ABA content. These results imply that ABA, tZ, and gibberellins are related to gall induction by the leafhopper on susceptible variety of maize.  相似文献   

2.
Oviposition preferences of herbivorous insects affect offspring performance. Both positive and negative links between oviposition preference and offspring performance have been reported for many species. A gall‐inducing leafhopper, Cicadulina bipunctata Melichar (Hemiptera: Cicadellidae), feeds on various Poaceae plants and induces galls of enhanced nutritional value for their offspring. Although gall induction by C. bipunctata improves nymphal performance, the oviposition preference of females between galled and non‐galled host plants is still unclear. In this paper, the nymphal performance and oviposition and feeding‐site preference of C. bipunctata were investigated using galled wheat, Triticum aestivum L., and non‐galled barley, Hordeum vulgare L., as host plants. The survival rate of C. bipunctata on wheat was significantly higher than on barley. In the choice test, significantly more eggs were laid into barley, whereas the number of eggs deposited on both hosts was not significantly different in the no‐choice test. The number of settling individuals per leaf area was not significantly different between wheat and barley, suggesting no clear preference for oviposition between these plants. Experience as a nymph with a growing host did not affect oviposition preference as adult female. The inconsistent correspondence between offspring performance and oviposition preference of C. bipunctata may reflect the high mobility of nymphs and/or differences in leaf area between host plants. The results indicate that the previous finding that oviposition preference and offspring performance are not always positively correlated in herbivorous insects is applicable to gall‐inducing insects.  相似文献   

3.
The maize orange leafhopper Cicadulina bipunctata (Melichar) is an insect pest of cereal crops in tropical and subtropical regions of the Old World. This leafhopper induces gall symptoms characterized by stunted growth and swollen leaf veins on various Poaceae. Damage by C. bipunctata has been reported from Australia, the Philippines, China, Taiwan, and Japan. In Japan, C. bipunctata occurs in the central and southern parts of Kyushu. Because the leafhopper is a potential pest of various cereal crops, we conducted field surveys in Shikoku and the southern part of the Kii Peninsula (a part of Honshu), where the climate seems to be suitable for the establishment of C. bipunctata. As a result, we found C. bipunctata at some localities in Ehime and Kochi Prefectures. This is the first record of this leafhopper from Shikoku. Our laboratory experiment revealed that a Kochi population of C. bipunctata had a gall inducing ability similar to the Kumamoto population. More attention should be paid to assessing the risk of further expansion of C. bipunctata populations in Shikoku.  相似文献   

4.
The maize orange leafhopper, Cicadulina bipunctata is a serious pest of forage maize in East and Southeast Asia. In temperate Japan, the occurrence of this leafhopper fluctuates widely among years. Here, we examined effects of climatic factors (temperature, precipitation and sunlight) on the occurrence of C. bipunctata. Seasonal occurrence of adult C. bipunctata in a census field from July to August, when forage maize was most susceptible to the pest, could be described by a simple exponential function with two parameter: estimated density of C. bipunctata on 1 July (N 0) and intrinsic rate of natural increase (r) for each year. Forward stepwise multiple regression analysis using seasonal occurrence data from 2004 to 2009 detected positive contributions of average temperatures in the previous December and February and a negative contribution of total precipitation during the previous winter to N 0. The analysis also indicated that average temperature in July of the current year and N 0 contributed positively and negatively to r, respectively. These results indicated that high temperature and little precipitation during winter and high temperature in early summer induced high occurrence of C. bipunctata in summer. A prediction model based on these factors supported the actual seasonal occurrence in 2010, suggesting that this prediction model is applicable to C. bipunctata forecasting. The prediction model indicated that further global warming in the future is likely to cause further outbreaks of C. bipunctata.  相似文献   

