首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Introduction: Extracellular vesicles (EVs) represent an important mode of intercellular communication. There is now a growing awareness that predominant EV subtypes; exosomes from endosomal origin, and shed microvesicles from plasma membrane budding, can be further stratified into distinct subtypes, however specific approaches in their isolation and markers that allow them to be discriminated are lacking.

Areas covered: Knowledge about these distinct EV subpopulations is important including the regulation of composition, release, targeting/localization, uptake, and function. This review discusses the mechanisms of distinct EV biogenesis and release, defining select EV classes (and subpopulations), which will be crucial for development of EV-based functions and clinical applications. We review the dynamics of cargo sorting leading to the mechanisms of EV heterogeneity, their mechanisms of formation, intracellular trafficking pathways, and provide an uptake about biochemical/functional differences. With advances in purification strategies and proteomic-based quantitation, allows significant benefit in accurately describing differences in EV protein cargo composition and modification.

Expert commentary: The advent of quantitative mass spectrometry-based proteomics, in conjunction with advances in molecular cell biology, and EV purification strategies, has contributed significantly to our improved characterization and understanding of the molecular composition and functionality of these distinct EV subpopulations.  相似文献   

2.
Zheng'an Wu  Joseph G. Gall 《Chromosoma》1997,105(7-8):438-443
The germinal vesicle of the Xenopus oocyte contains 1500 or more extrachromosomal nucleoli that are assembled on amplified copies of the rRNA genes. Many of these nucleoli have diameters of 10–15 μm, but some are much smaller, ranging down to 1 μm or less. Morphologically the smaller nucleoli or ”micronucleoli” resemble the similarly sized B snurposomes, but they can be recognized with appropriate antibody probes (e.g., anti-nucleolin and anti-fibrillarin). We describe here a sensitive fluorescent staining technique that uses avidin and propidium iodide to visualize the rDNA in the amplified nucleoli. Many large nucleoli stain about as brightly as haploid yeast nuclei on the same slides. They presumably contain about 12 Mb of DNA, equivalent to 900 rDNA repeats. The smallest micronucleoli display only a tiny dot of stain, which must correspond to relatively few rDNA repeats. Received: 8 January 1997; in revised form: 20 January 1997 / Accepted: 27 January 1997  相似文献   

3.
Synaptic ribbons are specialized organelles that hold vesicles close to the active zone of sensory synapses, but their function is mysterious. Acute disruption of the ribbon complex using light has now revealed that it has a role in priming synaptic vesicles for fusion.  相似文献   

4.
Being grounded to one place, plants are constantly exposed to unexpected changes in the surrounding environment. Often, the changes in environmental conditions can be very rapid, compelling the plants to continuously monitor the outside environment and to adjust their metabolism to new conditions. Many of the primary environmental stresses ensue the development of a secondary oxidative stress, resulting in tissue damage and necrosis. The acclimation process almost invariably involves changes in the pattern of expressed proteins and other molecules. This necessitates the removal of the existing molecules from their compartments and the delivery of new compounds to their target organelles. The trafficking of macromolecules is performed by a bi-directional intracellular vesicle trafficking system that delivers newly synthesized molecules to organelles and retrieves material from the organelles to cytosolic compartments, such as vacuoles or lysosomes. The plasma membrane is among the organelles that are most exposed to oxidative stress damage and therefore must be constantly recycled. Here I propose that, by adjusting the rate of trafficking to and from the plasma membrane, the cells can regulate the stress outcome. Since the vesicle trafficking is closely linked to general signal transduction pathways, such as the phosphoinositide kinase pathway, and is influenced by major plant hormones, such as abscisic acid and auxin, the vesicle trafficking machinery holds the potential to regulate the plant responses to different environmental stresses.  相似文献   

