首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most biological traits of human importance are complex in nature; their manifestation controlled by the cumulative effect of many genetic factors interacting with one another and with the individual’s life history. Because of this, mouse genetic reference populations (GRPs) consisting of collections of inbred lines or recombinant inbred lines (RIL) derived from crosses between inbred lines are of particular value in analysis of complex traits, since massive amounts of data can be accumulated on the individual lines. However, existing mouse GRPs are derived from inbred lines that share a common history, resulting in limited genetic diversity, and reduced mapping precision due to long-range gametic disequilibrium. To overcome these limitations, the Collaborative Cross (CC) a genetically highly diverse collection of mouse RIL was established. The CC, now in advanced stages of development, will eventually consist of about 500 RIL derived from reciprocal crosses of eight divergent founder strains of mice, including three wild subspecies. Previous studies have shown that the CC indeed contains enormous diversity at the DNA level, that founder haplotypes are inherited in expected frequency, and that long-range gametic disequilibrium is not present. We here present data, primarily from our own laboratory, documenting extensive genetic variation among CC lines as expressed in broad-sense heritability (H2) and by the well-known “coefficient of genetic variation,” demonstrating the ability of the CC resource to provide unprecedented mapping precision leading to identification of strong candidate genes.  相似文献   

2.
The Collaborative Cross Consortium reports here on the development of a unique genetic resource population. The Collaborative Cross (CC) is a multiparental recombinant inbred panel derived from eight laboratory mouse inbred strains. Breeding of the CC lines was initiated at multiple international sites using mice from The Jackson Laboratory. Currently, this innovative project is breeding independent CC lines at the University of North Carolina (UNC), at Tel Aviv University (TAU), and at Geniad in Western Australia (GND). These institutions aim to make publicly available the completed CC lines and their genotypes and sequence information. We genotyped, and report here, results from 458 extant lines from UNC, TAU, and GND using a custom genotyping array with 7500 SNPs designed to be maximally informative in the CC and used a novel algorithm to infer inherited haplotypes directly from hybridization intensity patterns. We identified lines with breeding errors and cousin lines generated by splitting incipient lines into two or more cousin lines at early generations of inbreeding. We then characterized the genome architecture of 350 genetically independent CC lines. Results showed that founder haplotypes are inherited at the expected frequency, although we also consistently observed highly significant transmission ratio distortion at specific loci across all three populations. On chromosome 2, there is significant overrepresentation of WSB/EiJ alleles, and on chromosome X, there is a large deficit of CC lines with CAST/EiJ alleles. Linkage disequilibrium decays as expected and we saw no evidence of gametic disequilibrium in the CC population as a whole or in random subsets of the population. Gametic equilibrium in the CC population is in marked contrast to the gametic disequilibrium present in a large panel of classical inbred strains. Finally, we discuss access to the CC population and to the associated raw data describing the genetic structure of individual lines. Integration of rich phenotypic and genomic data over time and across a wide variety of fields will be vital to delivering on one of the key attributes of the CC, a common genetic reference platform for identifying causative variants and genetic networks determining traits in mammals.  相似文献   

3.
Yuan Z  Zou F  Liu Y 《Genetics》2011,188(1):189-195
The Collaborative Cross (CC) is a renewable mouse resource that mimics the genetic diversity in humans. The recombinant inbred intercrosses (RIX) generated from CC recombinant inbred (RI) lines share similar genetic structures to those of F(2) individuals. In contrast to F(2) mice, genotypes of RIX can be inferred from the genotypes of their RI parents and can be produced repeatedly. Also, RIX mice do not typically share the same degree of relatedness. This unbalanced genetic relatedness requires careful statistical modeling to avoid a large number of false positive findings. For complex traits, mapping multiple genes simultaneously is arguably more powerful than mapping one gene at a time. In this article, we describe how we have developed a Bayesian quantitative trait locus (QTL) mapping method that simultaneously deals with the special genetic architecture of RIX and maps multiple genes. The performance of the proposed method is evaluated by extensive simulations. In addition, for a given set of RI lines, there are numerous ways to generate RIX samples. To provide a general guideline on future RIX studies, we compare several RIX designs through simulations.  相似文献   