5.
The Enemy hypothesis is a theoretical framework for understanding the adaptive nature of galls induced in host plants by insects. Contrary to other gall inducing insects, like Cynipids or sawflies, this hypothesis has not been studied for the gall aphids on pistachio trees in the Middle East. Galls on plants are supposed to protect their inducers from other organisms, including herbivores feeding on the host plant and possibly feeding on the gall tissue. Assuming that among aphid enemies there are numerous insects which have to perforate the gall wall to access the aphids inside, determining whether the gall wall has anti-insect properties should be one of the first steps in dealing with this hypothesis. In the present research using Baizongia pistaciae [L.], an aphid that creates perfectly closed galls in Pistacia palaestina Boiss, laboratory experiments were first conducted on a herbivore, the stored grain pest, Tribolium castaneum Herbst, to assess chemical anti-insect activities of the gall tissue, and an effort was made to understand why these properties do not harm the aphids inside the gall. Addition of fresh gall tissue to food reduced the population growth of flour beetles. Non-polar organic extracts had contact toxicity for larvae of these insects, and an impact on the feeding preferences of the adults. These results indicate chemical anti-insect activities of the gall tissue. The research also reveals that the permeability of the gall wall to non-polar volatile compounds is important to the survival of the aphids inside the gall cavity. These findings do not allow us to reject the Enemy hypothesis in the gall-inducing aphids/Pistacia trees interactions.  相似文献   

6.
Many phytophagous insects have an ability to manipulate plant tissue and induce galls, but the mechanism is not yet fully understood. Some insects have multivoltine life cycles, and each generation induces galls on different plant species or different organs in the same host. Such host-use patterns are interesting study subjects to clarify the gall-inducing mechanisms of insects. We focused on a multivoltine and gall-inducing psyllid Stenopsylla nigricornis Kuwayama (Hemiptera: Psylloidea: Triozidae), which is associated with Symplocos lucida Sieb. (Symplocaceae). Based on periodic field surveys in Kyushu, Japan, S. nigricornis is revealed to have a bivoltine life history. Then, we revealed that the spring generation induces galls on leaves, while the autumn generation does so on flower buds and overwintering leaf buds. We also analyzed phytohormones in normal plant tissue, S. nigricornis nymphs, and their galls. As a result, nymphs were discovered to contain much higher concentrations of isopentenyladenosine and its possible precursor, isopentenyladenosine riboside than plant tissues, strongly suggesting that the phytohormone is involved in gall induction by S. nigricornis. Because flower bud galls contained significantly lower concentrations of abscisic acid (ABA) than normal flower bud, the autumn generation nymphs are considered to regulate the ABA level and to promote the earlier opening of host flower buds.  相似文献   

7.
Gall-site selection by the aphid Kaltenbachiella japonica was evaluated in relation to leaf position in a shoot, and gall positions within a leaf. First-instar fundatrices induce closed galls on the midribs of host leaves, and several galls were often induced on one leaf. Leaves with many galls were often withered before emergence of sexuparae from the galls. Within a leaf, gall volume was positively correlated with the sum of lateral-vein length in the leaf segment at which the gall was induced. The observed pattern in gall volume among the leaf segments corresponded with that in the lateral-vein length. These results show that a foundatrix selects the most vigorous position within a leaf to produce more offspring. Although distal leaves grew faster than did basal leaves, gall density was highest on leaves at the middle order when a shoot has more than seven leaves. Optimal gall-site selection seems to be constrained by the asynchrony in timing between the hatching of fundatrices and leaf growth within a shoot. These results suggest that the observed gall distribution is affected by both the distribution of suitable galling sites within a leaf and the synchrony with leaf phenology of the host plant.  相似文献   

8.
The corn leafhopper [Dalbulus maidis (DeLong & Wolcott)] is a specialist on Zea (Poaceae) that coevolved with maize (Zea mays mays) and its teosinte (Zea spp.) relatives. This study tested the hypothesis that host acceptance by females varies among Zea hosts, and is correlated with variation in defensive levels across those hosts. Prior studies revealed differences in plant defenses among Zea hosts and corresponding differences in corn leafhopper performance. Thus, host acceptance was expected to be correlated with defensive levels and offspring performance across Zea hosts, following the hypothesis that offspring performance mediates host preference. In parallel, host acceptance was expected to be correlated with transitions in life history strategy (perennial to annual life cycle), domestication status (wild to domesticated), and breeding intensity (landrace to hybrid variety) in Zea because variation in defensive levels and corn leafhopper performance were shown in prior studies to be correlated with those transitions. The study’s hypotheses were tested by comparing, under no-choice conditions, host acceptance by corn leafhopper of a suite of Zea hosts encompassing those transitions: perennial teosinte (Zea diploperennis), Balsas teosinte (Zea mays parviglumis), and landrace and commercial hybrid maize. The results did not show differences in host acceptance for oviposition or feeding among the hosts. Thus, under no-choice conditions, all Zea hosts may be similarly acceptable for feeding and oviposition, despite marked ovipositional preferences under choice conditions and poorer offspring performance on teosintes relative to maize shown previously. The results suggested also that oviposition frequency per plant by females was not correlated with their offspring’s performance.  相似文献   

