首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diversity of sponge-associated fungi has been poorly investigated in remote geographical areas like Antarctica. In this study, 101 phenotypically different fungal isolates were obtained from 11 sponge samples collected in King George Island, Antarctica. The analysis of ITS sequences revealed that they belong to the phylum Ascomycota. Sixty-five isolates belong to the genera Geomyces, Penicillium, Epicoccum, Pseudeurotium, Thelebolus, Cladosporium, Aspergillus, Aureobasidium, Phoma, and Trichocladium but 36 isolates could not be identified at genus level. In order to estimate the potential of these isolates as producers of interesting bioactivities, antimicrobial, antitumoral and antioxidant activities of fungal culture extracts were assayed. Around 51 % of the extracts, mainly from the genus Geomyces and non identified relatives, showed antimicrobial activity against some of the bacteria tested. On the other hand, around 42 % of the extracts showed potent antitumoral activity, Geomyces sp. having the best performance. Finally, the potential of the isolated fungi as producers of antioxidant activity seems to be moderate. Our results suggest that fungi associated with Antarctic sponges, particularly Geomyces, would be valuable sources of antimicrobial and antitumoral compounds. To our knowledge, this is the first report describing the biodiversity and the metabolic potential of fungi associated with Antarctic marine sponges.  相似文献   

2.
Since 2006, Geomyces destructans, the causative agent of white nose syndrome (WNS), has killed over 5.7 million bats in North America. The current hypothesis suggests that this novel fungus is an invasive species from Europe, but little is known about the diversity within the genus Geomyces and its distribution on bats in the United States. We documented the psychrophilic and psychrotolerant fungal flora of hibernating bats prior to the arrival of WNS using culture-based techniques. A total of 149 cultures, which were obtained from 30 bats in five bat hibernacula located in four caves and one mine, were sequenced for the entire internal transcribed spacer (ITS) nuclear ribosomal DNA (nrDNA) region. Approximately 53 operational taxonomic units (OTUs) at 97% similarity were recovered from bat wings, with the community dominated by fungi within the genera Cladosporium, Fusarium, Geomyces, Mortierella, Penicillium, and Trichosporon. Eleven Geomyces isolates were obtained and placed in at least seven distinct Geomyces clades based on maximum-likelihood phylogenetic analyses. Temperature experiments revealed that all Geomyces strains isolated are psychrotolerant, unlike G. destructans, which is a true psychrophile. Our results confirm that a large diversity of fungi, including several Geomyces isolates, occurs on bats prior to the arrival of WNS. Most of these isolates were obtained from damaged wings. Additional studies need to be conducted to determine potential ecological roles of these abundant Geomyces strains isolated from bats.  相似文献   

3.
This article presents the results of microscopic fungi complexes in the areas of five Russian polar stations in East Antarctica and the Subantarctic. A total of 104 microfungal species have been identified. Seventyseven fungal species have been detected in samples of soils and anthropogenic materials from polar stations of East Antarctica (Progress, Mirny, Molodezhnaya, and Druzhnaya 4) using mycological methods while, in the Bellingshausen station (Subantarctic), we have isolated 87 micromycete species. The number of fungi in soils varies from individual propagules in control soils to 94000 per 1 g of soil in contaminated areas. The largest number of species is represented by the genus Penicillium (26 species). Fungal species that form the core of mycobiota in most of the studied habitats have been identified. For soils of East Antarctica, it is formed by species of the genera Aureobasidium, Cadophora, Pseudogymnoascus (Geomyces), Thelebolus, and Phoma. Significant differences are established between the mycobiota of East Antarctica and that of the Subantarctic. At the same time, a general trend towards an increase in fungal species diversity and number in the areas of polar stations compared to the control (clean) sites for all studied areas is recorded. These data indicate that a significant part of micromycetes is introduced into the Antarctic by humans (anthropogenic invasion).  相似文献   

