首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite decades of study, the relative importance of niche‐based versus neutral processes in community assembly remains largely ambiguous. Recent work suggests niche‐based processes are more easily detectable at coarser spatial scales, while neutrality dominates at finer scales. Analyses of functional traits with multi‐year multi‐site biodiversity inventories may provide deeper insights into assembly processes and the effects of spatial scale. We examined associations between community composition, species functional traits, and environmental conditions for plant communities in the Kouga‐Baviaanskloof region, an area within South Africa's Cape Floristic Region (CFR) containing high α and β diversity. This region contains strong climatic gradients and topographic heterogeneity, and is comprised of distinct vegetation classes with varying fire histories, making it an ideal location to assess the role of niche‐based environmental filtering on community composition by examining how traits vary with environment. We combined functional trait measurements for over 300 species with observations from vegetation surveys carried out in 1991/1992 and repeated in 2011/2012. We applied redundancy analysis, quantile regression, and null model tests to examine trends in species turnover and functional traits along environmental gradients in space and through time. Functional trait values were weakly associated with most spatial environmental gradients and only showed trends with respect to vegetation class and time since fire. However, survey plots showed greater compositional and functional stability through time than expected based on null models. Taken together, we found clear evidence for functional distinctions between vegetation classes, suggesting strong environmental filtering at this scale, most likely driven by fire dynamics. In contrast, there was little evidence of filtering effects along environmental gradients within vegetation classes, suggesting that assembly processes are largely neutral at this scale, likely the result of very high functional redundancy among species in the regional species pool.  相似文献   

2.
Quantifying the role of spatial patterns is an important goal in ecology to further understand patterns of community composition. We quantified the relative role of environmental conditions and regional spatial patterns that could be produced by environmental filtering and dispersal limitation on fish community composition for thousands of lakes. A database was assembled on fish community composition, lake morphology, water quality, climatic conditions, and hydrological connectivity for 9885 lakes in Ontario, Canada. We utilized a variation partitioning approach in conjunction with Moran's Eigenvector Maps (MEM) and Asymmetric Eigenvector Maps (AEM) to model spatial patterns that could be produced by human‐mediated and natural modes of dispersal. Across 9885 lakes and 100 fish species, environmental factors and spatial structure explained approximately 19% of the variation in fish community composition. Examining the proportional role of spatial structure and environmental conditions revealed that as much as 90% of the explained variation in native species assemblage composition is governed by environmental conditions. Conversely on average, 67% of the explained variation in non‐native assemblage composition can be related to human‐mediated dispersal. This study highlights the importance of including spatial structure and environmental conditions when explaining patterns of community composition to better discriminate between the ecological processes that underlie biogeographical patterns of communities composed of native and non‐native fish species.  相似文献   

3.
One of the key hypothesized drivers of gradients in species richness is environmental filtering, where environmental stress limits which species from a larger species pool gain membership in a local community owing to their traits. Whereas most studies focus on small‐scale variation in functional traits along environmental gradient, the effect of large‐scale environmental filtering is less well understood. Furthermore, it has been rarely tested whether the factors that constrain the niche space limit the total number of coexisting species. We assessed the role of environmental filtering in shaping tree assemblages across North America north of Mexico by testing the hypothesis that colder, drier, or seasonal environments (stressful conditions for most plants) constrain tree trait diversity and thereby limit species richness. We assessed geographic patterns in trait filtering and their relationships to species richness pattern using a comprehensive set of tree range maps. We focused on four key plant functional traits reflecting major life history axes (maximum height, specific leaf area, seed mass, and wood density) and four climatic variables (annual mean and seasonality of temperature and precipitation). We tested for significant spatial shifts in trait means and variances using a null model approach. While we found significant shifts in mean species’ trait values at most grid cells, trait variances at most grid cells did not deviate from the null expectation. Measures of environmental harshness (cold, dry, seasonal climates) and lower species richness were weakly associated with a reduction in variance of seed mass and specific leaf area. The pattern in variance of height and wood density was, however, opposite. These findings do not support the hypothesis that more stressful conditions universally limit species and trait diversity in North America. Environmental filtering does, however, structure assemblage composition, by selecting for certain optimum trait values under a given set of conditions.  相似文献   