9.
Summary. We found defensive behavior in the aphid Hamamelistes miyabei on its primary host plant, Hamamelis japonica, where it forms a spiny gall. Introduction of moth caterpillars into the galls elicited attacking behavior of aphid nymphs with their stylet. Although older nymphs sometimes attacked, first-instar nymphs were the main defenders. Immature and mature galls contained a large proportion of first-instar nymphs. Open galls still contained first-instar nymphs, but the proportion was remarkably smaller. In immature and mature galls, particularly, the molting rate of first-instar nymphs was significantly lower than that of older instars. These data suggest that the defensive strategy of H. miyabei is such that 1) molting of first-instar nymphs is suppressed, 2) the duration of the first instar is prolonged, 3) the proportion of defender nymphs in the gall is elevated, and 4) consequently the colony in the gall is effectively defended against predators. No morphological differences were found either between attacking and non-attacking first-instar nymphs or between molting and non-molting first-instar nymphs. Some first-instar nymphs in open galls had the next instar cuticle developing inside the body. These data suggest that first-instar nymphs of H. miyabei are monomorphic defenders, and that at least some of them are able to develop and reproduce. In addition to the attacking behavior, first-instar nymphs of H. miyabei performed characteristic behaviors such as gall cleaning and hindleg waving. This is the first time that altruistic defenders are described in the primary host generation of an aphid from the tribe Hormaphidini.  相似文献   

10.
Cicadulina bipunctata was originally distributed in tropical and subtropical regions of the Old World. This leafhopper recently expanded its distribution area to southern parts of temperate Japan. In this study, factors affecting the overwintering ability of C. bipunctata were examined. A series of laboratory experiments revealed that cold acclimation at 15 °C for 7 days enhanced the cold tolerance of C. bipunctata to the same level as an overwintering population, adult females were more tolerant of cold temperature than adult males, and survival of acclimated adult females was highly dependent on temperature from −5 to 5 °C and exposure duration to the temperature. The temperature of crystallization of adult females was approximately −19 °C but temperatures in southern temperate Japan rarely dropped below −10 °C in the winter, indicating that overwintering C. bipunctata adults in temperate Japan are not killed by freezing injury but by indirect chilling injury caused by long-term exposure to moderately low temperatures. An overwintering generation of C. bipunctata had extremely low overwinter survival (<1%) in temperate Japan; however, based on winter temperature ranges, there are additional areas amenable to expansion of C. bipunctata in temperate Japan.  相似文献   

11.
Since the 1980s, the maize orange leafhopper, Cicadulina bipunctata, has been gradually expanding its range in east Asia associated with global warming. This leafhopper induces maize wallaby ear symptom (MWES) on young maize plants and has become a threat to forage maize production in southern parts of temperate Japan since around 2000. In this study, using predictions of future temperature and precipitation calculated from Atmosphere–Ocean Coupled General Circulation Models, the future risk of C. bipunctata expansion and MWES occurrence in Japan (spatial resolution: 1 km2) was predicted. A nominal logistic regression analysis showed a significant contribution of cumulative low temperature during winter to the current distribution of C. bipunctata. The range of C. bipunctata was predicted to expand northward, particularly in Kyushu, Shikoku and the southern part of Honshu after the 2060s. Predicted intensification of MWES would reduce the efficacy of maize cultivars that are currently tolerant to MWES, in southern Kyushu in the 2020s, and in most parts of Kyushu, Shikoku and southwestern Honshu in the 2060s. These results suggest the need for measures to counter further expansion of C. bipunctata and improvement of current tolerant maize cultivars.  相似文献   

