首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M C Costanzo  E C Seaver    T D Fox 《The EMBO journal》1986,5(13):3637-3641
Mitochondrial translation of the oxi2 mRNA, encoding yeast cytochrome c oxidase subunit III (coxIII), has previously been shown to specifically require the mitochondrially located protein product of the nuclear gene PET494. We show here that this specific translational activation involves at least one other newly identified gene termed PET54. Mutations in PET54 cause an absence of the coxIII protein despite the presence of normal levels of its mRNA. pet494 mutations are known to be suppressible by mitochondrial gene rearrangements that replace the normal 5'-untranslated leader of the oxi2 mRNA with the leaders of other mitochondrial mRNAs. In this study we show that pet54, pet494 double mutants are suppressed by the same mitochondrial gene rearrangements, showing that the PET54 product is specifically required, in addition to the PET494 protein, for translation of the oxi2 mRNA. Since, as we show here, PET54 is not an activator of PET494 gene expression, our results suggest that the products of both of these genes may act together to stimulate coxIII translation.  相似文献   

2.
3.
Summary Mitochondrial translation of the cob mRNA to yield apocytochrome b is specifically dependent on the nuclear gene CBS1, while mitochondrial translation of the oxi2 mRNA to yield cytochrome oxidase subunit III (cox III) is specifically dependent on the nuclear gene PET494. Chimeric oxi2 mRNAs bearing the 5 leaders of other mitochondrial mRNAs, transcribed from rho - mitochondrial DNAs termed MSU494, are translated in pet494 mutants. In this study, we examined translation of coxIII from MSU494-encoded chimeric mRNAs in zygotes of defined nuclear and mitochondrial genotype. CoxIII was translated from a chimeric mRNA bearing the cob leader only when the zygotes contained a wild-type CBS1 gene. CoxIII translation from an mRNA bearing the 5 leader of the mitochondrial gene aap1 was not dependent on CBS1 activity. We conclude that the product of the nuclear gene CBS1, or something under its control, acts in the mitochondrion on the cob mRNA 5 leader to activate translation of downstream coding sequences.  相似文献   

4.
P. Haffter  T. W. McMullin    T. D. Fox 《Genetics》1990,125(3):495-503
Translation of the Saccharomyces cerevisiae mitochondrial mRNA encoding cytochrome c oxidase subunit III (coxIII) specifically requires the products of at least three nuclear genes, PET122, PET494 and PET54. pet122 mutations that remove 24-67 amino acid residues from the carboxyterminus of the gene product were found to be suppressed by unlinked nuclear mutations. These unlinked suppressors fail to suppress both a pet122 missense mutation and a complete pet122 deletion. One of the suppressor mutations causes a heat-sensitive nonrespiratory growth phenotype in an otherwise wild-type strain and reduces translation of all mitochondrial gene products in cells grown at high temperature. This suppressor maps to a newly identified gene on chromosome XV termed PET123. The sequence of a DNA fragment carrying PET123 contains one major open reading frame encoding a basic protein of 318 amino acids. Inactivation of the chromosomal copy of PET123 by interruption of this open reading frame causes cells to become rho- (sustain large deletions in their mtDNA). This phenotype is characteristic for null alleles of genes whose products are essential for general mitochondrial protein synthesis. Thus our data strongly suggest that the PET123 protein is a component of the mitochondrial translation apparatus that interacts directly with the coxIII-mRNA-specific translational activator PET122.  相似文献   

5.
The region of mitochondrial DNA (mtDNA) containing the oxi 2 locus has been sequenced in a rho- clone (DS40) derived from the respiratory competent strain D273-10B/A48 of Saccharomyces cerevisiae. The DS40 clone was established to have retained only genetic markers in the oxi 2 locus and to have a segment of mtDNA extending from 18.6 to 24.3 units of the wild type map. The mitochondrial genome of DS40 includes a sequence that has been tentatively identified as the structural gene of Subunit 3 of cytochrome oxidase. The coding sequence is 810 nucleotides long and generates a protein with a molecular weight of 30,340. The amino acid composition of the oxi 2 gene product deduced from the nucleotide sequence is in agreement with the composition of the purified Subunit 3 of yeast cytochrome oxidase. The orientation of the DS40 mtDNA segment relative to wild type mtDNA indicates that the oxi 2 gene is transcribed from the same DNA strand as the oxi 1 and several other mitochondrial genes.  相似文献   