4.
Urbanization is one of the most pervasive processes of landscape transformation, responsible for novel selection agents promoting functional community homogenization. Bats may persist in those environments, but the mechanisms responsible for their adaptability and the spatial scales in which the landscape imposes environmental filtering remain poorly studied in the Neotropics. We tested the hypothesis that landscape composition interacts with the spatial scale to affect the functional diversity of phyllostomids in an urban–rural gradient. Based on functional traits, we calculated indices of functional richness, divergence, evenness, and community-weighted means of morphological traits, and classified species into functional groups. We evaluated the changes in those variables in response to forest, grassland, and urbanized areas at 0.5, 1.25, and 2km scales. The number of functional groups, functional richness, and functional evenness tended to be higher in areas far from cities and with higher forest cover, whereas functional divergence increased in more urbanized areas. Our results show that the mean value of wing loading in the assemblage was negatively associated with landscape transformation at several spatial scales. However, environmental filtering driven by grass cover was particularly robust at the 0.5km scale, affecting big-sized species with long-pointed wings. Retaining natural forest in cattle ranging systems at ~12 km2 appears to favor the functional evenness and number of functional groups of phyllostomids. Recognizing the scale of the effect on phyllostomid functional responses appears to be a fundamental issue for elucidating the spatial extent to which phyllostomid conservation planning in urban–rural landscapes should be addressed.  相似文献   

5.
We investigated the role of environmental filtering as an underlying mechanism of assembly of compound communities of fleas parasitic on Palearctic small mammals at two spatial scales; a continental scale (encompassing regions across the entire Palearctic) and a regional scale (across sampling localities within Slovakia). We used the three‐table ordination (the RLQ analysis) and its extended version that links species occurrences with geographic space, environmental variables, and species traits and phylogeny (the ESLTP analysis). We asked whether environmental filtering acts as an assembly rule of compound communities of fleas and, if yes, a) whether the effect of environment on species composition of compound communities of fleas differs between spatial scales and b) what are the relative importance of the abiotic and host environments. We found that compound communities of fleas are, to a great extent, assembled via environmental filters that represent interplay between filtering via abiotic environment and filtering via host composition. The relative importance of these two components of environmental filtering differed between spatial scales. Host composition had a stronger effect on flea assembly than abiotic environment on the continental scale, while the opposite was true for the regional scale. The likely reason behind this scale‐dependence is that communities on the regional scale are mainly governed by ecological and epidemiological processes, while communities on the continental scale are mainly affected by evolutionary, biogeographic and historical forces.  相似文献   

6.
The relative importance of environmental filtering, biotic interactions and neutral processes in community assembly remains an openly debated question and one that is increasingly addressed using phylogenetic approaches. Closely related species may occur together more frequently than expected (phylogenetic clustering) if environmental filtering operates on traits with significant phylogenetic signal. Recent studies show that phylogenetic clustering tends to increase with spatial scale, presumably because greater environmental variation is encompassed at larger spatial scales, providing opportunities for species to sort across environmental gradients. However, if environmental filtering is the cause of species sorting along environmental gradients, then environmental variation rather than spatial scale per se should drive the processes governing community assembly. Using species abundance and light availability data from a long‐term experiment in Minnesota oak savanna understory communities, we explicitly test the hypothesis that greater environmental variation results in greater phylogenetic clustering when spatial scale is held constant. Concordant with previous studies, we found that phylogenetic community structure varied with spatial extent. At the landscape scale (~1000 ha), communities were phylogenetically clustered. At the local scale (0.375ha), phylogenetic community structure varied among plots. As hypothesized, plots encompassing the greatest environmental variation in light availability exhibited the strongest phylogenetic clustering. We also found strong correlations between species functional traits, particularly specific leaf area (SLA) and perimeter per area (PA), and species light availability niche. There was also a phylogenetic signal in both functional traits and species light availability niche, providing a mechanistic explanation for phylogenetic clustering in relation to light availability. We conclude that the pattern of increased phylogenetic clustering with increased environmental variation is a consequence of environmental filtering acting on phylogenetically conserved functional traits. These results indicate that the importance of environmental filtering in community assembly depends not on spatial scale per se, but on the steepness of the environmental gradient.  相似文献   

