首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Proteins associated with membranes from purified rat liver autophagosomes were separated by two-dimensional (2D) gel electrophoresis (zoom gels, pl 4-7 and 6-9), silver-stained and identified by MALDI-TOF mass spectrometry. Among >1,500 detectable protein spots, 58 (derived from 39 different known proteins) were at least twofold (and significantly) enriched in autophagosomal membranes relative to cytoplasmic membranes. All of these membrane-associated proteins were also present in the cytosol, many of them being truncated enzyme variants that would be expected to serve a binding rather than an enzymatic function. Eleven proteins were highly enriched (consistent with the theoretical maximum of 25x), corresponding to an exclusive membrane localization in the delimiting membrane of the autophagosome. Three of these were methyltransferases: betaine:homocysteine methyltransferase (five variants); catechol O-methyltransferase (one phosphorylated and one unphosphorylated variant) and methionine adenosyltransferase, perhaps indicating that methylation/demethylation of membrane components could play a role in autophagy. A fourth highly enriched autophagosomal protein, phosphatidylethanolamine binding protein, is particularly interesting considering that the autophagic marker protein, LC3/ Atg8, is linked to autophagosomal membranes through its covalent conjugation with phosphatidylethanolamine (as the form LC3-II). LC3-II was not detectable on silver-stained 2D-gels, but could be shown by immunoblotting to be highly enriched in autophagosomal membranes. Other highly enriched proteins were heat shock cognate protein Hsc70 (one short and one long variant), peroxiredoxin 2, peroxiredoxin 6 (two variants), fructose 1,6-bisphosphatase (one phosphorylated and one unphosphorylated variant), adenosine kinase, inorganic pyrophosphatase and selenium-binding protein 2. Hsc70, a chaperonin that plays an important role in the recognition and proteasomal degradation of aggregated proteins as well as in the lysosomal membrane uptake and degradation of certain cytosolic proteins (chaperone-mediated autophagy), could conceivably also serve a recognition function in the autophagic scavenging of denatured or aggregated proteins (aggrephagy). The moderately enriched (2-14x) autophagosomal membrane-associated proteins included a remarkably high proportion of drug-metabolizing enzymes, such as several glutathione S-transferases, sulfotransferases and aromatic hydrocarbon/steroid oxidoreductases. If the autophagic function of these proteins is to recognize protein-drug adducts, they may, along with the peroxiredoxins, chaperonins and methyl metabolic enzymes, make the phagophores (the sequestering precursors of the autophagosomal delimiting membrane) well equipped for the detection and scavenging of proteins denatured by oxidation, hypermethylation, drug adduction or other mechanisms.  相似文献   

2.
NSAIDs (non-steroidal anti-inflammatory drugs) are widely used for the treatment of a variety of inflammatory diseases, but many of them were withdrawn from the market due to their cardiovascular toxicity. In this study, we tried to identify proteins responding to the cellular toxicity in NSAIDs-treated primarily cultured cardiomyocytes using 2-D proteomic analysis. We used seven different NSAIDs (celecoxib, rofecoxib, valdecoxib, diclofenac, naproxen, ibuprofen, and meloxicam) possessing each different degree of cardiovascular risk. Overall protein spots were similar in all NSAIDs-treated cells although numbers of decreased proteins were about 2-fold higher in celecoxib or rofecoxib-treated cells than in cells incubated with other NSAIDs. Many stress-related proteins, cardiac muscle movement proteins and proteins involved in membrane organization have been isolated. Among them, Septin-8, a filament scaffolding protein, showed its specific expression pattern depending on the extent of drug toxicity. Its expression level was low in cells treated by relatively high toxic drugs such as celecoxib, diclofenac, valdecoxib, and rofecoxib. On the contrary, Septin-8 was similarly expressed in control cells in the presence of less toxic drugs such ibuprofen, naproxen, and meloxicam. This data suggests that Septin-8 differentially responds to each NSAID.  相似文献   

3.
4.
5.
A fraction of the so-called mitochondrial soluble proteins was obtained after the destruction of purified mitochondria by sonication according to the previously found approach to the identification of protein subsets of the Bos taurus heart proteome. A tryptic destruction of these proteins was achieved. Approximately half of the tryptic hydrolysate was separated into two fractions of cysteine-containing and cysteine-free peptides by covalent chromatography on Thiopropyl Sepharose 4B. The cysteine-containing peptides were modified by iodoacetamide. The peptides were mass-spectrometrically identified in all the three fractions of tryptic hydrolysate, and the proteins were searched for in the amino acid sequence databases. There were 213 unique proteins reliably identified.  相似文献   