5.
LoGiudice L  Matthews G 《Neuron》2006,51(6):676-677
In this issue of Neuron, Granseth et al. re-examine the mechanism of endocytosis at hippocampal synapses using a new optical reporter, sypHy. They conclude that only a single slow mode of endocytosis operates at this synapse and that retrieval after physiological stimuli is largely, if not solely, dominated by the clathrin-mediated pathway. These conclusions dispute previous assertions that "kiss-and-run" is a major mechanism of vesicle recycling at hippocampal synapses.  相似文献   

6.
7.
8.
9.
Do phytotropins inhibit auxin efflux by impairing vesicle traffic?   总被引:12,自引:0,他引:12  
Phytotropins such as 1-N-naphthylphthalamic acid (NPA) strongly inhibit auxin efflux, but the mechanism of this inhibition remains unknown. Auxin efflux is also strongly decreased by the vesicle trafficking inhibitor brefeldin A (BFA). Using suspension-cultured interphase cells of the BY-2 tobacco (Nicotiana tabacum L. cv Bright-Yellow 2) cell line, we compared the effects of NPA and BFA on auxin accumulation and on the arrangement of the cytoskeleton and endoplasmic reticulum (ER). The inhibition of auxin efflux (stimulation of net accumulation) by both NPA and BFA occurred rapidly with no measurable lag. NPA had no observable effect on the arrangement of microtubules, actin filaments, or ER. Thus, its inhibitory effect on auxin efflux was not mediated by perturbation of the cytoskeletal system and ER. BFA, however, caused substantial alterations to the arrangement of actin filaments and ER, including a characteristic accumulation of actin in the perinuclear cytoplasm. Even at saturating concentrations, NPA inhibited net auxin efflux far more effectively than did BFA. Therefore, a proportion of the NPA-sensitive auxin efflux carriers may be protected from the action of BFA. Maximum inhibition of auxin efflux occurred at concentrations of NPA substantially below those previously reported to be necessary to perturb vesicle trafficking. We found no evidence to support recent suggestions that the action of auxin transport inhibitors is mediated by a general inhibition of vesicle-mediated protein traffic to the plasma membrane.  相似文献   

10.
Priming of large dense-core vesicles (LDCVs) is a Ca2+-dependent step by which LDCVs enter a release-ready pool, involving the formation of the soluble N-ethyl-maleimide sensitive fusion protein attachment protein (SNAP) receptor complex consisting of syntaxin, SNAP-25, and synaptobrevin. Using mice lacking both isoforms of the calcium-dependent activator protein for secretion (CAPS), we show that LDCV priming in adrenal chromaffin cells entails two distinct steps. CAPS is required for priming of the readily releasable LDCV pool and sustained secretion in the continued presence of high Ca2+ concentrations. Either CAPS1 or CAPS2 can rescue secretion in cells lacking both CAPS isoforms. Furthermore, the deficit in the readily releasable LDCV pool resulting from CAPS deletion is reversed by a constitutively open form of syntaxin but not by Munc13-1, a priming protein that facilitates the conversion of syntaxin to the open conformation. Our data indicate that CAPS functions downstream of Munc13s but also interacts functionally with Munc13s in the LDCV-priming process.  相似文献   

11.
The paradigm for soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) function in mammalian cells has been built on advancements in our understanding of structural and biochemical aspects of synaptic vesicle exocytosis, involving specifically synaptobrevin, syntaxin 1 and SNAP25. Interestingly, a good number of SNAREs which are not directly involved in neurotransmitter exocytosis, are either brain-enriched or have distinct neuron-specific functions. Syntaxins 12/13 regulates glutamate receptor recycling via its interaction with neuron-enriched endosomal protein of 21 kDa (NEEP21). TI-VAMP/VAMP7 is essential for neuronal morphogenesis and mediates the vesicular transport processes underlying neurite outgrowth. Ykt6 is highly enriched in the cerebral cortex and hippocampus and is targeted to a novel compartment in neurons. Syntaxin 16 has a moderate expression level in many tissues, but is rather enriched in the brain. Here, we review and discuss the neuron-specific physiology and possible pathology of these and other (such as SNAP-29 and Vti1a-β) members of the SNARE family.  相似文献   