4.
Summary The linear growth rates of fungal isolates were measured on agar plates at temperatures ranging from 4° to 35°C. Fungi tested included the major fungal colonizers of leaves and litter of the three dominant plant species on subantarctic Macquarie Island, and major fungal species associated with plant and soil communities near Australia's Casey Station on the Antarctic Continent. All fungi grew at 4°C and were classified as psychrotrophs. Maximum growth rates were recorded at temperatures of 10° to 20°C for 13 of the 15 isolates from Macquarie Island and for all six isolates from Casey. Most of the leaf colonizing fungi from Macquarie Island had optimum growth temperatures of 15°C whereas all litter fungi from Macquarie Island and Casey fungi except Thelebolus microsporus had optimum growth temperatures of 20°C or above. Maximum growth of all species was at temperatures above those normally prevailing in their natural environments, with most species growing at 4°C at between 10% and 30% of their maximum rates. However, microclimatic effects may have resulted at times in temperatures near their growth optima. The highest growth rates at 4°C were recorded for Phoma spp. 1 and 2, Phoma exigua and Mortierella gamsii from Macquarie Island and Mortierella sp. 1 from Casey. Thelebolus microsporus and sterile sp. G from Casey also grew relatively fast at 4°C, and these species, and Phoma sp. 3 and Phoma exigua from Macquarie Island had the lowest Q-10 values for the temperature range 4° to 15°C.  相似文献   

5.
Several isolates ofPhoma sp., certain nonsporulating fungi, as well asPenicillium andTrichoderma, all isolated from zoysiagrass rhizosphere, promoted growth of wheat and soybean under greenhouse conditions. However, the ability of these rhizosphere fungi to enhance plant growth varied with the crop tested. For example, most of the fungi effectively promoted the growth of wheat, whereas only a few fungi were effective on soybean. In consecutive plantings of wheat and soybean grown in soil previously infested with these zoysiagrass rhizosphere fungi, the growth promotion ability of the fungi was lowered. However, addition of fresh potting medium appeared to restore their growth-promotive effects. It appears that the activation of plant growth-promoting fungi in soil might depend on the availability of organic substrates to colonize, as evidenced by the promotion of plant growth.  相似文献   

6.
Microfungi were isolated from soils, mosses, algae and lichens in the Windmill Islands region of Antarctica. From a total of 1,228 isolates, 22 genera were identified. The most frequently isolated fungi from mosses were Mycelia sterilia (47% of total isolates), Phoma spp. (18%), Penicillium spp. (11%), Chrysosporium spp. (7%) and Thelebolus microsporus (6%). Mycelia sterilia, Penicillium spp., Mortierella spp., Chrysosporium cf. pannorum and Thelebolus microsporus were also frequently isolated from algae. Fungal distribution and diversity were poor in samples of lichens, compared to samples from mosses and algae. The frequency of occurrence of microfungi was most often associated with strong biotic influence. There was a marked increase in fungal diversity in human-disturbed sites. Twelve taxa were restricted to soils from near the Australian Casey Station, suggesting significant introduction of fungi into this environment by human activities. Away from the station, fungal distribution appeared to be related to substrata and nutrient status rather than dispersal opportunities. Suggestions for future research and the need for constant monitoring to clarify the role of human disturbance on Antarctic fungi are discussed. Received: 1 April 1997 / Accepted: 17 August 1997  相似文献   