4.
The mouse is the most extensively used mammalian model for biomedical and aging research, and an extensive catalogue of laboratory resources is available to support research using mice: classical inbred lines, genetically modified mice (knockouts, transgenics, and humanized mice), selectively bred lines, consomics, congenics, recombinant inbred panels, outbred and heterogeneous stocks, and an expanding set of wild-derived strains. However, these resources were not designed or intended to model the heterogeneous human population or for a systematic analysis of phenotypic effects due to random combinations of uniformly distributed natural variants. The Collaborative Cross (CC) is a large panel of recently established multiparental recombinant inbred mouse lines specifically designed to overcome the limitations of existing mouse genetic resources for analysis of phenotypes caused by combinatorial allele effects. The CC models the complexity of the human genome and supports analyses of common human diseases with complex etiologies originating through interactions between allele combinations and the environment. The CC is the only mammalian resource that has high and uniform genomewide genetic variation effectively randomized across a large, heterogeneous, and infinitely reproducible population. The CC supports data integration across environmental and biological perturbations and across space (different labs) and time.  相似文献   

5.
The Collaborative Cross (CC) was designed to facilitate rapid gene mapping and consists of hundreds of recombinant inbred lines descended from eight diverse inbred founder strains. A decade in production, it can now be applied to mapping projects. Here, we provide a proof of principle for rapid identification of major-effect genes using the CC. To do so, we chose coat color traits since the location and identity of many relevant genes are known. We ascertained in 110 CC lines six different coat phenotypes: albino, agouti, black, cinnamon, and chocolate coat colors and the white-belly trait. We developed a pipeline employing modifications of existing mapping tools suitable for analyzing the complex genetic architecture of the CC. Together with analysis of the founders’ genome sequences, mapping was successfully achieved with sufficient resolution to identify the causative genes for five traits. Anticipating the application of the CC to complex traits, we also developed strategies to detect interacting genes, testing joint effects of three loci. Our results illustrate the power of the CC and provide confidence that this resource can be applied to complex traits for detection of both qualitative and quantitative trait loci.  相似文献   

6.
The potential utility of the Collaborative Cross (CC) mouse resource was evaluated to better understand complex traits related to energy balance. A primary focus was to examine if genetic diversity in emerging CC lines (pre-CC) would translate into equivalent phenotypic diversity. Second, we mapped quantitative trait loci (QTL) for 15 metabolism- and exercise-related phenotypes in this population. We evaluated metabolic and voluntary exercise traits in 176 pre-CC lines, revealing phenotypic variation often exceeding that seen across the eight founder strains from which the pre-CC was derived. Many phenotypic correlations existing within the founder strains were no longer significant in the pre-CC population, potentially representing reduced linkage disequilibrium (LD) of regions harboring multiple genes with effects on energy balance or disruption of genetic structure of extant inbred strains with substantial shared ancestry. QTL mapping revealed five significant and eight suggestive QTL for body weight (Chr 4, 7.54 Mb; CI 3.32-10.34 Mb; Bwq14), body composition, wheel running (Chr 16, 33.2 Mb; CI 32.5-38.3 Mb), body weight change in response to exercise (1: Chr 6, 77.7Mb; CI 72.2-83.4 Mb and 2: Chr 6, 42.8 Mb; CI 39.4-48.1 Mb), and food intake during exercise (Chr 12, 85.1 Mb; CI 82.9-89.0 Mb). Some QTL overlapped with previously mapped QTL for similar traits, whereas other QTL appear to represent novel loci. These results suggest that the CC will be a powerful, high-precision tool for examining the genetic architecture of complex traits such as those involved in regulation of energy balance.  相似文献   