6.
7.
Earlier studies from this laboratory have shown that cytochrome c oxidase from bakers' yeast contains seven subunits, three of which are made in the mitochondrion (Mason, T. L., and Schatz, G. (1973) J. Biol. Chem. 248, 1355). Moreover, a cytochrome c oxidase-less yeast mutant (pet 494-1) was isolated which lacked one of the mitochondrially made subunits (Ebner, E., Mason, T. L., and Schatz, G. (1973) J. Biol. Chem. 248, 5369). Surprisingly, the mutated gene was localized in the nucleus. The results presented here demonstrate that this mutant phenotype can be suppressed by nuclear amber suppressors which affect translation on cytoplasmic ribosomes. This fact was established by two methods, (a) By constructing pet 494-1 strains possessing various amber and ochre markers, isolating respiring revertants from these strains, and demonstrating co-reversion of the amber (but not of the ochre) markers. (b) By coupling the pet 494-1 allele with the well characterized amber suppressor gene SUP 4-3. These data show that suppressor genes located on nuclear chromosomes may control the accumulation of a mitochondrially synthesized polypeptide. The present results also allow some tentative conclusions about the mechanism of the pet 494 mutation. Because it is highly unlikely that the cytoplasmic and the mitochondrial translation system share a common suppressor, the pet 494 locus probably does not code for the missing mitochondrially made subunit, but for a cytoplasmically made protein. This as yet unidentified protein seems to control the synthesis or the integration of the mitochondrially made subunit. Nuclear suppressor genes may thus be useful tools for studying the role of cytoplasmic protein synthesis in mitochondrial formation.  相似文献   

8.
Two-dimensional electrophoretic analysis of the mitochondrial translation products of four mit-mutants indicate that subunit III of cytochrome oxidase is the only mitochondrial translation product affected by mutations in the oxi2 region of the mtDNA. Mitochondria of two of these mutants synthesize new products which coprecipitate with an anticytochrome oxidase antiserum and produce proteolytic digests similar to those of subunit III of the enzyme complex. These data strongly support the suggestion that the oxi2 region of the yeast mtDNA contains the structural gene of subunit III of cytochrome oxidase.  相似文献   

9.
10.
Dominant mutations in the yeast nuclear gene NAM2 cure the RNA splicing deficiency resulting from the inactivation of the bI4 maturase encoded by the fourth intron of the mitochondrial cytochrome b gene. This maturase is required to splice the fourth intron of this gene and to splice the fourth intron of the mitochondrial gene oxi3 encoding cytochrome oxidase subunit I. We have cloned the nuclear gene NAM2, which codes for two overlapping RNAs, 3.2 kb and 3.0 kb long, which are transcribed in the same direction but differ at their 5' ends. NAM2 compensating mutations probably result from point mutations in the structural gene. Integration of the cloned gene occurs at its homologous locus on the right arm of chromosome XII. Inactivation of the NAM2 gene either by transplacement with a deleted copy of the gene, or by disruption, is not lethal to the cell, but leads to the destruction of the mitochondrial genome with the production of 100% cytoplasmic petites.  相似文献   

11.
Translation of the Saccharomyces cerevisiae mitochondrial COX3 mRNA, encoding subunit III of cytochrome c oxidase, specifically requires the action of the nuclear gene products PET54, PET122, and PET494 at a site encoded in the 612-base 5' untranslated leader. To identify more precisely the site of action of the translational activators, we constructed two large deletions of the COX3 mRNA 5' untranslated leader. Both deletions blocked translation without affecting mRNA stability. However, one of the large deletions was able to revert to partial function by a small secondary deletion within the remaining 5' leader sequences. Translation of the resulting mutant (cox3-15) mRNA was still dependent on the nuclear-encoded specific activators but was cold sensitive. We selected revertants of this mitochondrial mutant at low temperature to identify genes encoding proteins that might interact with the COX3 mRNA 5' leader. One such revertant carried a missense mutation in the PET122 gene that was a strong and dominant suppressor of the cold-sensitive defect in the mRNA, indicating that the PET122 protein interacts functionally (possibly directly) with the COX3 mRNA 5' leader. The cox3-15 mutation was not suppressed by overproduction of the wild-type PET122 protein but was very weakly suppressed by overproduction of PET494 and slightly better suppressed by co-overproduction of PET494 and PET122.  相似文献   

