首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How plants interact with sunlight is central to the existence of life and provides a window to the functioning of ecosystems. Although the basic properties of leaf spectra have been known for decades, interpreting canopy-level spectra is more challenging because leaf-level effects are complicated by a host of stem- and canopy-level traits. Progress has been made through empirical analyses and models, although both methods have been hampered by a series of persistent challenges. Here, I review current understanding of plant spectral properties with respect to sources of uncertainty at leaf to canopy scales. I also discuss the role of evolutionary convergence in plant functioning and the difficulty of identifying individual properties among a suite of interrelated traits. A pattern that emerges suggests a synergy among the scattering effects of leaf-, stem- and canopy-level traits that becomes most apparent in the near-infrared (NIR) region. This explains the widespread and well-known importance of the NIR region in vegetation remote sensing, but presents an interesting paradox that has yet to be fully explored: that we can often gain more insight about the functioning of plants by examining wavelengths that are not used in photosynthesis than by examining those that are.  相似文献   

2.
研究了不同土壤水氮条件下水稻 (Oryzasativa) 冠层光谱反射特征和植株水分状况的量化关系。结果表明, 水稻冠层近红外光谱反射率随土壤含水量的降低而降低, 短波红外光谱反射率随土壤含水量的降低而升高。相同土壤水分条件下, 高氮水稻的冠层含水率高于低氮水稻的冠层含水率 ;同一水分条件下, 高氮处理的可见光区和短波红外波段光谱反射率低于低氮处理, 近红外波段光谱反射率高于低氮处理。发现拔节后比值植被指数 (R810 /R460 ) 与水稻叶片含水率和植株含水率呈极显著的线性相关, 模型的检验误差 (RootmeansquareError, RMSE) 分别为 0.93和 1.5 0。表明比值植被指数R810 /R460 可以较好地监测不同生育期水稻叶片和植株含水率。  相似文献   

3.
While foliar photosynthetic relationships with light, nitrogen, and water availability have been well described, environmental factors driving vertical gradients of foliar traits within forest canopies are still not well understood. We, therefore, examined how light availability and vapour pressure deficit (VPD) co-determine vertical gradients (between 12 and 42 m and in the understorey) of foliar photosynthetic capacity (Amax), 13C fractionation (∆), specific leaf area (SLA), chlorophyll (Chl), and nitrogen (N) concentrations in canopies of Fagus sylvatica and Abies alba growing in a mixed forest in Switzerland in spring and summer 2017. Both species showed lower Chl/N and lower SLA with higher light availability and VPD at the top canopy. Despite these biochemical and morphological acclimations, Amax during summer remained relatively constant and the photosynthetic N-use efficiency (PNUE) decreased with higher light availability for both species, suggesting suboptimal N allocation within the canopy. ∆ of both species were lower at the canopy top compared to the bottom, indicating high water-use efficiency (WUE). VPD gradients strongly co-determined the vertical distribution of Chl, N, and PNUE in F. sylvatica, suggesting stomatal limitation of photosynthesis in the top canopy, whereas these traits were only related to light availability in A. alba. Lower PNUE in F. sylvatica with higher WUE clearly indicated a trade-off in water vs. N use, limiting foliar acclimation to high light and VPD at the top canopy. Species-specific trade-offs in foliar acclimation to environmental canopy gradients may thus be considered for scaling photosynthesis from leaf to canopy to landscape levels.  相似文献   

4.
棉花冠层高光谱参数与叶片氮含量的定量关系   总被引:2,自引:0,他引:2       下载免费PDF全文
建立棉花(Gossypium hirsutum)氮素状况的光谱监测技术对于棉花营养诊断和长势估测具有重要意义。该研究利用冠层高光谱反射率及演变的多种高光谱参数,分析了不同施氮水平下不同棉花品种叶片氮含量与冠层反射光谱的定量关系,建立了棉花叶片氮含量的敏感光谱参数及预测方程。结果显示,棉花叶片氮含量和冠层高光谱反射率随不同施氮水平呈显著变化。棉花叶片氮含量的敏感光谱波段为600~700 nm的可见光波段和750~900 nm的近红外波段,且叶片氮含量与比值植被指数RVI [average (760~850), 700]有密切的定量关系,4个品种的平均决定系数在0.70左右。进一步分析表明,可以用统一的回归方程来描述不同品种、不同生育时期和不同氮素水平下棉花叶片氮含量随反射光谱参数的变化模式,从而为棉花氮素营养的监测诊断与精确施肥提供技术依据。  相似文献   