12.
Four types of prosoplasmatic galls induced by Daphnephila midges are found on leaves of Machilus zuihoensis, a species endemic to Taiwan: urn- and small urn-shaped, obovate, and hairy oblong galls. In addition to containing nutritive tissues, these galls are lined with fungal hyphae. The objective of this study was to describe and compare the structural organization of the various gall morphologies and to examine the ultrastructure of the nutritive and fungal cells lining the gall chambers. The morphology and ultrastructure of mature-stage galls were examined by light, scanning electron, and transmission electron microscopy. Diverse epidermal cell shapes and wax textures were observed in the leaves and galls of M. zuihoensis. In small urn-shaped, obovate, and hairy oblong galls vascular bundles extend from the gall base to near the centre of the gall top. In contrast, vascular bundles in urn-shaped galls are distributed in the gall wall and extend to close to the outer gall top. Trichomes were present only abaxially on leaves and on hairy oblong gall surfaces. Starch granules, tannins, and mucilage were distributed differently among the four gall types. Further, fungal mycelia spread in the interior gall wall and partially passed through the intercellular spaces of nutritive cells and reached the sclerenchyma. Histological analyses revealed that the surface structure of galls differs from that of the leaf and that the epidermal organization differs among the four gall types. Different types of leaf galls on the same plant have different patterns of tissue stratification and contain different ergastic substances. The results of this study will contribute to the understanding of tritrophic relationships and the complex interactions among parasitic gall-inducing insects, mutualistic fungi, and host plants.  相似文献   

13.
The galls induced by Cecidomyiidae, Diptera, are very diverse, with conspicuous evidence of tissue manipulation by the galling herbivores. Bud galls, as those induced by an unidentified Cecidomyiidae species on Marcetia taxifolia, Melastomataceae, can be considered as one of the most complex type of prosoplasma galls. The gall-inducer manipulate the axillary meristem of the plant in a way that gall morphogenesis may present both vegetative and reproductive features of the host plant. Herein, we analyzed traces of determinate and indeterminate growth in the bud gall of M. taxifolia, looking for parallels between the features of the leaves and flowers, natural fates of the meristematic cells. The bud galls are induced by the cecidomyiid fly, and are formed by the connation of eight leaf primordia, a common process in ovary morphogenesis. The bud gall corresponds to a pistil-shaped gall morphotype, with anatomical features similar to those of an hypanthium and sepals. The gall mimics an ovary, which has protective barriers at the apex, and a nutritive tissue (with storage of lipids and proteins) or a placenta, respectively, at the basal portion. The redifferentiation of the promeristem into a nutritive tissue at the base of the gall confers a determinate destiny to the axillary bud. Comparatively, the gradients of cell expansion and of accumulation of primary metabolites also indicate that the gall and the ovary are convergent structures. Some constraints of the host plant cells, such as the absence of lignification, and the accumulation of polyphenols, lipids and terpenoids, are not altered and may confer chemical protection for plant tissues and the larva against oxidative stress.  相似文献   

14.
In certain aphids, first-instar nymphs defend their gall by attacking intruding arthropod predators. One correlate of such defensive behaviour is a lengthened duration of the first nymphal stadium during the galling phase of the life cycle. A prolonged first stadium allows a large army of first-instar defenders to accumulate, which may be advantageous for gall defence. The factors determining developmental delay have been unclear, however. Our field experiment with Pemphigus obesinymphae, a North American gall-forming aphid with defensive first-instar nymphs, tests whether first-stadium duration is influenced by the death of the colony''s fundatrix (mother). We killed fundatrices in certain galls, left those in control galls alive, and counted aphids in each stadium in each gall. Galls in which fundatrices were killed contained a lower proportion of first-instar defenders and more late-instar nymphs than did galls with living fundatrices, indicating that maternal death dramatically increased developmental rate of nymphs. Possibly nymphal aphids respond adaptively to environmental cues that signal a threat to the colony''s welfare. Alternatively, the fundatrix actively suppresses offspring development in order to maintain a large army of soldiers to protect her gall. The results add a new layer of complexity to our understanding of social aphid systems.  相似文献   