7.
The relative importance of dispersal limitation versus environmental filtering for community assembly has received much attention for macroorganisms. These processes have only recently been examined in microbial communities. Instead, microbial dispersal has mostly been measured as community composition change over space (i.e., distance decay). Here we directly examined fungal composition in airborne wind currents and soil fungal communities across a 40 000 km2 regional landscape to determine if dispersal limitation or abiotic factors were structuring soil fungal communities. Over this landscape, neither airborne nor soil fungal communities exhibited compositional differences due to geographic distance. Airborne fungal communities shifted temporally while soil fungal communities were correlated with abiotic parameters. These patterns suggest that environmental filtering may have the largest influence on fungal regional community assembly in soils, especially for aerially dispersed fungal taxa. Furthermore, we found evidence that dispersal of fungal spores differs between fungal taxa and can be both a stochastic and deterministic process. The spatial range of soil fungal taxa was correlated with their average regional abundance across all sites, which may imply stochastic dispersal mechanisms. Nevertheless, spore volume was also negatively correlated with spatial range for some species. Smaller volume spores may be adapted to long-range dispersal, or establishment, suggesting that deterministic fungal traits may also influence fungal distributions. Fungal life-history traits may influence their distributions as well. Hypogeous fungal taxa exhibited high local abundance, but small spatial ranges, while epigeous fungal taxa had lower local abundance, but larger spatial ranges. This study is the first, to our knowledge, to directly sample air dispersal and soil fungal communities simultaneously across a regional landscape. We provide some of the first evidence that soil fungal communities are mostly assembled through environmental filtering and experience little dispersal limitation.  相似文献   

8.
Darwin's naturalization conundrum describes the paradigm that community assembly is regulated by two opposing processes, environmental filtering and competitive interactions, which predict both similarity and distinctiveness of species to be important for establishment. Our goal is to use long‐term, large‐scale, and high‐resolution temporal data to examine diversity patterns over time and assess whether environmental filtering or competition plays a larger role in regulating community assembly processes. We evaluated Darwin's naturalization conundrum and how functional diversity has changed in the Laurentian Great Lakes fish community from 1870 to 2010, which has experienced frequent introductions of non‐native species and extirpations of native species. We analyzed how functional diversity has changed over time by decade from 1870 to 2010 at three spatial scales (regional, lake, and habitat) to account for potential noninteractions between species at the regional and lake level. We also determined which process, environmental filtering or competitive interactions, is more important in regulating community assembly and maintenance by comparing observed patterns to what we would expect in the absence of an ecological mechanism. With the exception of one community, all analyses show that functional diversity and species richness has increased over time and that environmental filtering regulates community assembly at the regional level. When examining functional diversity at the lake and habitat level, the regulating processes become more context dependent. This study is the first to examine diversity patterns and Darwin's conundrum by integrating long‐term, large‐scale, and high‐resolution temporal data at multiple spatial scales. Our results confirm that Darwin's conundrum is highly context dependent.  相似文献   