5.
稻麦叶片氮积累量与冠层反射光谱的定量关系   总被引:7,自引:1,他引:7       下载免费PDF全文
作物氮素积累动态是评价作物群体长势及估测产量和品质的重要指标,对于作物氮素的实时监测和精确管理具有重要意义。该文以5个小麦(Triticum aestivum)品种和3个水稻(Oryza sativa)品种在不同施氮水平下的3年田间试验为基础,综合研究了稻麦叶片氮积累量与冠层反射光谱的定量关系。结果表明,不同试验中拔节后叶片氮积累量均随施氮水平呈上升趋势;稻麦冠层光谱反射率在不同施氮水平下存在明显差异,可见光区(460~710 nm)反射率一般随施氮水平的增加逐渐降低,近红外波段(760~1 220 nm)反射率却随施氮水平的增加逐渐升高;就单波段而言,810和870 nm处的冠层光谱反射率均与稻麦叶片氮积累量具有相对较高的相关性;在光谱参数中,比值植被指数(Ratio vegetation index, RVI)(870,660)和RVI(810,660)均与稻麦叶片氮积累量具有高度的相关性,且相关系数明显高于单波段反射率,尤其是水稻作物;对于小麦和水稻,均可以利用统一的波段和光谱指数来监测其叶片氮积累量,并可以采用统一的回归方程来描述其叶片氮积累量随单波段反射率和反射光谱参数的变化模式,但若采用单独的回归系数则可以提高稻麦叶片氮积累量估测的准确性。  相似文献   

6.
We examined the effects of increasing light availability along a vertical gradient within a forest community on the efficiency of leaf nitrogen (N) use in individual trees. The N contents of green and senescent leaves in canopy and subcanopy trees of an evergreen coniferous species, Podocarpus nagi, and an evergreen hardwood species, Neolitsea aciculata, were analyzed in a mixed forest community at Mt Mikasa, Nara City, Japan. The inverse of N concentration (NC) in senescent leaves was used as an index of N use efficiency (NUE) at the leaf-level. The leaf-level NUE was higher in canopy trees than in subcanopy trees in both P.nagi and N.aciculata, although soil N mineralization rates around canopy and subcanopy trees did not differ significantly. The NC in green leaves was lower in canopy trees than in subcanopy trees. The ratio of resorbed N in senescent leaves to the N content in green leaves was higher in canopy trees than in subcanopy trees. The higher leaf-level NUE of canopy trees was partly a result of lower NC in living tissues and partly because of greater N resorption during senescence. The present study suggested that the leaf-level NUE could be increased in response to an imbalance between soil N and light availability caused by spatial community structure.  相似文献   

7.
Feng W  Zhu Y  Tian Y C  Cao W X  Yao X  Li Y X 《农业工程》2008,28(1):23-32
The water-retaining capacity, percolation and evaporation of stony soil in Liupan Mountains, China, were measured in order to understand the effect of rock fragments on soil hydrological processes. The results indicated that the effective water-retaining capacity of soil is positively related with the volumetric content of rock fragments, but there is no relation between saturated water-retaining capacity and rock fragment content. For the soil layers within 0–40 cm, the steady infiltration rate increases with increasing volumetric content of rock fragments until it reaches the range of 15%–20%, and then it decreases when the rock fragment content further increases. For the soil layers below 40 cm, the steady infiltration rate always increases with increasing rock fragment content. The soil evaporation rate decreases with increasing volumetric content of rock fragments when it varies in the range of 0–20%, while the soil evaporation rate keeps basically stable when the rock fragment content is higher than 20%. The soil evaporation rate shows a rising tendency with increasing size of rock fragments.  相似文献   

8.
Vegetation albedo is a critical component of the Earth's climate system, yet efforts to evaluate and improve albedo parameterizations in climate models have lagged relative to other aspects of model development. Here, we calculated growing season albedos for deciduous and evergreen forests, crops, and grasslands based on over 40 site‐years of data from the AmeriFlux network and compared them with estimates presently used in the land surface formulations of a variety of climate models. Generally, the albedo estimates used in land surface models agreed well with this data compilation. However, a variety of models using fixed seasonal estimates of albedo overestimated the growing season albedo of northerly evergreen trees. In contrast, climate models that rely on a common two‐stream albedo submodel provided accurate predictions of boreal needle‐leaf evergreen albedo but overestimated grassland albedos. Inverse analysis showed that parameters of the two‐stream model were highly correlated. Consistent with recent observations based on remotely sensed albedo, the AmeriFlux dataset demonstrated a tight linear relationship between canopy albedo and foliage nitrogen concentration (for forest vegetation: albedo=0.01+0.071%N, r2=0.91; forests, grassland, and maize: albedo=0.02+0.067%N, r2=0.80). However, this relationship saturated at the higher nitrogen concentrations displayed by soybean foliage. We developed similar relationships between a foliar parameter used in the two‐stream albedo model and foliage nitrogen concentration. These nitrogen‐based relationships can serve as the basis for a new approach to land surface albedo modeling that simplifies albedo estimation while providing a link to other important ecosystem processes.  相似文献   