15.
Insect galls are abnormal plant tissues induced by external stimuli from parasitizing insects. It has been suggested that the stimuli include phytohormones such as auxin and cytokinins produced by the insects. In our study on the role of hormones in gall induction by the aphid Tetraneura nigriabdominalis, it was found that feedback regulation related to auxin and cytokinin activity is absent in gall tissues, even though the aphids contain higher concentrations of those phytohormones than do plant tissues. Moreover, jasmonic acid signaling appears to be compromised in gall tissue, and consequently, the production of volatile organic compounds, which are a typical defense response of host plants to herbivory, is diminished. These findings suggest that these traits of the gall tissue benefit aphids, because the gall tissue is highly sensitive to auxin and cytokinin, which induce and maintain it. The induced defenses against aphid feeding are also compromised. The abnormal responsiveness to phytohormones is regarded as a new type of extended phenotype of gall-inducing insects.  相似文献   

16.
《Journal of Asia》2014,17(2):151-154
Previous studies of the impacts of galls on host leaf photosynthesis do not suggest any general trends, with a reported range of effects from negative to positive. In this study, photosynthetic characteristics such as chlorophyll fluorescence (Fv/Fm), photosynthetic capacity, and stomata conductance were determined in two types of fruit-like galls (red ovoid and green obovate galls) induced by Daphnephila taiwanensis and Daphnephila sueyenae, respectively, in order to investigate whether the number of galls affects the photosynthesis of galled leaves of Machilus thunbergii. In 2008, chlorophyll fluorescence and photosynthetic capacity were negatively correlated with gall numbers, non-significantly and significantly, respectively, whereas stomata conductance was positively but non-significantly correlated with gall numbers. In 2009, photosynthesis capacity and stomata conductance were negatively, but non-significantly, correlated with gall numbers. Results imply that photosynthesis in M. thunbergii leaves is slightly affected by the number of cecidomyiid insect galls, and that the higher the gall number, the greater the negative effect that galls have on host leaf photosynthesis and subsequent infection.  相似文献   

17.
The two largest lineages of holometabolous gall-forming insects, cynipid wasps and cecidomyiid flies, have given rise to numerous obligate inquilines, species which are unable to form galls themselves and survive by inhabiting galls formed by other species. In contrast, only a single obligate inquiline, an aphid, is known in the sternorrhynchous Hemiptera, the hemimetabolan lineage in which gall-forming is best developed. We describe the first known gall inquiline in psyllids (Sternorrhyncha, Psylloidea), Pachypsylla cohabitans Yang & Riemann sp. n. All other members of this genus produce closed galls on hackberries, Celtis spp. (Ulmaceae). Newly hatched nymphs of P. cohabitans feed next to nymphs of several species of leaf gall-makers, becoming incorporated into the gall as the stationary nymphs are gradually enveloped by leaf tissue. In the mature gall, the inquilines occupy separate, lateral cells surrounding a central cell containing a single gall-maker. Pachypsylla cohabitans is similar in morphology to leaf-gallers, but differs in nymphal and adult colour, allozyme frequency, especially in the malic enzyme, and in adult phenology. Laboratory-reared progeny of side-cell females, when caged alone, never form galls, while progeny of centre-cell individuals alone only form galls comprising single individuals. Multiple-cell galls are formed only when adults of side-cell and centre-cell individuals are caged together. Experimental removal of centre-cell nymphs in early stages of gall initiation leads to smaller galls or death of side-cell individuals. We conclude that the side-cell individual is an obligate inquiline that is incapable of forming a gall on its own but is derived from a leaf-galling ancestor. We speculate on selective forces that might favour this evolutionary transition.  相似文献   