9.
研究选取长江中游5个采样点(宜昌、枝江、荆州、汉南、湖口)为代表, 采用系统发育群落结构方法分析了不同空间尺度下长江中游鱼类群落的构建机制。结果表明: (1)空间聚类分析显示, 在65%的相似性水平上, 所有样点可以划分为3个Group: GroupⅠ(宜昌)、GroupⅡ(枝江+荆州)和Group Ⅲ(汉南+湖口);在55%的相似性水平上, 所有样点可以划分为2个Group: Group A(宜昌)和Group B(枝江+荆州+汉南+湖口), 且聚类分析结果与采样点的空间分布相符合。(2)在不同空间尺度下, 鱼类群落构建机制存在差异: 从地区采样点尺度来看, 荆州江段鱼类群落表现为竞争作用主导群落构建, 其余采样点鱼类群落均为环境过滤作用;从区域尺度来看, 宜昌江段鱼类群落表现为环境过滤作用的建群机制, 其余4个采样点在扩大空间尺度后, 即分为Group A和Group B的情况下, 其鱼类群落构建机制转变为物种间竞争作用。因此, 长江中游干流鱼类群落构建机制表现了地区环境和空间尺度的共同作用。由于水流湍急, 宜昌始终表现为环境过滤作用。其他江段在采样点尺度多数表现了环境过滤作用, 但是在宏观的空间尺度上, 却由于空间异质性的增加, 容纳了远缘的物种, 群落构建机制转换为竞争作用。这样的转变有别于陆生植物中由小尺度竞争作用转为大尺度环境过滤作用的情况。  相似文献   

10.
Species present in communities are affected by the prevailing environmental conditions, and the traits that these species display may be sensitive indicators of community responses to environmental change. However, interpretation of community responses may be confounded by environmental variation at different spatial scales. Using a hierarchical approach, we assessed the spatial and temporal variation of traits in coastal fish communities in Lake Huron over a 5-year time period (2001–2005) in response to biotic and abiotic environmental factors. The association of environmental and spatial variables with trophic, life-history, and thermal traits at two spatial scales (regional basin-scale, local site-scale) was quantified using multivariate statistics and variation partitioning. We defined these two scales (regional, local) on which to measure variation and then applied this measurement framework identically in all 5 study years. With this framework, we found that there was no change in the spatial scales of fish community traits over the course of the study, although there were small inter-annual shifts in the importance of regional basin- and local site-scale variables in determining community trait composition (e.g., life-history, trophic, and thermal). The overriding effects of regional-scale variables may be related to inter-annual variation in average summer temperature. Additionally, drivers of fish community traits were highly variable among study years, with some years dominated by environmental variation and others dominated by spatially structured variation. The influence of spatial factors on trait composition was dynamic, which suggests that spatial patterns in fish communities over large landscapes are transient. Air temperature and vegetation were significant variables in most years, underscoring the importance of future climate change and shoreline development as drivers of fish community structure. Overall, a trait-based hierarchical framework may be a useful conservation tool, as it highlights the multi-scaled interactive effect of variables over a large landscape.  相似文献   

11.
物种共存机制一直以来是群落生态学的研究热点。为了探讨异质生境条件下鼎湖山常绿阔叶林群落功能多样性变化,找到其变化的主要环境驱动因子,该研究利用位于鼎湖山20 hm~2监测样地第2次群落调查数据并选择代表不同生境(海拔和地形)的27个样方(20 m×20 m),于2013年夏季在样地内所选样方中测定所有胸径≥1 cm树种的叶片功能性状。所测性状包括形态学性状(比叶面积、叶片干物质含量、叶面积以及叶片长宽比)和化学计量学性状(叶片碳、氮、磷的含量),结合地形和土壤数据并通过分析功能多样性随环境梯度的变化,探讨了环境过滤和竞争在鼎湖山群落物种共存中的相对重要性。结果表明:功能分歧度和群落权重平均值与环境因素关系密切,尤其是海拔、凹凸度和土壤养分。环境条件较好区域(微尺度高海拔、高凹凸度和土壤养分含量)的植物采取统一的养分有效保存(低SLA,高LDMC)的适应策略(功能分歧度低),环境过滤所起作用更强;植物在相反的环境条件下,采取快速生长策略(高SLA,低LDMC),能够更好地适应环境的变化,且性状变化是多样的(功能分歧度高),在该条件下竞争作用更为显著。叶面积和叶片氮含量的分歧度在环境条件较好的区域增大,这与其他功能性状不一致,说明不同生态位轴(环境因素)影响不同性状的分歧度变化,并且在局域尺度上植物为了更好地适应环境变化采取了多样的适应策略。  相似文献   