12.
Summary The activity of the nuclear gene PET494 is required to allow expression of the yeast mitochondrial gene oxi2. To aid the study of the mechanism of action of PET494 we have isolated this gene from yeast DNA. A clone bank of yeast DNA fragments in a yeast-E. coli shuttle vector was screened by transformation for a plasmid able to complement the pet494-1 amber mutation. A complementing plasmid was obtained that contained a unique 4.4 kb yeast sequence. This 4.4 kb sequence contains the PET494 gene. Integration of a plasmid containing it into chromosomal DNA by homologous recombination, and subsequent genetic analysis, demonstrated that the 4.4 kb fragment was tightly linked to the pet494-1 mutation. In addition, the corresponding 4.4 kb sequence isolated from a pet494-1 mutant failed to complement the mutation. A 2 kb fragment, subcloned from the original plasmid retained the ability to complement the mutation. The pet494-1 mutation maps to chromosome XIV between rna2 and lys9, approximately 2.4 cm from lys9.  相似文献   

13.
P. Haffter  T. W. McMullin    T. D. Fox 《Genetics》1991,127(2):319-326
Expression of the Saccharomyces cerevisiae mitochondrial gene coding cytochrome c oxidase subunit III is specifically activated at the level of translation by at least three nuclear genes, PET122, PET494 and PET54. We have shown previously that carboxy-terminal deletions of PET122 are allele-specifically suppressed by mutations in an unlinked nuclear gene, termed PET123, that encodes a small subunit ribosomal protein. Here we describe additional pet122 suppressors generated by mutations in a second gene which we show to be the previously identified nuclear gene MRP1. Like PET123, MRP1 encodes a component of the small subunit of mitochondrial ribosomes. Our mrp1 mutations are allele-specific suppressors of carboxyl-terminal truncations of the PET122 protein and do not bypass the requirement for residual function of PET122. None of our mrp1 mutations has an intrinsic phenotype in an otherwise wild-type background. However, some of the mrp1 mutations cause a non-conditional respiratory-defective phenotype in combination with certain pet123 alleles. This synthetic defective phenotype suggests that the ribosomal proteins PET123 and MRP1 interact functionally with each other. The fact that they can both mutate to suppress certain alleles of the mRNA-specific translational activator PET122 strongly suggests that the PET122 protein promotes translation of the coxIII mRNA via an interaction with the small subunit of mitochondrial ribosomes.  相似文献   

14.
15.
These studies describe the properties of three mit- mutants designated EM17, EM25, and PZ1, all mapping at two closely linked sites near one of the boundaries of the region of the mitochondrial genome concerned with the specification of cytochrome b. They all exhibit complex phenotypes affecting cytochrome b, cytochrome aa3, and additional polypeptides not found in the wild type. In the case of EM 17 this complexity can be ascribed to the presence of two mutations induced in the course of the initial mutagenic treatment: one, the cob2 mutation proper, is responsible for the loss of cytochrome b which is replaced by an altered, functionally inactive polypeptide, cytochrome b. This polypeptide can be further modified, or even eliminated, by the controlled introduction of another mutation in the cob1 segment of the cob region. The reduction in cytochrome oxidase subunit I, responsible for the effects on cytochrome aa3 and enzymatic activity in EM17, is due to a second (not mit-) mutation that has been located in the par1-proximal segment of the oxi3 region. This second mutation as well as the cob mutation can be overcome, and the respective aspect of wild type function restored to EM17, by recombination with rho- strains retaining the appropriate segment(s) of the wild type genome. The phenotype of the other two mutants is due to a single mutagenic event. This conclusion is confirmed by their ability to restore wild type functions by reversion. The mutation in EM25 appears to be due to a frameshift, which has led to premature chain termination, producing a polypeptide of Mr = 15,000 related to apocytochrome b. This change is accompanied by a decrease in the amount of subunit I of cytochrome oxidase. Revertants fall into three classes: on galactose two produce a polypeptide indistinguishable from apocytochrome b, but vary in its amount, while the third fails to increase apocytochrome b above mutant levels. Production of subunit I is increased but fails to reach wild type levels. Complete restoration of wild type functions can, however, be obtained by recombination of EM25 with rho- (cob2+) strains. Mutation PZ1 results in a complete absence of any polypeptide related to apocytochrome b and of cytochrome oxidase subunit I. These cells produce a novel polypeptide with a Mr = 45,000 not found in the wild type, and unrelated to all its normal polypeptides. Reversion or recombination with rho- (cob2+) strains results in virtually complete restoration of all wild type functions and the elimination of the novel polypeptide.  相似文献   