18.
Cooperative or eusocial behavior occurs in gall-inducing insects, but the ecological and evolutionary contexts for these behaviors vary in their details. Foundresses of the manzanita leaf-gall aphid, Tamalia coweni, regularly share galls. Because aphids undergo parthenogenesis, communal foundresses are potential clone mates. Under the kin selection hypothesis, a high level of relatedness is predicted to lower genetically based conflict among females in a group and thereby favor communal gall occupation. We recorded the frequency of communal behavior in a population of T. coweni on its host plant, Arctostaphylos patula, and measured reproductive output in single- and multiple-occupant galls. Eleven percent of the 375 galls examined were communally occupied, with double-foundress galls the commonest class, up to a maximum of five foundresses within galls. Total productivity of communal galls (measured by numbers of offspring per gall) was higher than for single-foundress galls on a per-gall basis, but lower per capita. We genotyped foundresses with amplified fragment length polymorphism (AFLP)-PCR markers, to estimate relatedness among gall co-occupants and foundresses from randomly selected galls in the population. Analysis of genetic distance between communal foundresses revealed that relatedness among gall cohabitants was significantly higher, on average, than for foundresses drawn from the population at random (P < 0.001). Phylogenetic analysis using parsimony (PAUP) of the AFLP profiles indicated that half the foundresses sharing galls were most closely related to their gall mates. Our results are consistent with kin selection theory, and suggest that communal gall occupation in this species may be interpreted as cooperative behavior.  相似文献   

19.
Native range and life history studies of an agent provide critical information during the early stages of a weed biological control programme. Brazilian peppertree is considered to be one of the worst invasive trees of Florida uplands because of negative environmental impacts and lack of effective long-term control methods. A potential biological control agent of Brazilian peppertree, Calophya latiforceps Burckhardt (Hemiptera: Calophyidae), was recently discovered in the state of Bahia, Brazil. Leaf feeding by the nymphs of C. latiforceps stimulates the tree to form pit galls. The objectives of this study were to quantify gall densities in Bahia and to study the life history adaptations of C. latiforceps under greenhouse conditions. Densities of galls and their mortality sources were recorded in August 2012 and March 2013 from trees located along linear transects. Gall density per leaf ranged from 1.6 to 37.5 and 0.3 to 12.8, in August and March, respectively. Nymphal mortality due to parasitism and entomopathogens ranged from 1.2 to 13.8%. Greenhouse observations of host colonisation and evaluations of immature survival and adult performance were conducted using plants from Bahia. A critical step for host colonisation was gall initiation in response to nymphal feeding. Herbivory by C. latiforceps resulted in stunted growth, leaf deformation, yellowing and shedding of leaves. Immature survival and development time were influenced by tree, and ranged from 11 to 75% (average 40%), and 35 to 53 days (average 38.6 days), respectively. Adults lived in average for 9.3 ± 0.6 days; and females laid 85.8 ± 16.4 eggs. C. latiforceps appears to have characteristics of a promising candidate for biological control of Brazilian peppertree.  相似文献   

20.
Understanding factors that modulate plant development is still a challenging task in plant biology. Although research has highlighted the role of abiotic and biotic factors in determining final plant structure, we know little of how these factors combine to produce specific developmental patterns. Here, we studied patterns of cell and tissue organisation in galled and non‐galled organs of Baccharis reticularia, a Neotropical shrub that hosts over ten species of galling insects. We employed qualitative and quantitative approaches to understand patterns of growth and differentiation in its four most abundant gall morphotypes. We compared two leaf galls induced by sap‐sucking Hemiptera and stem galls induced by a Lepidopteran and a Dipteran, Cecidomyiidae. The hypotheses tested were: (i) the more complex the galls, the more distinct they are from their non‐galled host; (ii) galls induced on less plastic host organs, e.g. stems, develop under more morphogenetic constraints and, therefore, should be more similar among themselves than galls induced on more plastic organs. We also evaluated the plant sex preference of gall‐inducing insects for oviposition. Simple galls were qualitative and quantitatively more similar to non‐galled organs than complex galls, thereby supporting the first hypothesis. Unexpectedly, stem galls had more similarities between them than to their host organ, hence only partially supporting the second hypothesis. Similarity among stem galls may be caused by the restrictive pattern of host stems. The opposite trend was observed for host leaves, which generate either similar or distinct gall morphotypes due to their higher phenotypic plasticity. The Relative Distance of Plasticity Index for non‐galled stems and stem galls ranged from 0.02 to 0.42. Our results strongly suggest that both tissue plasticity and gall inducer identity interact to determine plant developmental patterns, and therefore, final gall structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号