首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: A deterministic one-dimensional reaction diffusion model was constructed to simulate benthic stratification patterns and population dynamics of cyanobacteria, purple and colorless sulfur bacteria as found in marine microbial mats. The model involves the major biogeochemical processes of the sulfur cycle and includes growth metabolism and their kinetic parameters as described from laboratory experimentation. Hence, the metabolic production and consumption processes are coupled to population growth. The model is used to calculate benthic oxygen, sulfide and light profiles and to infer spatial relationships and interactions among the different populations. Furthermore, the model is used to explore the effect of different abiotic and biotic environmental parameters on the community structure. A strikingly clear pattern emerged of the interaction between purple and colorless sulfur bacteria: either colorless sulfur bacteria dominate or a coexistence is found of colorless and purple sulfur bacteria. The model predicts that purple sulfur bacteria only proliferate when the studied environmental parameters surpass well-defined threshold levels. However, once the appropriate conditions do occur, the purple sulfur bacteria are extremely successful as their biomass outweighs that of colorless sulfur bacteria by a factor of up to 17. The typical stratification pattern predicted closely resembles the often described bilayer communities which comprise a layer of purple sulfur bacteria below a cyanobacterial top-layer; colorless sulfur bacteria are predicted to sandwich in between both layers. The profiles of oxygen and sulfide shift on a diel basis similarly as observed in real systems.  相似文献   

2.
Structure and development of a benthic marine microbial mat   总被引:9,自引:0,他引:9  
Abstract Vertically stratified microbial communities of phototrophic bacteria in the upper intertidal zones of the North Sea island of Mellum were investigated. Growth and population dynamics of the cyanobacterial mat were followed over three successive years. It was concluded that the initial colonization of the sandy sediments was by the cyanobacterium Oscillatoria . In well-established mats, however, the dominant organism was Microcoleus chthonoplastes . The observed succession of cyanobacteria during mat development is correlated with nitrogen fixation. Nitrogen fixation is necessary in this low-nutrient environment to ensure colonization by mat-constructing cyanobacteria. Under certain conditions, a red layer of purple sulfur bacteria developed underneath the cyanobacterial mat in which Chromatium and Thiocapsa spp. dominated, but Thiopedia and Ectothiorhodospira spp. have also been observed. Measurements of light penetrating the cyanobacterial mat indicated that sufficient light is available for the photosynthetic growth of purple sulfur bacteria. Profiles of oxygen, sulfide and redox potential within the microbial mat were measured using microelectrodes. Maximum oxygen concentrations, measured at a depth of 0.7 mm, reached levels more than twice the normal air saturation. Dissolved sulfide was not detected by the microelectrodes. Determination of acid-distilled sulfide, however, revealed appreciable amounts of bound sulfide in the mat. Redox profiles measured in the mat led to the conclusion that the upper 10 mm of the sedimentary sequence is in a relatively oxidized state.  相似文献   

3.
Abstract: Black band disease is caused by a horizontally migrating microbial consortium which overgrows and kills reef-building corals in many areas of the world. The cyanobacterium Phormidium corallyticum , the sulfide-oxidizing bacterium Beggiatoa sp., fungi, and sulfate-reducing bacteria dominate the consortium, which is generally several mm to 1 cm in width and ca. 1 mm in thickness. Microelectrode measurements revealed photosynthetically produced O2-supersaturation in upper layers during day, although conditions at the band-coral interface were consistently anoxic and, at night, sulfide-rich. Diel distributions of oxygen and sulfide resembled those from cyanobacterial mats in sulfur springs, intertidal mats and hypersaline lagoons.  相似文献   