7.
Filamentous fungi and yeasts associated with the marine algae Adenocystis utricularis, Desmarestia anceps, and Palmaria decipiens from Antarctica were studied. A total of 75 fungal isolates, represented by 27 filamentous fungi and 48 yeasts, were isolated from the three algal species and identified by morphological, physiological, and sequence analyses of the internal transcribed spacer region and D1/D2 variable domains of the large-subunit rRNA gene. The filamentous fungi and yeasts obtained were identified as belonging to the genera Geomyces, Antarctomyces, Oidiodendron, Penicillium, Phaeosphaeria, Aureobasidium, Cryptococcus, Leucosporidium, Metschnikowia, and Rhodotorula. The prevalent species were the filamentous fungus Geomyces pannorum and the yeast Metschnikowia australis. Two fungal species isolated in our study, Antarctomyces psychrotrophicus and M. australis, are endemic to Antarctica. This work is the first study of fungi associated with Antarctic marine macroalgae, and contributes to the taxonomy and ecology of the marine fungi living in polar environments. These fungal species may have an important role in the ecosystem and in organic matter recycling.  相似文献   

8.

The genus Phoma contains several species ubiquitously present in soil, water, and environment. There are two major groups of Phoma, viz., terrestrial and marine. After 1981 researchers all over the world have focused on marine-derived Phoma for their bioactive compounds. The marine Phoma are very rich sources for novel bioactive secondary metabolites, which could potentially be used as drugs. Recently, a large number of structurally unique metabolites with potential biological and pharmacological activities have been isolated from the marine Phoma species particularly Phoma herbarum, P. sorghina, and P. tropica. These metabolites mainly include diterpenes, enolides, lactones, quinine, phthalate, and anthraquinone. Most of these compounds possess antimicrobial, anticancer, radical scavenging, and cytotoxic properties. The present review has been focused on the general background of Phoma, current approaches used for its identification and their limitations, difference between terrestrial and marine Phoma species. In addition, this review summarizes the novel bioactive compounds derived from marine Phoma and their biological activities.

  相似文献   

9.
张铁  于存  戚玉娇 《生态学报》2022,42(7):2774-2783
倒木是森林生态系统的重要组分,其分解调控着土壤的养分循环,同时也影响着土壤微生物群落结构。但目前鲜见关于倒木分解对土壤微生物群落影响方面的报道。选取贵州茂兰喀斯特常绿落叶阔叶混交林中处于轻、中和重度腐烂等级的狭叶润楠(Machilus rehderi)、枫香(Liquidambar formosana)、青冈栎(Cyclobalanopsis glauca)和圆果化香(Platycarya longipes)4种常见树种倒木为研究对象,以距倒木外围的3个不同水平距离(10cm、30cm和50cm)的土壤样品为实验材料,分析倒木树种、腐烂等级和距离对土壤真菌种类及多样性的影响。结果表明:1)喀斯特森林4种树种倒木所影响土壤真菌群落在门级分类上主要为子囊菌门、担子菌门和毛霉门,优势属有Mortierella spp.、Phlebia spp.、Pluteus spp.和Chaetomium spp.等;2)倒木的树种对土壤真菌群落相对丰度的影响有差异,圆果化香倒木下的土壤真菌丰富度Chao1指数显著高于青冈栎;3)随腐烂程度加深,4种树种倒木下的土壤真菌群落多样性呈显著增加趋势;4)土壤真菌群落丰度随着距倒木距离的增大(10-50cm)变化明显,如狭叶润楠影响的Pluteus spp.、Mortierella spp.和Ganoderma spp.,枫香的Chaetomium spp.,圆果化香的Mortierella spp.和青冈栎的Phlebia spp.和Oliveonia spp.等。本研究量化了喀斯特森林倒木所影响的土壤真菌群落组成及分布规律,在一定程度上为倒木分解与土壤微生物群落之间的作用机制的深入探索提供了科学依据。  相似文献   

