首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Many binary phenotypes do not follow a classical Mendelian inheritance pattern. Interaction between genetic and environmental factors is thought to contribute to the incomplete penetrance phenomena often observed in these complex binary traits. Several two-locus models for penetrance have been proposed to aid the genetic dissection of binary traits. Such models assume linear genetic effects of both loci in different mathematical scales of penetrance, resembling the analytical framework of quantitative traits. However, changes in phenotypic scale are difficult to envisage in binary traits and limited genetic interpretation is extractable from current modeling of penetrance. To overcome this limitation, we derived an allelic penetrance approach that attributes incomplete penetrance to the stochastic expression of the alleles controlling the phenotype, the genetic background and environmental factors. We applied this approach to formulate dominance and recessiveness in a single diallelic locus and to model different genetic mechanisms for the joint action of two diallelic loci. We fit the models to data on the genetic susceptibility of mice following infections with Listeria monocytogenes and Plasmodium berghei. These models gain in genetic interpretation, because they specify the alleles that are responsible for the genetic (inter)action and their genetic nature (dominant or recessive), and predict genotypic combinations determining the phenotype. Further, we show via computer simulations that the proposed models produce penetrance patterns not captured by traditional two-locus models. This approach provides a new analysis framework for dissecting mechanisms of interlocus joint action in binary traits using genetic crosses.  相似文献   

2.
The potential utility of the Collaborative Cross (CC) mouse resource was evaluated to better understand complex traits related to energy balance. A primary focus was to examine if genetic diversity in emerging CC lines (pre-CC) would translate into equivalent phenotypic diversity. Second, we mapped quantitative trait loci (QTL) for 15 metabolism- and exercise-related phenotypes in this population. We evaluated metabolic and voluntary exercise traits in 176 pre-CC lines, revealing phenotypic variation often exceeding that seen across the eight founder strains from which the pre-CC was derived. Many phenotypic correlations existing within the founder strains were no longer significant in the pre-CC population, potentially representing reduced linkage disequilibrium (LD) of regions harboring multiple genes with effects on energy balance or disruption of genetic structure of extant inbred strains with substantial shared ancestry. QTL mapping revealed five significant and eight suggestive QTL for body weight (Chr 4, 7.54 Mb; CI 3.32-10.34 Mb; Bwq14), body composition, wheel running (Chr 16, 33.2 Mb; CI 32.5-38.3 Mb), body weight change in response to exercise (1: Chr 6, 77.7Mb; CI 72.2-83.4 Mb and 2: Chr 6, 42.8 Mb; CI 39.4-48.1 Mb), and food intake during exercise (Chr 12, 85.1 Mb; CI 82.9-89.0 Mb). Some QTL overlapped with previously mapped QTL for similar traits, whereas other QTL appear to represent novel loci. These results suggest that the CC will be a powerful, high-precision tool for examining the genetic architecture of complex traits such as those involved in regulation of energy balance.  相似文献   

3.
识别复杂性状和疾病间遗传关联可以提供有用的病因学见解,并有助于确定可能的因果关系的优先级。尽管已有很多工具可以实现复杂性状和疾病间遗传关联,但是某些工具代码可读性差、并且不同工具基于不同的计算机语言、工具间的串联性较差。因此,本研究基于全基因组关联研究(GWAS)数据,提出了SCtool,一个开源、跨平台和用户友好的软件工具。SCtool整合了ldsc, TwosampleMR和MR-BMA三种软件,其主要功能是基于GWAS汇总水平的数据,识别复杂性状和疾病、复杂性状和复杂性状以及疾病与疾病间的遗传相关性并探究其间潜在的因果关联。最后,使用SCtool揭示了全身性铁状态(铁蛋白,血清铁,转铁蛋白,转铁蛋白饱和度)与表观遗传时钟GrimAge之间的遗传关联。  相似文献   

4.
Complex Mus musculus crosses provide increased resolution to examine the relationships between gene expression and behavior. While the advantages are clear, there are numerous analytical and technological concerns that arise from the increased genetic complexity that must be considered. Each of these issues is discussed, providing an initial framework for complex cross study design and planning.  相似文献   

5.
Several recent studies using natural populations of Drosophila show that one must be very careful when sorting among the large number of molecular polymorphisms found at most loci to identify the nucleotide changes responsible for phenotypic variation in complex traits. Indeed, several mutations within a single allele can interact to generate the overall observed effect. The results are instructive both for those interested in the genetics of evolutionary change and for those attempting to ferret out the genetic basis of complex human diseases.  相似文献   