4.
We investigated the genotypic diversity of oxygenic and anoxygenic phototrophic microorganisms in microbial mat samples collected from three hot spring localities on the east coast of Greenland. These hot springs harbour unique Arctic microbial ecosystems that have never been studied in detail before. Specific oligonucleotide primers for cyanobacteria, purple sulfur bacteria, green sulfur bacteria and Choroflexus/Roseiflexus-like green non-sulfur bacteria were used for the selective amplification of 16S rRNA gene fragments. Amplification products were separated by denaturing gradient gel electrophoresis (DGGE) and sequenced. In addition, several cyanobacteria were isolated from the mat samples, and classified morphologically and by 16S rRNA-based methods. The cyanobacterial 16S rRNA sequences obtained from DGGE represented a diverse, polyphyletic collection of cyanobacteria. The microbial mat communities were dominated by heterocystous and non-heterocystous filamentous cyanobacteria. Our results indicate that the cyanobacterial community composition in the samples were different for each sampling site. Different layers of the same heterogeneous mat often contained distinct and different communities of cyanobacteria. We observed a relationship between the cyanobacterial community composition and the in situ temperatures of different mat parts. The Greenland mats exhibited a low diversity of anoxygenic phototrophs as compared with other hot spring mats which is possibly related to the photochemical conditions within the mats resulting from the Arctic light regime.  相似文献   

5.
Among the various microbial mats that develop in geothermal hot springs in solfataric fields, colorless sulfur-turf (ST)—macroscopic white bundles consisting of large sickle-shaped bacteria belonging to Aquificales and elemental sulfur particles–develops in a limited environment of geothermal effluent containing hydrogen sulfide with neutral pH and low in oxygen. Photosynthetic cyanobacterial mat (CY) often grow just downstream of chemolithotrophic ST, or they coexist with ST where the temperature is slightly lower. Knowledge of the environmental regimes of these microbial mats will lead to better understanding of the distribution of thermophilic microorganisms on the Earth and provide clues about evolutionary processes in the microbial ecosystems of the Precambrian era. We studied the environmental parameters of the boundary zone and examined the distribution of these types of mats and measured the in situ growth rates of the microorganisms composing them. In situ examination revealed that temperature and Eh constrain the development of the microbial mats. At the boundary between ST and CY, temperature and Eh ranged between 51.1°C and 63.2°C and between ?112 mV and ?25 mV, respectively. These environmental parameters were not significantly different among Japanese, Yellowstone (North American), and Icelandic hot spring effluents with genetically similar thermal sulfur oxidizers. Sickle-shaped bacteria rarely coexist with cyanobacteria, although they can potentially grow in some CY environments. This suggests that the boundary between ST and CY might be partly determined by exclusive ecological competition.  相似文献   

6.
The Ancaster sulfur spring is a cold (9°C) sulfur spring located near Ancaster, Ontario, Canada, which hosts an abundant and diverse microbial mat community. We conducted an extensive microscopical study of the microbial community of this spring using a number of techniques: phase light, confocal scanning laser microscopy, conventional scanning electron microscopy using both chemical/critical point drying and cryofixation preparative techniques, environmental scanning electron microscopy, and transmission electron microscopy. The latter two techniques were coupled with energy dispersive X-ray spectrometry for elemental analysis to complement wet geochemical data collected on bulk spring water and mat pore water. In the anoxic source of the spring, green and purple sulfur bacteria were found together with a sulfide-utilizing type of cyanobacteria that had the unusual characteristic of storing colloidal sulfur intracellularly. Deeper within the source, the mats were dominated by green sulfur bacteria and thick biofilms of cells that precipitated Fe and Zn sulfide minerals on their surfaces. Downstream from the source, thick, filamentous white mats lined the stream channel, formed by a diverse mass of nonphotosynthetic sulfur oxidizers, which were responsible for forming thick masses of spherical colloidal sulfur. These were distinguished by ESEM-EDS from cells by their simple elemental composition (only S was detected). Aqueous geochemistry analysis by ICP-MS showed that some elements (Fe, C, P, Zn, Mg, Ba) were present at higher levels in mat pore water than in bulk spring water. Our approach allowed us to gain an appreciation of the characteristics of this microbial community and allowed us to develop a good understanding of the types of microorganisms present and infer some of the relationships among the members of the community. In addition, we wish to convey the utility of a thorough microscopical approach in geomicrobiological and microbial ecology studies.  相似文献   