10.
Xing YM  Chen J  Cui JL  Chen XM  Guo SX 《Current microbiology》2011,62(4):1218-1224
Endophytic fungi are rich in orchids and have great impacts on their host plants. 53 endophytes (30 isolates from Dendrobium devonianum and 23 endophytic fungi from D. thyrsiflorum) were isolated, respectively, from roots and stems of Dendrobium species. All the fungi were identified by way of morphological and/or molecular biological methods. 30 endophytic fungi in D. devonianum were categorized into 11 taxa and 23 fungal endophytes in D. thyrsiflorum were grouped into 11 genera, respectively. Fusarium was the dominant species of the two Dendrobium species in common. Antimicrobial activity of ethanol extract of fermentation broth of these fungi was explored using agar diffusion test. 10 endophytic fungi in D. devonianum and 11 in D. thyrsiflorum exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among 6 pathogenic microbes (Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus). Out of the fungal endophytes isolated from D. devonianum and D. thyrsiflorum, Phoma displayed strong inhibitory activity (inhibition zones in diameter >20 mm) against pathogens. Epicoccum nigrum from D. thyrsiflorum exhibited antibacterial activity even stronger than ampicillin sodium. Fusarium isolated from the two Dendrobium species was effective against the pathogenic bacterial as well as fungal pathogens. The study reinforced the assumption that endophytic fungi isolated from different Dendrobium species could be of potential antibacterial or antifungal resource.  相似文献   

11.
肖健  黄小丹  杨尚东  屈达才 《广西植物》2022,42(12):2099-2108
为研究青枯病易感和钝感桑树品种植株根际土壤真菌群落组成,该研究以ITS1F和ITS2R为引物,基于高通量测序技术对桑树青枯病易感品种(台湾长果桑,SM)和桑树青枯病钝感品种(桂桑12号,IM)植株根际土壤真菌群落结构进行分析。结果表明:(1)两个品种间指示真菌丰富度的ACE、Chao1指数及表征多样性的Shannon指数无显著差异,门分类水平,被孢霉门(Mortierellomycota)和球囊菌门(Glomeromycota)是青枯病钝感桑树品种植株根际土壤中特有的优势真菌门;而属分类水平,Apiotrichum、地丝菌属(Geotrichum)、足放线病菌属(Scedosporium)和腐质霉属(Humicola)等是青枯病易感桑树品种植株根际土壤中富集的特有优势真菌属。(2)青枯病易感桑树品种植株根际土壤中,缺失了被孢霉门、球囊菌门真菌,以及被孢霉属(Mortierella)、镰刀菌属(Fusarium)、曲霉菌属(Aspergillus)和毛壳菌属(Chaetomium)等具有生防功能的优势真菌门属,可能是其易感青枯病的重要原因。(3)根据真菌群落对同类环境资源的利用途径进行功...  相似文献   

12.
We examined the role ofarbuscular mycorrhizal fungi (AMF) in thebioprotection of the sand dune grass Leymus arenarius against soil fungi andnematodes. Six soil fungi (Fusariumnivale, Fusarium sp., Cladosporiumherbarum, Cladosporium sp., Phomasp., Sporothrix sp.) and four species ofnematodes (Pratylenchoidesmagnicauda, Paratylenchusmicrodorus, Rotylenchus goodeyi, Merlinius joctus) were isolated from a coastalsand dune in Iceland where a population of L. arenarius was declining in vigour. Acommercial AMF inoculum (Microbio Ltd. England)containing Glomus caledonium, G.fasciculatum, and G. mossae was used.Seedlings of L. arenarius were grownunder controlled conditions in sterile sand andsubjected to the following treatments: (1)control, (2) + AMF, (3) + AMF + soil fungi, (4)+ AMF + nematodes, (5) + AMF + nematodes + soilfungi, (6) + soil fungi, (7) + soil fungi +nematodes, (8) + nematodes. Mycorrhizal plantshad significantly the highest root dry weightof all treatments. Mycorrhizal plants hadsignificantly higher leaf dry weight thanplants in other treatments, with the exceptionof AMF inoculated plants exposed to nematodes. Mycorrhizal plants exposed to soil fungi andnematodes had significantly higher growthparameters except total number of leaves thanAMF inoculated plants exposed to both soilfungi and nematodes. Mycorrhizal plantssubjected to a dual application of soil fungiand nematodes did not vary significantly in anygrowth parameters from plants without AMF thatwere exposed to a dual application of soilfungi and nematodes. This suggests asynergistic effect of soil fungi and nematodesthat break down the protection of AMF againstpathogens. The results are discussed inrelation to plant dynamics of sand duneecosystems.  相似文献   