7.
Mouse genetic resources include inbred strains, recombinant inbred lines, chromosome substitution strains, heterogeneous stocks, and the Collaborative Cross (CC). These resources were generated through various breeding designs that potentially produce different genetic architectures, including the level of diversity represented, the spatial distribution of the variation, and the allele frequencies within the resource. By combining sequencing data for 16 inbred strains and the recorded history of related strains, the architecture of genetic variation in mouse resources was determined. The most commonly used resources harbor only a fraction of the genetic diversity of Mus musculus, which is not uniformly distributed thus resulting in many blind spots. Only resources that include wild-derived inbred strains from subspecies other than M. m. domesticus have no blind spots and a uniform distribution of the variation. Unlike other resources that are primarily suited for gene discovery, the CC is the only resource that can support genome-wide network analysis, which is the foundation of systems genetics. The CC captures significantly more genetic diversity with no blind spots and has a more uniform distribution of the variation than all other resources. Furthermore, the distribution of allele frequencies in the CC resembles that seen in natural populations like humans in which many variants are found at low frequencies and only a minority of variants are common. We conclude that the CC represents a dramatic improvement over existing genetic resources for mammalian systems biology applications.  相似文献   

8.
Gong Y  Zou F 《Genetics》2012,190(2):475-486
There has been a great deal of interest in the development of methodologies to map quantitative trait loci (QTL) using experimental crosses in the last 2 decades. Experimental crosses in animal and plant sciences provide important data sources for mapping QTL through linkage analysis. The Collaborative Cross (CC) is a renewable mouse resource that is generated from eight genetically diverse founder strains to mimic the genetic diversity in humans. The recombinant inbred intercrosses (RIX) generated from CC recombinant inbred (RI) lines share similar genetic structures of F(2) individuals but with up to eight alleles segregating at any one locus. In contrast to F(2) mice, genotypes of RIX can be inferred from the genotypes of their RI parents and can be produced repeatedly. Also, RIX mice typically do not share the same degree of relatedness. This unbalanced genetic relatedness requires careful statistical modeling to avoid false-positive findings. Many quantitative traits are inherently complex with genetic effects varying with other covariates, such as age. For such complex traits, if phenotype data can be collected over a wide range of ages across study subjects, their dynamic genetic patterns can be investigated. Parametric functions, such as sigmoidal or logistic functions, have been used for such purpose. In this article, we propose a flexible nonparametric time-varying coefficient QTL mapping method for RIX data. Our method allows the QTL effects to evolve with time and naturally extends classical parametric QTL mapping methods. We model the varying genetic effects nonparametrically with the B-spline bases. Our model investigates gene-by-time interactions for RIX data in a very flexible nonparametric fashion. Simulation results indicate that the varying coefficient QTL mapping has higher power and mapping precision compared to parametric models when the assumption of constant genetic effects fails. We also apply a modified permutation procedure to control overall significance level.  相似文献   

9.
We report on the progress of a project funded by the Wellcome Trust to produce over 100 recombinant inbred mouse lines as part of the Collaborative Cross (CC) genetic reference panel. These new strains of mice are being derived from a set of eight genetically diverse founders. The genomes of the finished strains will be mosaics of the founder strains’ genomes with a high density of independent recombination breakpoints. The CC mice will be available for distribution free of any intellectual property constraints to serve as a community resource for systems genetics studies.  相似文献   

10.
Compared with morphological and life history traits, quantitative genetic variation of metabolic and related traits in animals has been poorly studied. We used flow-through VCO(2) respirometry and simultaneous activity measurement on nymphs of the sand cricket (Gryllus firmus) from inbred lines to estimate broad-sense heritability of four metabolic variables. In addition, we measured a number of linear dimensions in the adults from the same inbred lines. There were significant multivariate effects of inbred lines for all traits and broad-sense heritability for physiological traits was 4.5%, 5.2%, 10.3% and 8.5% for average, resting, minimum and maximum CO(2) production in nymphs, respectively. Though the MANOVA indicated significant genetic variation among inbred lines in adult morphology, the broad-sense heritabilities were relatively low ranging from 0-18%. Our results indicate that the heritabilities of metabolic measures are large enough to potentially respond to selection.  相似文献   