12.
Aim To contrast floristic spatial patterns and the importance of habitat fragmentation in two plant communities (grassland and scrubland) in the context of ecological succession. We ask whether plant assemblages are affected by habitat fragmentation and, if so, at what spatial scale? Does the relative importance of the niche differentiation and dispersal‐limitation mechanisms change throughout secondary succession? Is the dispersal‐limitation mechanism related to plant functional traits? Location A Mediterranean region, the massif of Albera (Spain). Methods Using a SPOT satellite image to describe the landscape, we tested the effect of habitat fragmentation on species composition, determining the spatial scale of the assemblage response. We then assessed the relative importance of dispersal‐related factors (habitat fragmentation and geographical distance) and environmental constraints (climate‐related variables) influencing species similarity. We tested the association between dispersal‐related factors and plant traits (dispersal mode and life form). Results In both community types, plant composition was partially affected by the surrounding vegetation. In scrublands, animal‐dispersed and woody plants were abundant in landscapes dominated by closed forests, whereas wind‐dispersed annual herbs were poorly represented in those landscapes. Scrubby assemblages were more dependent on geographical distance, habitat fragmentation and climate conditions (temperature, rainfall and solar radiation); grasslands were described only by habitat fragmentation and rainfall. Plant traits did not explain variation in spatial structuring of assemblages. Main conclusions Plant establishment in early Mediterranean communities may be driven primarily by migration from neighbouring established communities, whereas the importance of habitat specialization and community drift increases over time. Plant life forms and dispersal modes did not explain the spatial variation of species distribution, but species richness within the community with differing plant traits was affected by habitat patchiness.  相似文献   

13.
Two major theories of community assembly – based on the assumption of ‘limiting similarity’ or ‘habitat filtering’, respectively – predict contrasting patterns in the spatial arrangement of functional traits. Previous analyses have made progress in testing these predictions and identifying underlying processes, but have also pointed to theoretical as well as methodological shortcomings. Here we applied a recently developed methodology for spatially explicit analysis of phylogenetic meta‐community structure to study the pattern of co‐occurrence of functional traits in Afrotropical and Neotropical bird species inhabiting forest fragments. Focusing separately on locomotory, dietary, and dispersal traits, we tested whether environmental filtering causes spatial clustering, or competition leads to spatial segregation as predicted by limiting similarity theory. We detected significant segregation of species co‐occurrences in African fragments, but not in the Neotropical ones. Interspecific competition had a higher impact on trait co‐occurrence than filter effects, yet no single functional trait was able to explain the observed degree of spatial segregation among species. Despite high regional variability spanning from spatial segregation to aggregation, we found a consistent tendency for a clustered spatial patterning of functional traits among communities in fragmented landscapes, particularly in non‐territorial species. Overall, we show that behavioural effects, such as territoriality, and environmental effects, such as the area of forest remnants or properties of the landscape matrix in which they are embedded, can strongly affect the pattern of trait co‐occurrence. Our findings suggest that trait‐based analyses of community structure should include behavioural and environmental covariates, and we here provide an appropriate method for linking functional traits, species ecology and environmental conditions to clarify the drivers underlying spatial patterns of species co‐occurrence.  相似文献   

14.
陈兵  孟雪晨  张东  储玲  严云志 《生态学报》2019,39(15):5730-5745
确定鱼类群落的空间格局是保护和管理河流鱼类多样性的基础。尽管河流鱼类分类群(基于物种组成)的纵向梯度格局已得到大量报道,但其功能群(基于功能特征)的空间格局研究较少。以皖南山区新安江为研究流域,沿其"正源-下游"梯度共设置27个调查样点,分别于2017年5月和10月完成2次调查取样,着重研究了鱼类分类群和功能群结构的纵向梯度格局及其形成机制。共采集鱼类44种,可分为5个运动功能群和4个营养功能群,构成14个"营养-运动"复合功能群。双因素交互相似性分析结果显示,鱼类分类群和功能群均随河流级别显著变化,但两者均无显著的季节变化;根据相似性百分比分析,由1级至3级河流,数量优势物种和功能群的空间变化主要呈嵌套格局,而由3级至5级河流其变化主要呈周转格局。方差分解结果显示,局域栖息地、陆地景观和支流空间位置3类解释变量对分类群和功能群空间变化的解释率分别为33.6%和38.5%,其中,分类群受局域栖息地和支流空间位置变量的显著影响,而功能群受局域栖息地和陆地景观变量的显著影响。研究表明,沿着新安江的"上游-下游"纵向梯度,鱼类分类群和功能群的空间格局基本一致,但两者的形成机制不同:分类群的纵向梯度变化受环境过滤和扩散过程的联合影响,而功能群则主要受环境过滤影响。  相似文献   