13.
Summary A number of fungi were isolated from oak timber from two ships which sank in the Baltic at the beginning of the 17th century. Fungi were found throughout the timber. One of the isolates, a species of Phoma isolated from the central parts of the timber, showed a distinct wood-decaying capacity, causing a kind of rot resembling soft rot. Bacterial deterioration of oak wood in aerobic culture solutions inoculated with scrapings from the submerged oak timber was observed.  相似文献   

14.
Studies were carried out on the air and on Carraramarble blocks located in the terrace of MessinaMuseum, in order to know the likelihood of airbornefungal spores coming into contact with and colonisingtridimensional objects. Our results showed there were not significantdifferences between airborne fungi circulating inspring and in autumn; Aspergillus, Penicillium,Fusarium, Alternaria, Cladosporium,Ulocladium, Aureobasidium, Phoma were themost common isolates. However, only few species wereable to settle on the marble surfaces as demonstratedby their isolation after 2 and 6 years of exposition.  相似文献   

15.
Cucumber plants were treated with plant growth promoting fungi (PGPF), Phoma sp. (isolates GS8-2 and GS8-3) and Penicillium simplicissimum (isolate GP17-2) with or without the arbuscular mycorrhizal fungus (AMF) Glomus mosseae. Induction of systemic resistance in cucumber against the anthracnose disease caused by Colletotrichum orbiculare was tested to evaluate the nature of the interaction between the PGPF and AMF. Root colonizing ability of each fungal species as influenced by their interaction was also evaluated. Plant roots were pre-inoculated with each PGPF isolate and/or G. mosseae for four weeks and leaves were then challenge inoculated with the pathogen C. orbiculare. Plants treated with each PGPF isolate showed considerable protection against the disease, but the treatment of G. mosseae had no significant effect on disease development. However, combined inoculation of Phoma GS8-2 or GS8-3 with G. mosseae reduced the level of disease protection induced by single inoculation of each Phoma isolate. In contrast, the high levels of protection induced by the P. simplicissimum GP17-2 were not altered by combining it with G. mosseae. Root colonization of both Phoma sp. isolates was also suppressed by the presence of the G. mosseae, but such an effect was not found on the population development of P. simplicissimum. The percent cucumber root length colonized by G. mosseae was not affected by any of the PGPF isolates tested.  相似文献   

16.
White-nose syndrome (WNS)  of bats, caused by the fungus previously known as Geomyces destructans, has decimated populations of insectivorous bats in eastern North America. Recent work on fungi associated with bat hibernacula uncovered a large number of species of Geomyces and allies, far exceeding the number of described species. Communication about these species has been hindered by the lack of a modern taxonomic evaluation, and a phylogenetic framework of the group is needed to understand the origin of G. destructans and to target closely related species and their genomes for the purposes of understanding mechanisms of pathogenicity. We addressed these issues by generating DNA sequence data for the internal transcribed spacer (ITS) region, nuclear large subunit (LSU) rDNA, MCM7, RPB2, and TEF1 from a diverse array of Geomyces and allies that included isolates recovered from bat hibernacula as well as those that represent important type species. Phylogenetic analyses indicate Geomyces and allies should be classified in the family Pseudeurotiaceae, and the genera Geomyces, Gymnostellatospora, and Pseudogymnoascus should be recognized as distinct. True Geomyces are restricted to a basal lineage based on phylogenetic placement of the type species, Geomyces auratus. Thus, G. destructans is placed in genus Pseudogymnoascus. The closest relatives of Pseudogymnoascus destructans are members of the Pseudogymnoascus roseus species complex, however, the isolated and long branch of P. destructans indicates that none of the species included in this study are closely related, thus providing further support to the hypothesis that this pathogen is non-native and invasive in eastern North America. Several conidia-producing isolates from bat hibernacula previously identified as members of Pseudeurotium are determined to belong to the genus Leuconeurospora, which is widespread, especially in colder regions. Teberdinia hygrophila is transferred to Pseudeurotium as Pseudeurotium hygrophilum, comb. nov., in accordance with the one name per fungus system of classification, and two additional combinations are made in Pseudogymnoascus including Pseudogymnoascus carnis and Pseudogymnoascus pannorum. Additional sampling from other regions of the world is needed to better understand the evolution and biogeography of this important and diverse group of fungi.  相似文献   