11.
The mouse is an irreplaceable model for understanding the precise genetic mechanisms of mammalian physiological pathways. Thousands of quantitative trait loci (QTLs) have been mapped onto the mouse genome during the last two decades. However, only a few genes’ underlying complex traits have been successfully identified, and rapid fine mapping of QTL genes still remains a challenge for mouse geneticists. Currently, the Collaborative Cross (CC) has proceeded to the goal of establishing more than 1,000 recombinant inbred strains for the sub-centimorgan mapping resolution of QTL loci. In this article, a novel complementary strategy, designated as population of specific chromosome substitution strains or PSCSS, is proposed for rapid fine mapping of QTLs on the substituted chromosome. One specific chromosome (Chr 1) of recipient mouse strain C57BL/6 J has been substituted by homologous counterparts from five different inbred strains (C3H/He, FVB/N, AKR, NOD/LtJ, NZW/LacJ), an outbred line Kunmin mouse in China, and 23 wild mice captured in different localities. The primary genetic studies on the structure of these wild donor chromosomes (Chr 1) show that these donor chromosomes harbor extensive genetic polymorphisms, with a high density of SNP distribution, abundant variations of STR alleles, and a high level of historical recombination accumulation. These specific chromosome substitution strains eventually form a special population that has the identical genetic background of the recipient strain and differs only in the donor chromosomes. With simple association studies, known QTLs on the donor chromosome can be rapidly mapped in high resolution without requirement of further crosses. This approach, taking advantage of the extensive genetic polymorphisms of wild resources and chromosome substitution strategy, brings a new outlook for genetic dissection of complex traits.  相似文献   

12.
13.
辣椒31个优良自交系的亲本类群分析   总被引:2,自引:0,他引:2  
任羽  张银东  尹俊梅  王得元 《遗传》2008,30(2):237-237―245
以包含我国重要尖椒品种的亲本材料在内的31份优良自交系为材料, 利用SRAP标记和基因型值分析技术开展了辣椒自交系间遗传差异的分析与类群划分研究。结果表明: 在30个引物组合中, 27个引物组合可以 在自交系间扩增出多态性条带, 共扩增出310个多态性条带, 平均每个引物组合产生11.5个多态性条带, 显示出SRAP技术具有较强的分析效率; 基于SRAP标记和Yule相似系数对这些自交系进行的聚类分析中, 可以基本区分辣椒的2个变种(C. annuum var. grossum和C. annuum var. longum), 而且可以反映出自交系间的亲缘及系谱关系; 在相似系数为0.67处, 可将这31个自交系分为4个类群; 基于基因型值和标准Euclidean距离对这些自交系进行的聚类分析可成功地将辣椒的两个变种完全区分; 在遗传距离约4.5处, 可将这31个自交系分为4个类群; 自交系间基于SRAP标记与基因型值的遗传距离存在一定的相关性。  相似文献   

14.
Mouse phenome research: implications of genetic background   总被引:4,自引:0,他引:4  
Now that sequencing of the mouse genome has been completed, the function of each gene remains to be elucidated through phenotypic analysis. The "genetic background" (in which each gene functions) is defined as the genotype of all other related genes that may interact with the gene of interest, and therefore potentially influences the specific phenotype. To understand the nature and importance of genetic background on phenotypic expression of specific genes, it is necessary to know the origin and evolutionary history of the laboratory mouse genome. Molecular analysis has indicated that the fancy mice of Japan and Europe contributed significantly to the origin of today's laboratory mice. The genetic background of present-day laboratory mice varies by mouse strain, but is mainly derived from the European domesticus subspecies group and to a lesser degree from Asian mice, probably Japanese fancy mice, which belong to the musculus subspecies group. Inbred laboratory mouse strains are genetically uniform due to extensive inbreeding, and they have greatly contributed to the genetic analysis of many Mendelian traits. Meanwhile, for a variety of practical reasons, many transgenic and targeted mutant mice have been created in mice of mixed genetic backgrounds to elucidate the function of the genes, although efforts have been made to create inbred transgenic mice and targeted mutant mice with coisogenic embryonic stem cell lines. Inbred mouse strains have provided uniform genetic background for accurate evaluation of specific genes phenotypes, thus eliminating the phenotypic variations caused by mixed genetic backgrounds. However, the process of inbreeding and selection of various inbred strain characteristics has resulted in inadvertent selection of other undesirable genetic characteristics and mutations that may influence the genotype and preclude effective phenotypic analysis. Because many of the common inbred mouse stains have been established from relatively small gene pools, common inbred strains have limitations in their genetic polymorphisms and phenotypic variations. Wild-derived mouse strains can complement deficiencies of common inbred mouse strains, providing novel allelic variants and phenotypes. Although wild-derived strains are not as tame as the common laboratory strains, their genetic characteristics are attractive for the future study of gene function.  相似文献   