15.
Ecological communities and their response to environmental gradients are increasingly being described by measures of trait composition at the community level – the trait‐based approach. Whether ecological or non‐ecological processes influence trait composition between communities has been debated. Understanding the processes that influence trait composition is important for reconstructing paleoenvironmental conditions from fossil deposits and for understanding changes in community functionality through time. Here, we assess the influence of ecological and non‐ecological processes on the distribution of traits within North American mammals. We found that non‐ecological processes including historical contingency, spatial autocorrelation, and evolutionary history do not influence trait composition; however, the variance in trait composition is highly explained by climate gradients. Our results suggest that habitat breadth, terrestriality, diet breadth, and reproductive traits are strong candidates as proxies for measuring functional aspects of environments in the past and present.  相似文献   

16.
Successional chronosequences provide a unique opportunity to study the effects of multiple ecological processes on plant community assembly. Using a series of 0.5 × 0.5 m2 plots (n = 30) from five successional sub‐alpine meadow plant communities (ages 3, 5, 9, 12, and undisturbed) in the Qinghai‐Tibetan Plateau, we investigated whether community assembly is stochastic or deterministic for species and functional traits. We tested directional change in species composition, functional trait composition, and then functional trait diversity measured by Rao's quadratic entropy for four traits – plant height, leaf dry matter content, specific leaf area, and seed mass – along two comparable successional chronosequences. We then evaluated the importance of species interactions, habitat filtering and stochasticity by comparing with random communities and partitioning the environmental and spatial components of Rao's quadratic entropy. We found no directional change in species composition, but clear directionality in functional trait composition. None of the abiotic environmental variables (except P) showed linear change with successional age, but soil moisture and nitrogen were positively related to functional diversity within meadows. Functional trait diversity increased significantly with the increase in successional age. Comparison with random communities showed a significant shift from trait divergence in early stages of succession (3‐ and 5‐yr) to convergence in the later stages of succession 9‐, 12‐yr and undisturbed). The relative importance of abiotic variables and spatial structure for functional trait diversity changed in a predictable manner with successional age. Stochasticity at the species level may indicate dispersal limitation, but deterministic effects on functional trait distributions show the role of both habitat effects and biotic interactions.  相似文献   

17.
Recent functional trait studies have shown that trait differences may favour certain species (environmental filtering) while simultaneously preventing competitive exclusion (niche partitioning). However, phenomenological trait‐dispersion analyses do not identify the mechanisms that generate niche partitioning, preventing trait‐based prediction of future changes in biodiversity. We argue that such predictions require linking functional traits with recognised coexistence mechanisms involving spatial or temporal environmental heterogeneity, resource partitioning and natural enemies. We first demonstrate the limitations of phenomenological approaches using simulations, and then (1) propose trait‐based tests of coexistence, (2) generate hypotheses about which plant functional traits are likely to interact with particular mechanisms and (3) review the literature for evidence for these hypotheses. Theory and data suggest that all four classes of coexistence mechanisms could act on functional trait variation, but some mechanisms will be stronger and more widespread than others. The highest priority for future research is studies of interactions between environmental heterogeneity and trait variation that measure environmental variables at within‐community scales and quantify species' responses to the environment in the absence of competition. Evidence that similar trait‐based coexistence mechanisms operate in many ecosystems would simplify biodiversity forecasting and represent a rare victory for generality over contingency in community ecology.  相似文献   