6.
Proteomic analysis of cartilage proteins   总被引:1,自引:0,他引:1  
While the analysis of the cartilage proteome is important for our comprehensive understanding of the development and disease of this important tissue, several unique features of cartilage present some technical obstacles. Firstly, cartilage is difficult to obtain in adequate quantities for many protein analyses, especially from mice which are otherwise powerful experimental models. Furthermore, the cartilage extracellular matrix contains an insoluble network of collagen II-containing fibrils that are integrated within an abundant anionic network of aggrecan and hyaluronan aggregates. These interacting networks provide a structural scaffold for the covalent and non-covalent attachment of other proteins and glycoproteins. Consequently, proteomic analysis of cartilage requires extraction of proteins with chaotropic agents to achieve and significant protein solubilization. Finally, isolated chondrocytes are phenotypically unstable, which requires rapid isolation of cells or the use of specific culture conditions. Despite these problems, recent improvements in the sensitivity and reproducibility of two-dimensional electrophoresis (2-DE) and tandem mass spectrometry (MS/MS) techniques, combined with improved tissue preparation and sample pre-fractionation approaches, have made the proteomic characterization of cartilage tissues possible. Here we review the approaches that have been used and describe in detail protocols for the proteomic analysis of cartilage tissues and cells.  相似文献   

7.
Plants are known to secrete a variety of compounds into the rhizosphere. These compounds are thought to play important roles in the regulation of soil chemical properties and soil microorganisms. To determine the composition of proteins secreted from rice roots, aseptic hydro culture was performed, and the collected proteins were analyzed. Over 100 proteins were identified; most were identified using the rice database (RAP-DB), and about 60% of the identified proteins were suspected to have a signal peptide. Functional categorization suggested that most were secondary metabolism- and defense-related proteins. Pathogenesis- and stress-related proteins were the major proteins found in the bathing solution under aseptic conditions. Thus, we propose that rice plants constitutively secrete a large variety of proteins to protect their roots against abiotic and/or biotic stresses in the environment.  相似文献   

8.
Reversible protein phosphorylation is of crucial importance in regulatory mechanisms and signaling pathways. Novel and efficient tools and strategies are being actively developed to allow, beyond the primary identification of phosphorylated proteins, the identification of phosphorylation sites and ultimately their quantification. These approaches are being used at various scales, from studies that have dedicated and functional goals to work with more exploratory and cataloguing objectives. The information thus generated now makes it possible to use bioinformatics to revisit previous knowledge about protein phosphorylation in plants and the pertinence of available prediction models. Although the analysis of phosphorylated proteins remains a challenging task, recent success and current developments are likely to mark the transition towards the introduction of phosphoproteomics as one of the main integration levels in post-genome plant biology.  相似文献   

9.
Clostridium difficile is a bacterium that causes disease of the large intestine, particularly after treatment with antibiotics. The bacterium produces two toxins (A and B) that are responsible for the pathology of the disease. In addition, a number of bacterial virulence factors associated with adhesion to the gut have previously been identified, including the cell wall protein Cwp66, the high-molecular weight surface layer protein (HMW-SLP) and the flagella. As the genome sequence predicts many other cell wall associated proteins, we have investigated the diversity of proteins in cell wall extracts, with the aim of identifying further virulence factors. We have used a number of methods to remove the proteins associated with the cell wall of C. difficile. Two of the resulting extracts, obtained using low pH glycine treatment and lysozyme digestion of the cell wall, have been analysed in detail by two-dimensional electrophoresis and mass spectrometry. One hundred and nineteen spots, comprising 49 different proteins, have been identified. The two surface layer proteins (SLPs) are the most abundant proteins, and we have also found components of the flagellum. Interestingly, we have also determined that a number of paralogs of the HMW-SLP are expressed, and these could represent targets for further investigation as virulence factors.  相似文献   

10.
We hypothesized that impaired proteasomal function affects gene expression in cardiomyocytes. To identify those genes, a proteomics-based analysis of neonatal rat cardiac myocytes treated with the proteasome inhibitor MG132 in comparison to vehicle treated control cells was performed. MG132 treatment induced reproducible changes in the protein expression profile, which was analyzed by two-dimensional difference gel electrophoresis followed by tryptic peptide mass fingerprinting for spot identification by MALDI-TOF mass spectrometry. The identified protein alterations could be grouped into three major categories: (1) induction of small heat shock proteins (HSPs) with chaperonic function, such as HSP27, alphaB-crystallin, and cardiovascular HSP, (2) altered expression of actin associated proteins, such as cofilin-1 and transgelin, and (3) induction of antioxidant proteins, such as peroxiredoxin-1, superoxide dismutase-1, and hemeoxygenase-1. Northern blotting revealed that expression was regulated at the mRNA level. Given that proteasomal activity is decreased in cardiovascular diseases, alterations in proteasome-dependent control of mRNA expression could provide a novel mechanism by which disease progression is modulated.  相似文献   