7.
Role of Predatory Bacteria in the Termination of a Cyanobacterial Bloom   总被引:10,自引:0,他引:10  
Changes in cyanobacterial abundance and in the occurrence of bacteria of bacteria capable of lysing cyanobacteria were monitored over a period of 6 months (May to October 1998) in eutrophic Brome Lake (Quebec, Canada), in which dense cyanobacterial blooms recur regularly. By screening lake water, we isolated two strains of lytic bacteria, from the family Cytophagaceae. When tested on 12 cyanobacteria and 6 heterotrophic bacteria, strain 1 lysed only Anabaena flos-aquae and strain 2 lysed only Synechococcus cedorum, Synechococcus leopoliensis, Synechococcus elongatus, and Anacystic nidulans: both liquid and agar-grown cultures of these cyanobacteria were lysed. The number of plaque forming units of bacteria increased dramatically during the decline of the bloom. The results are consistent with an important role for these host-specific lytic bacteria in control and elimination of cyanobacterial blooms in this lake.  相似文献   

8.
Magnetotactic bacteria are present at the oxic–anoxic transition zone where opposing gradients of oxygen and reduced sulfur and iron exist. Growth of non‐magnetotactic lithoautotrophic Magnetospirillum strain J10 and its close relative magnetotactic Magnetospirillum gryphiswaldense was characterized in microaerobic continuous culture. Both strains were able to grow in mixotrophic (acetate + sulfide) and autotrophic (sulfide or thiosulfate) conditions. Autotrophically growing cells completely converted sulfide or thiosulfate to sulfate and produced 7.5 g dry weight per mol substrate at a maximum observed growth rate of 0.09 h?1 for strain J10 and 0.07 h?1 for M. gryphiswaldense. The respiratory activity for acetate was repressed in autotrophic and also in mixotrophic cultures, suggesting acetate was used as C‐source in the latter. We have estimated the proportions of substrate used for assimilatory processes and evaluated the biomass yields per mol dissimilated substrate. The yield for lithoheterotrophic growth using acetate as the C‐source was approximately twice the autotrophic growth yield and very similar to the heterotrophic yield, showing the importance of reduced sulfur compounds for growth. In the draft genome sequence of M. gryphiswaldense homologues of genes encoding a partial sulfur‐oxidizing (Sox) enzyme system and reverse dissimilatory sulfite reductase (Dsr) were identified, which may be involved in the oxidation of sulfide and thiosulfate. Magnetospirillum gryphiswaldense is the first freshwater magnetotactic species for which autotrophic growth is shown.  相似文献   

9.
Abstract The colorless sulfur bacterium Thiobacillus thioparus T5, isolated from a marine microbial mat, was grown in continuous culture under conditions ranging from sulfide limitation to oxygen limitation. Under sulfide-limiting conditions, sulfide was virtually completely oxidized to sulfate. Under oxygen-limiting conditions, sulfide was partially oxidized to zerovalent sulfur (75%) and thiosulfate (17%). In addition, low concentrations of tetrathionate and polysulfide were detected. The finding of in vivo thiosulfate formation supports the discredited observations of thiosulfate formation in cell free extracts in the early sixties. In a microbial mat most sulfide oxidation was shown to take place under oxygen-limiting conditions. It is suggested that zerovalent sulfur formation by thiobacilli is a major process resulting in polysulfide accumulation. Implications for the competition between colorless sulfur bacteria and purple sulfur bacteria are discussed.  相似文献   

10.
Abstract The vertical zonation of light, O2, H2S, pH, and sulfur bacteria was studied in two benthic cyanobacterial mats from hypersaline ponds at Guerrero Negro, baja California, Mexico. The physical-chemical gradients were analyzed in the upper few mm at ≥ 100 μm spatial resolution by microelectrodes and by a fiber optic microprobe. In mats, where oxygen produced by photosynthesis diffused far below the depth of the photic zone, colorless sulfur bacteria ( Beggiatoa sp.) were the dominant sulfide oxidizing organisms. In a mat, where the O2–H2S interface was close to the photic zone, but yet received no significant visible light, purple sulfur bacteria ( Chromatium sp.) were the dominant sulfide oxidizers. Analysis of the spectral light distribution heare showed that the penetration of only 1% of the incident near-IR light (800–900 nm) into the sulfide zone was sufficient for the development of Chromatium in a narrow band of 300 μm thickness. The balance betweem O2 and light penetration down into the sulfide zone thus deterined in mcro-scale which type of sulfur bacteria becamed dominant.  相似文献   