16.
In the mitochondrial DNA of Saccharomyces cerevisiae, the genes cob-box and oxi3, coding for apocytochrome b and cytochrome oxidase subunit I respectively, are split. Several mutations located in the introns of the cob-box gene prevent the synthesis of cytochrome b and cytochrome oxidase subunit I (this is known as the 'box effect').-We have elucidated the molecular basis of this phenomenon: these mutants are unable to excise the fourth intron of oxi3 from the cytochrome oxidase subunit I pre-mRNA; the absence of a functional bI4 mRNA maturase, a trans-acting factor encoded by the fourth intron of the cob-box gene explains this phenomenon. This maturase was already known to control the excision of the bI4 intron; consequently we have demonstrated that it is necessary for the processing of two introns located in two different genes. Mutations altering this maturase can be corrected, but only partially, by extragenic suppressors located in the mitochondrial (mim2) or in the nuclear (NAM2) genome. The gene product of these two suppressors should, therefore, control (directly or indirectly) the excision of the two introns as the bI4 mRNA maturase normally does.  相似文献   

17.
18.
G Faye  M Simon 《Cell》1983,32(1):77-87
We have analyzed the mitochondrial RNA of a yeast nuclear pet mutant with no cytochrome oxidase activity. The product of the gene affected in this mutant appears to be necessary for the correct maturation of the mitochondrial pre-mRNA of the cytochrome oxidase subunit I. It does not affect, however, the overall splicing of cytochrome b pre-mRNA or the intron excision of the 21S ribosomal RNA precursor. This gene has been isolated by genetic complementation in yeast, and its DNA sequence has been determined. It is transcribed, as detected by S1 mapping experiments, and could encode a protein of 436 amino acids.  相似文献   

19.
20.
Cytochrome c oxidase from Saccharomyces cerevisiae is composed of nine subunits. Subunits I, II and III are products of mitochondrial genes, while subunits IV, V, VI, VII, VIIa and VIII are products of nuclear genes. To investigate the role of cytochrome c oxidase subunit VII in biogenesis or functioning of the active enzyme complex, a null mutation in the COX7 gene, which encodes subunit VII, was generated, and the resulting cox7 mutant strain was characterized. The strain lacked cytochrome c oxidase activity and haem a/a3 spectra. The strain also lacked subunit VII, which should not be synthesized owing to the nature of the cox7 mutation generated in this strain. The amounts of remaining cytochrome c oxidase subunits in the cox7 mutant were examined. Accumulation of subunit I, which is the product of the mitochondrial COX1 gene, was found to be decreased relative to other mitochondrial translation products. Results of pulse-chase analysis of mitochondrial translation products are consistent with either a decreased rate of translation of COX1 mRNA or a very rapid rate of degradation of nascent subunit I. The synthesis, stability or mitochondrial localization of the remaining nuclear-encoded cytochrome c oxidase subunits were not substantially affected by the absence of subunit VII. To investigate whether assembly of any of the remaining cytochrome c oxidase subunits is impaired in the mutant strain, the association of the mitochondrial-encoded subunits I, II and III with the nuclear-encoded subunit IV was investigated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号