6.
Many important problems in biology involve complex traits affected by multiple coding or regulatory parts of the genome. How well the underlying genetic architecture can be inferred by statistical methods such as mapping and association studies are active research areas. ForSim is a flexible forward evolutionary simulation tool for exploring the consequences of evolution by phenotype, whereby demographic, chance, behavioral and selective effects mold genetic architecture. Simulation is useful for exploring these issues as well as the choice of study design inferential methods. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

7.
8.
Most readers probably share with me the profoundly affecting experience of wandering through a natural history museum and being surrounded by the skeletal remains of our vertebrate predecessors. Who does not stand in awe before these scaffolds of the great dinosaurs or ponder the groping stages through which our primate ancestors explored the skeletal and dental opportunities of forest life (Fig. 1)? How did this proliferation of limbs, teeth, and vertebrae, not to mention the complexity we can infer about the overlying anatomy and physiology, arise from the simple early forms of animal life? How did DNA evolve to contain the program for such complexity?  相似文献   

9.
The genetic dissection of complex traits in a founder population   总被引:11,自引:0,他引:11       下载免费PDF全文
We estimated broad heritabilities (H(2)) and narrow heritabilities (h(2)) and conducted genomewide screens, using a novel association-based mapping approach for 20 quantitative trait loci (QTLs) among the Hutterites, a founder population that practices a communal lifestyle. Heritability estimates ranged from.21 for diastolic blood pressure (DBP) to.99 for whole-blood serotonin levels. Using a multipoint method to detect association under a recessive model we found evidence of major QTLs for six traits: low-density lipoprotein (LDL), triglycerides, lipoprotein (a) (Lp[a]), systolic blood pressure (SBP), serum cortisol, and whole-blood serotonin. Second major QTLs for Lp(a) and for cortisol were identified using a single-point method to detect association under a general two-allele model. The heritabilities for these six traits ranged from.37 for triglycerides to.99 for serotonin, and three traits (LDL, SBP, and serotonin) had significant dominance variances (i.e., H(2) > h(2)). Surprisingly, there was little correlation between measures of heritability and the strength of association on a genomewide screen (P>.50), suggesting that heritability estimates per se do not identify phenotypes that are influenced by genes with major effects. The present study demonstrates the feasibility of genomewide association studies for QTL mapping. However, even in this young founder population that has extensive linkage disequilibrium, map densities <5 cM may be required to detect all major QTLs.  相似文献   

10.
Epistasis,complex traits,and mapping genes   总被引:4,自引:0,他引:4  
Wade  Michael J. 《Genetica》2001,(1):59-69
Using a three-locus model wherein two loci regulate a third, candidate locus, I examine physiological epistasis from the gene's eye view of the regulated locus. I show that, depending upon genetic background at the regulatory loci, an allele at the candidate locus can be dominant, additive, recessive, neutral, over-dominant, or under-dominant in its effects on fitness. This kind of variation in allelic effect caused by variation in genetic background from population to population, from time to time in the same population, or sample to sample makes finding and mapping the genes underlying a complex phenotype difficult. The rate of evolution of such genes can also be slowed, especially in genetically subdivided metapopulations with migration. Nevertheless, understanding how variation in genetic background causes variation in allelic effects permits the genetic architecture of such complex traits to be dissected into the interacting component genes. While some backgrounds diminish allelic effects and make finding and mapping genes difficult, other backgrounds enhance allelic effects and facilitate gene mapping.  相似文献   

11.
A report on the Keystone Symposium 'Genome Sequence Variation and the Inherited Basis of Common Disease and Complex Traits', Big Sky, USA, 8-13 January 2006.  相似文献   

12.
Our Markov chain Monte Carlo (MCMC) methods were used in linkage analyses of the Framingham Heart Study data using all available pedigrees. Our goal was to detect and map loci associated with covariate-adjusted traits log triglyceride (lnTG) and high-density lipoprotein cholesterol (HDL) using multipoint LOD score analysis, Bayesian oligogenic linkage analysis and identity-by-descent (IBD) scoring methods. Each method used all marker data for all markers on a chromosome. Bayesian linkage analysis detected a linkage signal on chromosome 7 for lnTG and HDL, corroborating previously published results. However, these results were not replicated in a classical linkage analysis of the data or by using IBD scoring methods.We conclude that Bayesian linkage analysis provides a powerful paradigm for mapping trait loci but interpretation of the Bayesian linkage signals is subjective. In the absence of a LOD score method accommodating genetically complex traits and linkage heterogeneity, validation of these signals remains elusive.  相似文献   