11.
Hydrogenases are important enzymes in the energy metabolism of microorganisms. Therefore, they are widespread in prokaryotes. We analyzed the occurrence of hydrogenases in cyanobacteria and deduced a FeFe-hydrogenase in three different heliobacterial strains. This allowed the first phylogenetic analysis of the hydrogenases of all five major groups of photosynthetic bacteria (heliobacteria, green nonsulfur bacteria, green sulfur bacteria, photosynthetic proteobacteria, and cyanobacteria). In the case of both hydrogenases found in cyanobacteria (uptake and bidirectional), the green nonsulfur bacterium Chloroflexus aurantiacus was found to be the closest ancestor. Apart from a close relation between the archaebacterial and the green sulfur bacterial sulfhydrogenase, we could not find any evidence for horizontal gene transfer. Therefore, it would be most parsimonious if a Chloroflexus-like bacterium was the ancestor of Chloroflexus aurantiacus and cyanobacteria. After having transmitted both hydrogenase genes vertically to the different cyanobacterial species, either no, one, or both enzymes were lost, thus producing the current distribution. Our data and the available data from the literature on the occurrence of cyanobacterial hydrogenases show that the cyanobacterial uptake hydrogenase is strictly linked to the occurrence of the nitrogenase. Nevertheless, we did identify a nitrogen-fixing Synechococcus strain without an uptake hydrogenase. Since we could not find genes of a FeFe-hydrogenase in any of the tested cyanobacteria, although strains performing anoxygenic photosynthesis were also included in the analysis, a cyanobacterial origin of the contemporary FeFe-hydrogenase of algal plastids seems unlikely. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Lauren Ancel Meyers]  相似文献   

12.
Black band disease (BBD) is a cyanobacteria-dominated microbial mat that migrates across living coral colonies lysing coral tissue and leaving behind exposed coral skeleton. The mat is sulfide-rich due to the presence of sulfate-reducing bacteria, integral members of the BBD microbial community, and the sulfide they produce is lethal to corals. The effect of sulfide, normally toxic to cyanobacteria, on the photosynthetic capabilities of five BBD cyanobacterial isolates of the genera Geitlerinema (3), Leptolyngbya (1), and Oscillatoria (1) and six non-BBD cyanobacteria of the genera Leptolyngbya (3), Pseudanabaena (2), and Phormidium (1) was examined. Photosynthetic experiments were performed by measuring the photoincorporation of [14C] NaHCO3 under the following conditions: (1) aerobic (no sulfide), (2) anaerobic with 0.5 mM sulfide, and (3) anaerobic with 0.5 mM sulfide and 10 μM 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU). All five BBD cyanobacterial isolates tolerated sulfide by conducting sulfide-resistant oxygenic photosynthesis. Five of the non-BBD cyanobacterial isolates did not tolerate sulfide, although one Pseudanabaena isolate continued to photosynthesize in the presence of sulfide at a considerably reduced rate. None of the isolates conducted anoxygenic photosynthesis with sulfide as an electron donor. This is the first report on the physiology of a culture of Oscillatoria sp. found globally in BBD.  相似文献   