12.
Gap junction channels are concentrated in specialised plaques of plasma membrane where cells are in close apposition. In this communication evidence is provided showing that these specialised regions of membrane also provide a site for vesicular transfer between cells. Vesicle distribution in eye lenses was found to generally reflect the reported distribution of gap junction membrane plaques. In certain areas of the lens gap junction membrane plaques and vesicles could be seen to form combined, complex structures. Ultrastructure of the vesicle and gap junction membrane plaque complexes was consistent with the vesicles moving through membrane plaques from one lens fibre cell to the next. To investigate whether transport of substances was consistent with intercellular vesicle transfer, transport of various markers was investigated. Time course experiments showing the rate of uptake of various markers into the lens did not show dramatic differences for molecules smaller or larger then gap junction pores formed by connexons. While considered as a primary intercellular transport mechanism in the lens, connexon pores were not the sole agent mediating the observed transport. Other reported mechanisms of intercellular transport in the lens can only account for the movement of relatively small molecules. Vesicular transport may therefore be a major form of transport into the outer lens layers for larger molecules. Implicit in these observations is a new hypothesis for intercellular vesicle movement via gap junction membrane plaques. Intercellular vesicle movement could possibly provide a path for large molecules associated with intact vesicles to be transported into the eye lens tissue.  相似文献   

13.
14.
Intracellular organelle cross-talk is a new and important research area. Under stress conditions, the coordinated action of the autophagy and endosomal systems in tumor cells is essential for maintaining cellular homeostasis and survival. The activation of the IκB kinase (IKK) complex is also involved in the regulation of stress and homeostasis in tumor cells. Here, we try to explore the effects of constitutively active IKKβ subunits (CA-IKKβ) on autophagy and endosomal system interactions. We confirm that CA-IKKβ induces accumulation of autophagosomes and their fusion with MVBs to form amphisomes in cancer cells, and also drives the release of EVs containing autophagy components through an amphisome-dependent mechanism. We further demonstrate that CA-IKKβ inhibits the expression of RAB7, thereby weakening the lysosomal-dependent degradation pathway. CA-IKKβ also induces phosphorylation of SNAP23 at Ser95 instead of Ser110, which further promotes amphisome-plasma membrane fusion and sEV secretion. These results indicate that CA-IKKβ drives the formation and transport of amphisomes, thereby regulating tumor cell homeostasis, which may illuminate a special survival mechanism in tumor cells under stress.  相似文献   

15.
Matthews G 《Neuron》2002,35(6):1013-1014
Direct optical measurements of single synaptic vesicles undergoing exocytosis at a synapse reveal rapid and complete transfer of membrane marker from the vesicle to the plasma membrane (; this issue of Neuron). Contact between the two membranes is consistent with free lipid exchange, such as might result from full fusion of the vesicle and plasma membranes.  相似文献   

16.
We recently showed that a Rab protein, CPRabA5e (CP = chloroplast localized), is located in chloroplasts of Arabidopsis thaliana where it is involved in various processes, such as thylakoid biogenesis and vesicle transport. Using a yeast two-hybrid method, CPRabA5e was shown to interact with a number of chloroplast proteins, including the CURVATURE THYLAKOID 1A (CURT1A) protein and the light-harvesting chlorophyll a/b binding protein (LHCB1.5). CURT1A has recently been shown to modify thylakoid architecture by inducing membrane curvature in grana, whereas LHCB1.5 is a protein of PSII (Photosystem II) facilitating light capture. LHCB1.5 is imported to chloroplasts and transported to thylakoid membranes using the post-translational Signal Recognition Particle (SRP) pathway. With this information as starting point, we here discuss their subsequent protein-protein interactions, given by the literature and Interactome 3D. CURT1A itself and several of the proteins interacting with CURT1A and LHCB1.5 have relations to vesicle transport and thylakoid morphology, which are also characteristics of cprabA5e mutants. This highlights the previous hypothesis of an alternative thylakoid targeting pathway for LHC proteins using vesicles, in addition to the SRP pathway.  相似文献   