15.
Whitlock MC  Fowler K 《Genetics》1999,152(1):345-353
We performed a large-scale experiment on the effects of inbreeding and population bottlenecks on the additive genetic and environmental variance for morphological traits in Drosophila melanogaster. Fifty-two inbred lines were created from the progeny of single pairs, and 90 parent-offspring families on average were measured in each of these lines for six wing size and shape traits, as well as 1945 families from the outbred population from which the lines were derived. The amount of additive genetic variance has been observed to increase after such population bottlenecks in other studies; in contrast here the mean change in additive genetic variance was in very good agreement with classical additive theory, decreasing proportionally to the inbreeding coefficient of the lines. The residual, probably environmental, variance increased on average after inbreeding. Both components of variance were highly variable among inbred lines, with increases and decreases recorded for both. The variance among lines in the residual variance provides some evidence for a genetic basis of developmental stability. Changes in the phenotypic variance of these traits are largely due to changes in the genetic variance.  相似文献   

16.
An important trait defining fresh tomato marketability is fruit shelf life. Exotic germplasm of Solanum pimpinellifolium is able to prolong shelf life. Sixteen recombinant inbred lines with differing values of shelf life and fruit weight were derived by antagonistic-divergent selection from an interspecific cross involving Solanum pimpinellifolium. The objective of this study was to evaluate these recombinant inbred lines for many fruit quality traits such as diameter, height, size, acidity, colour, firmness, shelf life and weight, and to characterize them by amplified fragment length polymorphism markers. For most traits, a wide range of genetic variability was found and a wide range of molecular variation was also detected. Both sets of data allowed the identification of recombinant inbred lines by means of cluster analysis and principal component analysis. Genetic association among some amplified fragment length polymorphism markers and fruit quality traits, suggested by the principal component analysis, could be identified by single point analysis. Potential molecular markers underlying agronomical traits were detected in these recombinant inbred lines.  相似文献   

17.
The genetic architecture of a phenotype plays a critical role in determining phenotypic evolution through its effects on patterns of genetic variation. Genetic architecture is often considered to be constant in evolutionary quantitative genetic models. However, genetic architecture may be variable and itself evolve when there are dominance and epistatic interactions among alleles at the same and different loci, respectively. The evolution of genetic architecture by genetic drift is examined here by testing the breeding value of four standard inbred mouse strains mated across a set of 26 related recombinant quasi-inbred (RqI) lines generated from the intercross of the Large (LG/J) and Small (SM/J) inbred mouse strains. Phenotypes of interest include age-specific body weights, growth, and adult body composition. If the genetic architecture of these traits has differentiated by genetic drift during the production of the RqI strains, we should observe interactions between tester strain and RqI strain. The breeding values of the tester strains will change relative to one another depending on which RqI strain they are crossed to. The study included an average of 15.1 offspring per cross, over a total of 100 different crosses. Multivariate and univariate analyses of variance indicate that there is strongly significant interaction for all traits. Interaction is more pronounced in males than in females and accounted for an average of about 40% of the explained variation in males and 30% in females. These results indicate that the genetic architecture of these traits has differentiated by genetic drift in the RqI strains since their isolation from a common founder population. Further analysis indicates that this differentiation results in changes in the order of tester strain effects so that common patterns of selection in these differentiated populations could result in the fixation of different alleles.  相似文献   