18.
1. The structure of biological communities reflects the influence of both local environmental conditions and processes such as dispersal that create patterns in species’ distribution across a region. 2. We extend explicit tests of the relative importance of local environmental conditions and regional spatial processes to aquatic plants, a group traditionally thought to be little limited by dispersal. We used partial canonical correspondence analysis and partial Mantel tests to analyse data from 98 lakes and ponds across Connecticut (northeastern United States). 3. We found that aquatic plant community structure reflects the influence of local conditions (pH, conductivity, water clarity, lake area, maximum depth) as well as regional processes. 4. Only 27% of variation in a presence/absence matrix was explained by environmental conditions and spatial processes such as dispersal. Of the total explained, 45% was related to environmental conditions and 40% to spatial processes. 5. Jaccard similarity declined with Euclidean distance between lakes, even after accounting for the increasing difference in environmental conditions, suggesting that dispersal limitation may influence community composition in the region. 6. The distribution of distances among lakes where species occurred was associated with dispersal‐related functional traits, providing additional evidence that dispersal ability varies among species in ways that affect community composition. 7. Although environmental and spatial variables explained a significant amount of variation in community structure, a substantial amount of stochasticity also affects these communities, probably associated with unpredictable colonisation and persistence of the plants.  相似文献   

19.
Understanding of community assembly has been improved by phylogenetic and trait‐based approaches, yet there is little consensus regarding the relative importance of alternative mechanisms and few studies have been done at large geographic and phylogenetic scales. Here, we use phylogenetic and trait dispersion approaches to determine the relative contribution of limiting similarity and environmental filtering to community assembly of stream fishes at an intercontinental scale. We sampled stream fishes from five zoogeographic regions. Analysis of traits associated with habitat use, feeding, or both resulted in more occurrences of trait underdispersion than overdispersion regardless of spatial scale or species pool. Our results suggest that environmental filtering and, to a lesser extent, species interactions were important mechanisms of community assembly for fishes inhabiting small, low‐gradient streams in all five regions. However, a large proportion of the trait dispersion values were no different from random. This suggests that stochastic factors or opposing assembly mechanisms also influenced stream fish assemblages and their trait dispersion patterns. Local assemblages tended to have lower functional diversity in microhabitats with high water velocity, shallow water depth, and homogeneous substrates lacking structural complexity, lending support for the stress‐dominance hypothesis. A high prevalence of functional underdispersion coupled with phylogenetic underdispersion could reflect phylogenetic niche conservatism and/or stabilizing selection. These findings imply that environmental filtering of stream fish assemblages is not only deterministic, but also influences assemblage structure in a fairly consistent manner worldwide.  相似文献   

20.
1. Several hypotheses have been proposed to explain the structure of multi-species assemblages. Among these, abiotic environmental factors and biotic processes are often favoured. Several recent studies examining anuran communities identified environmental factors to be only of minor importance in the composition of leaf-litter and canopy assemblages in pristine forests. Instead, spatial effects and spatially structured environments were considered more important. 2. In this study, we investigated whether these findings could also be confirmed for very heterogeneous stream habitats in the primary rainforest of the Ulu Temburong National Park, Brunei Darussalam. We thus investigated anuran assemblage compositions on 50 stream sites with regard to environmental and spatial influences. 3. Cross-product correlations indicated that both factors (spatial and environmental parameters) determined assemblage composition of anurans. Environment itself may be spatially structured, yet this interrelation did not contribute to the explainable variation of frog community compositions within the study area. 4. Detailed analyses of the environmental parameters with nonmetric multidimensional scaling revealed that community structure was mostly affected by three major environmental characters: stream turbidity, river size and the density of understorey vegetation. Based on these habitat characteristics, we assigned species to three distinct habitat guilds. 5. The results underline the importance of riparian habitat heterogeneity in pristine forests in structuring anuran assemblages. We conclude that different anuran assemblages, that is, leaf litter, canopy and stream communities, follow different assemblage rules and thus are not directly comparable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号