13.
The time-course response of natural bacterial populations and isolates from lake water to various densities of the filamentous cyanobacteriaAphanizomenon flos-aquae andLyngbya birgei collected from the same lake is reported. The cyanobacteria were separated from the bacteria by dialysis membranes that allowed only dissolved cyanobacterial products to pass. Bacterial3H-thymidine incorporation and cell number were significantly (p<0.05) correlated with cyanobacterial density for both species. Estimated dissolved organic carbon (DOC) utilization, based on bacterial biomass changes over time, were usually significantly (p<0.01) correlated with cyanobacterial density and the decrease in bulk pool DOC for both species. Bacterial volume per cell increased significantly (p<0.05) in response to cyanobacterial density on day 5 of the experiments; cell volume remained unchanged on day 1. Bacterial cell numbers on outer surfaces of the tubular membrane containing the cyanobacteria (on the side exposed to the test bacteria) were significantly (p<0.01) correlated with cyanobacterial density. Statistical analysis inferred that bacteria closely associated with cyanobacteria (i.e. attached) responded more strongly to cyanobacterial products than free-living bacteria. Overall, our results indicate that cyanobacterial products have a potentially important role in regulating bacterioplankton productivity in aquatic systems.  相似文献   

14.
This work studies the diversity of cyanobacterial and algal-bacterial communities of saline water bodies in the Crimean Peninsula and Altai Region. Plant-bacterial communities are described for the first time. The dependence of the production and destruction on the season and salinity of the water body is shown. The development of planktonic cyanobacteria is related to the presence of zooplankton, the development of which is controlled by hydrogen sulfide. The high hydrogen sulfide tolerance of benthic cyanobacteria secures the integrity of cyanobacterial communities. Observations in nature and laboratory modeling show that the formation of mineral layers is restricted to conditions of supersaturation with mineral components. Carbonate precipitation can take place in cyanobacterial communities under conditions of mixing sea water enriched with Ca and Mg with continental water enriched with sodium carbonate. Cyanobacteria are able to form and transform various Ca-Mg-carbonates. Dolomite formation is a derived process that occurs in cyanobacterial mats in the presence of sulfate-reducing bacteria. Carbonatization of cyanobacterial cells is considered using the example of the unicellular halophilic-alkaliphilic cyanobacterium Euhalothece sp. The accomplished study is of certain interest for interpretation of geological and paleontological data in the context of the supposed analogy between cyanobacterial mats and ancient stromatolites.  相似文献   

15.
Black band disease (BBD) is a pathogenic, sulfide-rich microbial mat dominated by filamentous cyanobacteria that infect corals worldwide. We isolated cyanobacteria from BBD into culture, confirmed their presence in the BBD community by using denaturing gradient gel electrophoresis (DGGE), and demonstrated their ecological significance in terms of physiological sulfide tolerance and photosynthesis-versus-irradiance values. Twenty-nine BBD samples were collected from nine host coral species, four of which have not previously been investigated, from reefs of the Florida Keys, the Bahamas, St. Croix, and the Philippines. From these samples, seven cyanobacteria were isolated into culture. Cloning and sequencing of the 16S rRNA gene using universal primers indicated that four isolates were related to the genus Geitlerinema and three to the genus Leptolyngbya. DGGE results, obtained using Cyanobacteria-specific 16S rRNA primers, revealed that the most common BBD cyanobacterial sequence, detected in 26 BBD field samples, was related to that of an Oscillatoria sp. The next most common sequence, 99% similar to that of the Geitlerinema BBD isolate, was present in three samples. One Leptolyngbya- and one Phormidium-related sequence were also found. Laboratory experiments using isolates of BBD Geitlerinema and Leptolyngbya revealed that they could carry out sulfide-resistant oxygenic photosynthesis, a relatively rare characteristic among cyanobacteria, and that they are adapted to the sulfide-rich, low-light BBD environment. The presence of the cyanotoxin microcystin in these cultures and in BBD suggests a role in BBD pathogenicity. Our results confirm the presence of Geitlerinema in the BBD microbial community and its ecological significance, which have been challenged, and provide evidence of a second ecologically significant BBD cyanobacterium, Leptolyngbya.  相似文献   