17.
Fungal endophytes of native Gossypium species in Australia   总被引:1,自引:0,他引:1  
Fungal endophytes of 17 genera were found in stems of four native Gossypium species (G. australe, G. bickii, G. nelsonii, G. sturtianum) collected from inland areas in Queensland, the Northern Territory, and South Australia in 2001. Phoma, Alternaria, Fusarium, Botryosphaeria, Dichomera, and Phomopsis were common, accounting for 58, 18, 11, 3, 1, and 1 % of the 281 recovered isolates, respectively, and occurring in 47, 29, 19, 5, 5, and 4 % of the 79 sampled populations. Among the four Gossypium species in Queensland and the Northern Territory, Alternaria spp. and Fusarium spp. had the greatest recovery frequency in G. bickii stems. The recovery frequencies of Phoma spp. and Alternaria spp. were significantly greater in the G. sturtianum stems collected from South Australia than in those from Queensland and the Northern Territory. Pathogenicity of 42 representative isolates was tested on cultivated cotton (G. hirsutum). All isolates caused some localized discoloration in stem tissue when inoculation was conducted with the stem puncturing method, but none of the isolates could induce any foliar symptoms during the five-week experimental period by either inoculation method (root dipping or stem puncturing), suggesting that the endophytic fungi of native Gossypium species are unlikely sources of cotton pathogens.  相似文献   

18.
Sclerotia of Polyporus umbellatus is a traditional Chinese herb. The sclerotia can survive in soils for long time and their growth depends upon a symbiotic association with Armillariella mellea. But it is unclear whether other fungi reside or play a role in the sclerotia. In this study, wild sclerotial samples were collected from seven provinces, which span southwest to northeast China. A total of 148 fungal isolates were recovered from the sclerotia of P. umbellatus and classified into 19 morphological taxa. Seventeen belonged to five genera: Fusarium, Eurotium, Penicillium, Geomyces and Mucor. The fungi found within the sclerotia varied depending on the province from which they were collected. The possible role of these fungi is discussed.  相似文献   

19.
Summary Geomyces and Chrysosporium species isolated from Antarctica were compared with a strain isolated from Italian soil. The Italian and Antarctic strains had different growth rates and membrane fatty acids at different temperatures.  相似文献   

20.
Victoria Gesheva 《Polar Biology》2010,33(10):1351-1357
The distribution of microorganisms in four soil samples taken near Casey Station, Wilkes Land, and on Dewart Island, Frazier Islands (East Antarctica), was studied using isolation cultures at different temperatures. The fungal assemblages comprised Penicillium, Alternaria, Cladosporium, Phoma, Verticillium, Phialophora, Candida and Rhodotorula. Microalgal Chlorophyta were also common. Among the bacteria representatives of cyanobacteria, Staphylococcus, Bacillus, Pantoea, Streptomyces, Micromonospora, and coryne- and nocardioform species were found. Some of the isolated actinomycete strains, determined as Arthrobacter, Rhodococcus, Streptomyces and Micromonospora, produced extracellular substances with antibacterial and antifungal activities. Their potential as biological agents against phytopathogenic bacteria and fungi is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号