18.
P C Phillips  M C Whitlock  K Fowler 《Genetics》2001,158(3):1137-1145
The pattern of genetic covariation among traits (the G matrix) plays a central role in determining the pattern of evolutionary change from both natural selection and random genetic drift. Here we measure the effect of genetic drift on the shape of the G matrix using a large data set on the inheritance of wing characteristics in Drosophila melanogaster. Fifty-two inbred lines with a total of 4680 parent-offspring families were generated by one generation of brother-sister mating and compared to an outbred control population of 1945 families. In keeping with the theoretical expectation for a correlated set of additively determined traits, the average G matrix of the inbred lines remained proportional to the outbred control G matrix with a proportionality constant approximately equal to (1 - F), where F is the inbreeding coefficient. Further, the pattern of covariance among the means of the inbred lines induced by inbreeding was also proportional to the within-line G matrix of the control population with a constant very close to the expectation of 2F. Although the average G of the inbred lines did not show change in overall structure relative to the outbred controls, separate analysis revealed a great deal of variation among inbred lines around this expectation, including changes in the sign of genetic correlations. Since any given line can be quite different from the outbred control, it is likely that in nature unreplicated drift will lead to changes in the G matrix. Thus, the shape of G is malleable under genetic drift, and the evolutionary response of any particular population is likely to depend on the specifics of its evolutionary history.  相似文献   

19.
用RAPD技术分析了18个三色堇(Viola wittrockiana)自交系的遗传多样性。21个随机引物扩增了167条带,其中127条具多态性,显示自交系间存在较大的遗传变异。用UPGMA法可将自交系聚为五大类,其分类结果与花径和材料来源地基本一致。以其中的5个自交系进行双列杂交试验,研究了RAPD遗传距离与三色堇杂交后代10个性状杂种优势的关系,实验结果表明:RAPD遗传距离仅与花数达到0.1的显著水平,而与其它8个性状杂种优势的相关性不显著;用RPAD遗传距离预测三色堇的花数杂种优势具有一定的可靠性,但用于对其它性状杂种优势的预测目前是不可行的。  相似文献   

20.
It is often hypothesized that slow inbreeding causes less inbreeding depression than fast inbreeding at the same absolute level of inbreeding. Possible explanations for this phenomenon include the more efficient purging of deleterious alleles and more efficient selection for heterozygote individuals during slow, when compared with fast, inbreeding. We studied the impact of inbreeding rate on the loss of heterozygosity and on morphological traits in Drosophila melanogaster. We analysed five noninbred control lines, 10 fast inbred lines and 10 slow inbred lines; the inbred lines all had an expected inbreeding coefficient of approximately 0.25. Forty single nucleotide polymorphisms in DNA coding regions were genotyped, and we measured the size and shape of wings and counted the number of sternopleural bristles on the genotyped individuals. We found a significantly higher level of genetic variation in the slow inbred lines than in the fast inbred lines. This higher genetic variation was resulting from a large contribution from a few loci and a smaller effect from several loci. We attributed the increased heterozygosity in the slow inbred lines to the favouring of heterozygous individuals over homozygous individuals by natural selection, either by associative over‐dominance or balancing selection, or a combination of both. Furthermore, we found a significant polynomial correlation between genetic variance and wing size and shape in the fast inbred lines. This was caused by a greater number of homozygous individuals among the fast inbred lines with small, narrow wings, which indicated inbreeding depression. Our results demonstrated that the same amount of inbreeding can have different effects on genetic variance depending on the inbreeding rate, with slow inbreeding leading to higher genetic variance than fast inbreeding. These results increase our understanding of the genetic basis of the common observation that slow inbred lines express less inbreeding depression than fast inbred lines. In addition, this has more general implications for the importance of selection in maintaining genetic variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号