17.
Neurotransmitter release proceeds by Ca(2+)-triggered, SNARE-complex-dependent synaptic vesicle fusion. After fusion, the ATPase NSF and its cofactors α- and βSNAP disassemble SNARE complexes, thereby recycling individual SNAREs for subsequent fusion reactions. We examined the effects of genetic perturbation of α- and βSNAP expression on synaptic vesicle exocytosis, employing a new Ca(2+) uncaging protocol to study synaptic vesicle trafficking, priming, and fusion in small glutamatergic synapses of hippocampal neurons. By characterizing this protocol, we show that synchronous and asynchronous transmitter release involve different Ca(2+) sensors and are not caused by distinct releasable vesicle pools, and that tonic transmitter release is due to ongoing priming and fusion of new synaptic vesicles during high synaptic activity. Our analysis of α- and βSNAP deletion mutant neurons shows that the two NSF cofactors support synaptic vesicle priming by determining the availability of free SNARE components, particularly during phases of high synaptic activity.  相似文献   

18.
SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptors)-mediated exocytotic release of neurotransmitters is a key process in neuronal communication, controlled by a number of molecular interactions. A synaptic vesicle v-SNARE protein (VAMP2 or synaptobrevin), in association with two plasma membrane t-SNAREs (syntaxin 1 and SNAP25), assemble to form a protein complex that is largely accepted as the minimal membrane fusion machine. Acidification of the synaptic vesicle lumen by the large multi-subunit vacuolar proton pump (V-ATPase) is required for loading with neurotransmitters. Recent data demonstrate a direct interaction between the c-subunit of the V-ATPase and VAMP2 that appears to play a role at a late step in transmitter release. In this review, we examine evidence suggesting that the V0 membrane sector of the V-ATPase not only participates in proton pumping, but plays a second distinct role in neurosecretion, downstream of filling and close to vesicle fusion.  相似文献   

19.
LRRK2 and SNCA, the gene for α-synuclein, are the two of the most important genetic factors of Parkinson's disease (PD). A-synuclein is aggregated and accumulated in neurons and glia in PD and considered the pathogenic culprit of the disease. A-synuclein aggregates spread from a few discrete regions of the brain to larger areas as the disease progresses through cell-to-cell propagation mechanism. LRRK2 is involved in the regulation of vesicle trafficking, in particular in the endolysosomal and autophagic pathways. Studies also suggest that LRRK2 might regulate the pathogenic actions of α-synuclein. However, the relationship between these two proteins in the pathogenesis of PD remains elusive. Here, we review the current literature on the pathophysiological function of LRRK2 with an emphasis on its role in the endolysosomal and autophagic pathways. We also propose a potential mechanism by which LRRK2 is involved in the regulation of aggregation and the propagation of α-synuclein.  相似文献   

20.
Endocytosis is a fine-tuned mechanism of cellular communication through which cells internalize molecules on the plasma membrane, such as receptors and their bound ligands. Through receptor clustering in endocytic pits, recruitment of active receptors to different endocytic routes and their trafficking towards different fates, endocytosis modulates cell signaling and ultimately leads to a variety of biological responses. Many studies have focused their attention on specialized endocytic mechanisms depending on the nature of the internalizing cargo and cellular context, distinct sets of coat proteins, endocytic adaptors and membrane lipids. Here, we review recent advances in our understanding of the principles underlying endocytic vesicle formation, integrating both biochemical and biophysical factors, with a particular focus on intrinsically disordered regions (IDRs) creating weakly interconnected protein networks assembled through liquid–liquid phase separation (LLPS) and driving membrane bending especially in clathrin-mediated endocytosis (CME). We finally discuss how these properties impinge on receptor fate and signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号