16.
The Zavarzin spring is situated in the caldera of the Uzon volcano, Kamchatka, and is characterized by a temperature of about 60°C, neutral pH, and high concentration of sulfur. The bottom of the spring is covered with a cyanobacterial mat. The structure of the microbial community of the water from the Zavarzin spring was qualitatively and quantitatively characterized by pyrosequencing of the V3 variable region of the 16S rRNA gene, which yielded 37 654 independent sequences. The microbial community includes about 900 bacterial and 90 archaeal genera. Bacteria comprised 95% of the microorganisms and archaea less than 5%. The largest part (32.3%) of the community was constituted by the chemolithoautotrophic bacteria Aquificae from the genera Sulfurihydrogenibium and Thermosulfidibacter. Among autotrophic microorganisms, members of Thermodesulfobacteria (7.3%), the gammaproteobacteria Thiofaba (7.6%), the deltaproteobacteria Desulfurella (2.6%), and the betaproteobacteria Thiomonas (0.6%) were also identified. Heterotrophic bacteria were represented by Calditerrivibrio (12.1%), Thermotogae (6.3%), the betaproteobacteria Tepidimonas (6.0%), Deinococcus-Thermus (4.4%), Caldiserica (1.7%), and Dictyoglomi (1.6%). About 1.9% of microorganisms belonged to the BRC1 phylum, which does not include cultured members, and 0.2% of bacteria formed a new phylogenetic branch of the phylum level, representatives of which have been found only in the Zavarzin spring. Members of all four archaeal phyla were identified: Euryarchaeota (42% of archaeal sequences), Crenarchaeota (50%), Korarchaeota (7.5%), and Nanoarchaeota (0.5%). Thus, in the Zavarzin spring, apart from photosynthesis carried out by the cyanobacterial mat, which covers the bottom, chemolithoautotrophic production of organic matter can occur. In aerobic conditions, it proceeds at the expense of the oxidation of sulfur and its reduced compounds, and in anaerobic conditions, at the expense of the oxidation of hydrogen with sulfur and sulfates as electron acceptors. The organic matter formed by autotrophic bacteria may be utilized by various organotrophic microorganisms, including both fermentative bacteria and organisms that carry out anaerobic respiration with sulfur and nitrate as electron acceptors.  相似文献   

17.
Enumeration of the functional groups of sulfur bacteria was performed in the sediments in the Bassin d'Arcachon, a mesotidal lagoon with strong tidal currents and dominant populations of seagrass (Zostera noltii), and in the Etang du Prévost, a shallow lagoon with moderate tidal fluctuations and dominant populations of floating seaweed (Ulva sp.). In addition, data were collected on the distribution of oxygen and sulfide at the water-sediment interface during diel cycles. Bacterial enumeration studies revealed highest numbers in the top two cm of the sediments for three functional groups of sulfur bacteria, these being the sulfate-reducing bacteria (SRB), the colorless sulfur bacteria (CSB), and the phototrophic sulfur bacteria (PSB). In both systems high numbers of SRB were encountered, suggesting ample availability of organic matter. A comparison between different sites in each ecosystem showed that sediments overlain by more stagnant water were dominated by PSB, whereas those overlain by more oxygenated water were dominated by CSB. Important factors are the physical forces induced by tidal currents and the degree of daily exchange of water between the lagoons and the sea. These factors may explain the differences observed between the two systems with regard to the development of anoxic conditions, more so than the level of eutrophication. It appears that rooted plants play an important role in the introduction of oxygen into the sediments, thus enhancing the competitive position of CSB compared to PSB. Mini-electrodes studies revealed high concentrations of free sulfide at the inner site of the Etang du Prévost but very low concentrations at the inner station of the Bassin d'Arcachon, which may be explained by the high iron input of the latter, rather than by differences in the rate of sulfide production.  相似文献   