11.
Few studies have been conducted to identify the extracellular proteins and enzymes secreted by filamentous fungi, particularly with respect to dispensable metabolic pathways. Proteomic analysis has proven to be the most powerful method for identification of proteins in complex mixtures and is suitable for the study of the alteration of protein expression under different environmental conditions. The filamentous fungus Aspergillus flavus can degrade the flavonoid rutin as the only source of carbon via an extracellular enzyme system. In this study, a proteomic analysis was used to differentiate and identify the extracellular rutin-induced and non-induced proteins secreted by A. flavus. The secreted proteins were analyzed by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. While 15 rutin-induced proteins and 7 non-induced proteins were identified, more than 90 protein spots remain unidentified, indicating that these proteins are either novel proteins or proteins that have not yet been sequenced.  相似文献   

12.
Alzheimer’s, Parkinson’s and Huntington’s disease, and amyotrophic lateral sclerosis are the most relevant neurodegenerative syndromes worldwide. The identification of the etiology and additional factors contributing to the onset and progression of these diseases is of great importance in order to develop both preventive and therapeutic intervention. A common feature of these pathologies is the formation of aggregates, containing mutated and/or misfolded proteins, in specific subsets of neurons, which progressively undergo functional impairment and die. The relationship between protein aggregation and the molecular events leading to neurodegeneration has not yet been clarified. In the last decade, several lines of evidence pointed to a major role for mitochondrial dysfunction in the onset of these pathologies. Here, we review how proteomics has been applied to neurodegenerative diseases in order to characterize the relationship existing between protein aggregation and mitochondrial alterations. Moreover, we highlight recent advances in the use of proteomics to identify protein modifications caused by oxidative stress. Future developments in this field are expected to significantly contribute to the full comprehension of the molecular mechanisms at the heart of neurodegeneration.  相似文献   

13.
We have conducted a research of mitochindrial internal membrane proteins. This fraction has been received in the form of submitochondrial particles (SMP). SMP have been processed by trypsinum, and the received peptides have been separated from so-called "smoothfaced vesicles". "Smoothfaced vesicles" were blasted, proteinse and peptides were processed by cyanogen bromide and trypsinum. We have received two groups of tryptic peptides and analyzed them separately with the help of proteomic methods, such as chromatography, mass spectrometry and protein identification in different databases. To identify more proteins and find minor components of mitochindrial proteome we have considered possible non-specific fragmentation of proteins. 298 proteins have been identified, we also have conducted the analisys of their functions and cell localization.  相似文献   

14.
Proteomic approach to identify novel mitochondrial proteins in Arabidopsis.   总被引:1,自引:0,他引:1  
An Arabidopsis mitochondrial proteome project was started for a comprehensive investigation of mitochondrial functions in plants. Mitochondria were prepared from Arabidopsis stems and leaves or from Arabidopsis suspension cell cultures, and the purity of the generated fractions was tested by the resolution of organellar protein complexes applying two-dimensional blue-native/N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine (Tricine) sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The Arabidopsis mitochondrial proteome was analyzed by two-dimensional isoelectric focusing/ Tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 650 different proteins in a pI range of pH 3 to 10 were separated on single gels. Solubilization conditions, pH gradients for isoelectric focusing, and gel staining procedures were varied, and the number of separable proteins increased to about 800. Fifty-two protein spots were identified by immunoblotting, direct protein sequencing, and mass spectrometry. The characterized proteins cooperate in various processes, such as respiration, citric acid cycle, amino acid and nucleotide metabolism, protection against O(2), mitochondrial assembly, molecular transport, and protein biosynthesis. More than 20% of the identified proteins were not described previously for plant mitochondria, indicating novel mitochondrial functions. The map of the Arabidopsis mitochondrial proteome should be useful for the analysis of knockout mutants concerning nuclear-encoded mitochondrial genes. Considerations of the total complexity of the Arabidopsis mitochondrial proteome are discussed. The data from this investigation will be made available at http://www.gartenbau.uni-hannover.de/genetik/AMPP.  相似文献   