13.
The Collaborative Cross Consortium reports here on the development of a unique genetic resource population. The Collaborative Cross (CC) is a multiparental recombinant inbred panel derived from eight laboratory mouse inbred strains. Breeding of the CC lines was initiated at multiple international sites using mice from The Jackson Laboratory. Currently, this innovative project is breeding independent CC lines at the University of North Carolina (UNC), at Tel Aviv University (TAU), and at Geniad in Western Australia (GND). These institutions aim to make publicly available the completed CC lines and their genotypes and sequence information. We genotyped, and report here, results from 458 extant lines from UNC, TAU, and GND using a custom genotyping array with 7500 SNPs designed to be maximally informative in the CC and used a novel algorithm to infer inherited haplotypes directly from hybridization intensity patterns. We identified lines with breeding errors and cousin lines generated by splitting incipient lines into two or more cousin lines at early generations of inbreeding. We then characterized the genome architecture of 350 genetically independent CC lines. Results showed that founder haplotypes are inherited at the expected frequency, although we also consistently observed highly significant transmission ratio distortion at specific loci across all three populations. On chromosome 2, there is significant overrepresentation of WSB/EiJ alleles, and on chromosome X, there is a large deficit of CC lines with CAST/EiJ alleles. Linkage disequilibrium decays as expected and we saw no evidence of gametic disequilibrium in the CC population as a whole or in random subsets of the population. Gametic equilibrium in the CC population is in marked contrast to the gametic disequilibrium present in a large panel of classical inbred strains. Finally, we discuss access to the CC population and to the associated raw data describing the genetic structure of individual lines. Integration of rich phenotypic and genomic data over time and across a wide variety of fields will be vital to delivering on one of the key attributes of the CC, a common genetic reference platform for identifying causative variants and genetic networks determining traits in mammals.  相似文献   

14.
We report on the progress of a project funded by the Wellcome Trust to produce over 100 recombinant inbred mouse lines as part of the Collaborative Cross (CC) genetic reference panel. These new strains of mice are being derived from a set of eight genetically diverse founders. The genomes of the finished strains will be mosaics of the founder strains’ genomes with a high density of independent recombination breakpoints. The CC mice will be available for distribution free of any intellectual property constraints to serve as a community resource for systems genetics studies.  相似文献   

15.

Background  

The construction of complex spatial simulation models such as those used in network epidemiology, is a daunting task due to the large amount of data involved in their parameterization. Such data, which frequently resides on large geo-referenced databases, has to be processed and assigned to the various components of the model. All this just to construct the model, then it still has to be simulated and analyzed under different epidemiological scenarios. This workflow can only be achieved efficiently by computational tools that can automate most, if not all, these time-consuming tasks. In this paper, we present a simulation software, Epigrass, aimed to help designing and simulating network-epidemic models with any kind of node behavior.  相似文献   

16.
17.
18.
The ongoing merge between engineering and biology has contributed to the emerging field of synthetic biology. The defining features of this new discipline are abstraction and standardisation of biological parts, decoupling between parts to prevent undesired cross-talking, and the application of quantitative modelling of synthetic genetic circuits in order to guide their design. Most of the efforts in the field of synthetic biology in the last decade have been devoted to the design and development of functional gene circuits in prokaryotes and unicellular eukaryotes. Researchers have used synthetic biology not only to engineer new functions in the cell, but also to build simpler models of endogenous gene regulatory networks to gain knowledge of the "rules" governing their wiring diagram. However, the need for innovative approaches to study and modify complex signalling and regulatory networks in mammalian cells and multicellular organisms has prompted advances of synthetic biology also in these species, thus contributing to develop innovative ways to tackle human diseases. In this work, we will review the latest progress in synthetic biology and the most significant developments achieved so far, both in unicellular and multicellular organisms, with emphasis on human health.  相似文献   

19.
20.
Species inhabit complex environments and respond to selection imposed by numerous abiotic and biotic conditions that vary in both space and time. Environmental heterogeneity strongly influences trait evolution and patterns of adaptive population differentiation. For example, heterogeneity can favor local adaptation, or can promote the evolution of plastic genotypes that alter their phenotypes based on the conditions they encounter. Different abiotic and biotic agents of selection can act synergistically to either accelerate or constrain trait evolution. The environmental context has profound effects on quantitative genetic parameters. For instance, heritabilities measured in controlled conditions often exceed those measured in the field; thus, laboratory experiments could overestimate the potential for a population to respond to selection. Nevertheless, most studies of the genetic basis of ecologically relevant traits are conducted in simplified laboratory environments, which do not reflect the complexity of nature. Here, we advocate for manipulative field experiments in the native ranges of plant species that differ in mating system, life-history strategy and growth form. Field studies are vital to evaluate the roles of disparate agents of selection, to elucidate the targets of selection and to develop a nuanced perspective on the evolution of quantitative traits. Quantitative genetics field studies will also shed light on the potential for natural populations to adapt to novel climates in highly fragmented landscapes. Drawing from our experience with the ecological model system Boechera (Brassicaceae), we discuss advancements possible through dedicated field studies, highlight future research directions and examine the challenges associated with field studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号