18.
Gravity-driven membrane (GDM) filtration is a promising tool for low-cost decentralized drinking water production. The biofilms in GDM systems are able of removing harmful chemical components, particularly toxic cyanobacterial metabolites such as microcystins (MCs). This is relevant for the application of GDM filtration because anthropogenic nutrient input and climate change have led to an increase of toxic cyanobacterial blooms. However, removal of MCs in newly developing GDM biofilms is only established after a prolonged period of time. Since cyanobacterial blooms are transient phenomena, it is important to understand MC removal in mature biofilms with or without prior toxin exposure. In this study, the microbial community composition of GDM biofilms was investigated in systems fed with water from a lake with periodic blooms of MC-producing cyanobacteria. Two out of three experimental treatments were supplemented with dead biomass of a MC-containing cyanobacterial strain, or of a non-toxic mutant, respectively. Analysis of bacterial rRNA genes revealed that both biomass-amended treatments were significantly more similar to each other than to a non-supplemented control. Therefore, it was hypothesized that biofilms could potentially be ‘primed’ for rapid MC removal by prior addition of non-toxic biomass. A subsequent experiment showed that MC removal developed significantly faster in mature biofilms that were pre-fed with biomass from the mutant strain than in unamended controls, indicating that MC degradation was a facultative trait of bacterial populations in GDM biofilms. The significant enrichment of bacteria related to both aerobic and anaerobic MC degraders suggested that this process might have occurred in parallel in different microniches.  相似文献   

19.
Cyanobacteria are renowned as the mediators of Earth's oxygenation. However, little is known about the cyanobacterial communities that flourished under the low-O(2) conditions that characterized most of their evolutionary history. Microbial mats in the submerged Middle Island Sinkhole of Lake Huron provide opportunities to investigate cyanobacteria under such persistent low-O(2) conditions. Here, venting groundwater rich in sulfate and low in O(2) supports a unique benthic ecosystem of purple-colored cyanobacterial mats. Beneath the mat is a layer of carbonate that is enriched in calcite and to a lesser extent dolomite. In situ benthic metabolism chambers revealed that the mats are net sinks for O(2), suggesting primary production mechanisms other than oxygenic photosynthesis. Indeed, (14)C-bicarbonate uptake studies of autotrophic production show variable contributions from oxygenic and anoxygenic photosynthesis and chemosynthesis, presumably because of supply of sulfide. These results suggest the presence of either facultatively anoxygenic cyanobacteria or a mix of oxygenic/anoxygenic types of cyanobacteria. Shotgun metagenomic sequencing revealed a remarkably low-diversity mat community dominated by just one genotype most closely related to the cyanobacterium Phormidium autumnale, for which an essentially complete genome was reconstructed. Also recovered were partial genomes from a second genotype of Phormidium and several Oscillatoria. Despite the taxonomic simplicity, diverse cyanobacterial genes putatively involved in sulfur oxidation were identified, suggesting a diversity of sulfide physiologies. The dominant Phormidium genome reflects versatile metabolism and physiology that is specialized for a communal lifestyle under fluctuating redox conditions and light availability. Overall, this study provides genomic and physiologic insights into low-O(2) cyanobacterial mat ecosystems that played crucial geobiological roles over long stretches of Earth history.  相似文献   

20.
Strain L21-Ace-BEST, isolated from a lithifying cyanobacterial mat, could be assigned to a novel species and genus within the class Deferribacteres. It is an important model organism for the study of anaerobic acetate degradation under hypersaline conditions. The metabolism of strain L21-Ace-BEST was characterized by biochemical studies, comparative genome analyses, and the evaluation of gene expression patterns. The central metabolic pathway is the citric acid cycle, which is mainly controlled by the enzyme succinyl-CoA:acetate-CoA transferase. The potential use of a reversed oxidative citric acid cycle to fix CO2 has been revealed through genome analysis. However, no autotrophic growth was detected in this strain, whereas sulfide and H2 can be used mixotrophically. Preferred electron acceptors for the anaerobic oxidation of acetate are nitrate, fumarate and dimethyl sulfoxide, while oxygen can be utilized only under microoxic conditions. Aerotolerant growth by fermentation was observed at higher oxygen concentrations. The redox cycling of sulfur/sulfide enables the generation of reducing power for the assimilation of acetate during growth and could prevent the over-reduction of cells in stationary phase. Extracellular electron transfer appears to be an essential component of the respiratory metabolism in this clade of Deferribacteres and may be involved in the reduction of nitrite to ammonium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号