15.
While numerous proteomic analyses have been carried out on Escherichia coli, the vast majority have focused on expression of intracellular proteins. Yet, recent literature reports imply that even in laboratory strains, significant proteins may be found outside the cell. Here, we identify extracellular proteins associated with nonpathogenic E. coli strain W3110. Two-dimensional gel electrophoresis (2DE) revealed approximately 66 prominent protein spots during exponential growth (4 and 8 h shake flask culture) in minimal medium. The absence of detectable nucleic acids in the culture supernatant implies these proteins did not result from cell lysis. MALDI-TOF MS was used to identify 44 proteins, most of which have been previously identified as either outer membrane or extracellular proteins. In addition, 2DE protease zymogram analysis was carried out which facilitated identification of three extracellular proteases, one of which was not observed during standard 2DE. Our results are consistent with previous findings which imply outer membrane proteins are shed during growth.  相似文献   

16.
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are a functionally and structurally diverse family of post-translationally modified membrane proteins found mostly in the outer leaflet of the plasma membrane in a variety of eukaryotic cells. Although the general role of GPI-APs remains unclear, they have attracted attention because they act as enzymes and receptors in cell adhesion, differentiation, and host-pathogen interactions. GPI-APs may represent potential diagnostic and therapeutic targets in humans and are interesting in plant biotechnology because of their key role in root development. We here present a general mass spectrometry-based proteomic "shave-and-conquer" strategy that specifically targets GPI-APs. Using a combination of biochemical methods, mass spectrometry, and computational sequence analysis we identified six GPI-APs in a Homo sapiens lipid raft-enriched fraction and 44 GPI-APs in an Arabidopsis thaliana membrane preparation, representing the largest experimental dataset of GPI-anchored proteins to date.  相似文献   

17.
In the present study, we used a proteomic approach to identify surface-associated proteins from the probiotic bacterium Lactobacillus plantarum 299v. Proteins were extracted from the cell surface using a mild wash in phosphate buffer and analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Gel bands were excised and in-gel digested with trypsin. The resulting peptides were analysed by capillary-LC-ESI-MS/MS. The peptide sequences were used for a database search and allowed identification of a total of 29 proteins, many of which could potentially be involved in the action of probiotics in the gastrointestinal tract. The results provide the basis for future studies on the molecular mechanisms of probiotics.  相似文献   

18.
The Saccharomyces cerevisiae nuclear pore complex is a supramolecular assembly of 30 nucleoporins that cooperatively facilitate nucleocytoplasmic transport. Thirteen nucleoporins that contain FG peptide repeats (FG Nups) are proposed to function as stepping stones in karyopherin-mediated transport pathways. Here, protein interactions that occur at individual FG Nups were sampled using immobilized nucleoporins and yeast extracts. We find that many proteins bind to FG Nups in highly reproducible patterns. Among 135 proteins identified by mass spectrometry, most were karyopherins and nucleoporins. The PSFG nucleoporin Nup42p and the GLFG nucleoporins Nup49p, Nup57p, Nup100p, and Nup116p exhibited generic interactions with karyopherins; each bound 6--10 different karyopherin betas, including importins as well as exportins. Unexpectedly, the same Nups also captured the hexameric Nup84p complex and Nup2p. In contrast, the FXFG nucleoporins Nup1p, Nup2p, and Nup60p were more selective and captured mostly the Kap95p.Kap60p heterodimer. When the concentration of Gsp1p-GTP was elevated in the extracts to mimic the nucleoplasmic environment, the patterns of interacting proteins changed; exportins exhibited enhanced binding to FG Nups, and importins exhibited reduced binding. The results demonstrate a global role for Gsp1p-GTP on karyopherin-nucleoporin interactions and provide a rudimentary map of the routes that karyopherins take as they cross the nuclear pore complex.  相似文献   

19.

Background  

Lamellar bodies are lysosome-related secretory granules and store lung surfactant in alveolar type II cells. To better understand the mechanisms of surfactant secretion, we carried out proteomic analyses of lamellar bodies isolated from rat lungs.  相似文献   

20.
A gel-free and label-free quantitative proteomic approach based on a spectral counting strategy was performed to discover prolificacy-related proteins. Soluble proteins of porcine placenta from small litter size group (SLSG) and large litter size group (LLSG) were extracted and subsequently applied to in-solution tryptic digestion followed by liquid chromatography–tandem mass spectrometry analysis. Six and thirteen proteins were highly expressed in SLSG and LLSG, respectively. Of the dominantly expressed proteins, we chose prolificacy-related proteins such as puromycin-sensitive aminopeptidase (PSA) and retinol-binding protein 4 (RBP4). Western blot analysis confirmed that the processed form (70 kDa) of PSA was more expressed and RBP4 (23 kDa) was dominantly expressed in LLSG. These results indicate that PSA and RBP4 are representative proteins involved in porcine fertility traits, and this finding may help to increase litter size of pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号