9.
Summary Relationships between leaf nitrogen content and within canopy light exposure were studied in mature nectarine peach trees (Prunus persica cv. Fantasia) that had received 0, 112, 196, 280 or 364 kg of fertilizer nitrogen per hectare per year for the previous 3 years. The relationships between light saturated leaf CO2 assimilation rates and leaf nitrogen concentration were also determined on trees in the highest and lowest nitrogen fertilization treatments. The slope of the linear relationship between leaf N content per unit leaf area and light exposure was similar for all nitrogen treatments but the y-intercept of the relationship increased with increasing N status. The slope of the relationship between leaf N content per unit leaf area and light saturated CO2 assimilation rates was greater for the high N trees than the low N trees, but maximum measured leaf CO2 assimilation rates were similar for both the high and low N treatments. A diagrammatic model of the partitioning of leaf photosynthetic capacity with respect to leaf light exposure for high and low nitrogen trees suggests that the major influence of increased N availability is an increase in the photosynthetic capacity of partially shaded leaves but not of the maximum capacity of highly exposed leaves.  相似文献   

10.
Global-change scenarios suggest a trend of increasing diffuse light due to expected increases in cloud cover. Canopy-level measurements of plant-community photosynthesis under diffuse light show increased productivity attributed to more uniform distribution of light within the forest canopy, yet the effect of the directional quality of light at the leaf level is unknown. Here we show that leaf-level photosynthesis in sun leaves of both C(3) and C(4) plants can be 10-15% higher under direct light compared to equivalent absorbed irradiances of diffuse light. High-light-grown leaves showed significant photosynthetic enhancement in direct light, while shade-adapted leaves showed no preference for direct or diffuse light at any irradiance. High-light-grown leaves with multiple palisade layers may be adapted to better utilize direct than diffuse light, while shade leaf structure does not appear to discriminate light based on its directionality. Based upon our measurements, it appears that leaf-level and canopy-level photosynthetic processes react differently to the directionality of light, and previously observed increases in canopy-level photosynthesis occur even though leaf-level photosynthesis decreases under diffuse light.  相似文献   

11.
In order to parametrize a leaf submodel of a canopy level gas-exchange model, a series of photosynthesis and stomatal conductance measurements were made on leaves of white oak (Quercus alba L.) and red maple (Acer rubrum L.) in a mature deciduous forest near Oak Ridge, TN. Gas-exchange characteristics of sun leaves growing at the top of a 30 m canopy and of shade leaves growing at a depth of 3–4 m from the top of the canopy were determined. Measured rates of net photosynthesis at a leaf temperature of 30°C and saturating photosynthetic photon flux density, expressed on a leaf area basis, were significantly lower (P = 0.01; n = 8) in shade leaves (7.9μmol m?2 s?1) than in sun leaves (11–5μmol m?2 s?1). Specific leaf area increased significantly with depth in the canopy, and when photosynthesis rates were expressed on a dry mass basis, they were not significantly different for shade and sun leaves. The percentage leaf nitrogen did not vary significantly with height in the canopy; thus, rates expressed on a per unit nitrogen basis were also not significantly different in shade and sun leaves. A widely used model integrating photosynthesis and stomatal conductance was parametrized independently for sun and shade leaves, enabling us to model successfully diurnal variations in photosynthesis and evapotranspiration of both classes of leaves. Key photosynthesis model parameters were found to scale with leaf nitrogen levels. The leaf model parametrizations were then incorporated into a canopy-scale gas-exchange model that is discussed and tested in a companion paper (Baldocchi & Harley 1995, Plant, Cell and Environment 18, 1157–1173).  相似文献   

12.
Ground-based remotely sensed reflectance spectra of hyperspectral resolution were monitored during the growing period of rice under various nitrogen application rates. It was found that reflectance spectrum of rice canopy changed in both wavelength and reflectance as the plants developed. Fifteen characteristic wavebands were identified from the apparent peaks and valleys of spectral reflectance curves, in accordance with the results of the first-order differentiation, measured over the growing season of rice. The bandwidths and center wavelengths of these characteristic wavebands were different among nitrogen treatments. The simplified features by connecting these 15 characteristic wavelengths may be considered as spectral signatures of rice canopy, but spectral signatures varied with developmental age and nitrogen application rates. Among these characteristic wavebands, the changes of the wavelength in band 11 showed a positive linear relationship with application rates of nitrogen fertilizer, while it was a negative linear relationship in band 5. Mean reflectance of wavelengths in bands 1, 2, 3, 5, 11, and 15 was significantly correlated with application rates. Reflectance of these six wavelengths changed nonlinearly after transplanting and could be used in combination to distinguish rice plants subjected to different nitrogen application rates. From the correlation analyses, there are a variety of correlation coefficients for spectral reflectance to leaf nitrogen content in the range of 350-2400 nm. Reflectance of most wavelengths exhibited an inverse correlation with leaf nitrogen content, with the largest negative value (r = -0.581) located at about 1376 nm. Changes in reflectance at 1376 nm to leaf nitrogen content during the growing period were closely related and were best fitted to a nonlinear function. This relationship may be used to estimate and to monitor nitrogen content of rice leaves during rice growth. Reflectance of red light minimum and near-infrared peak and leaf nitrogen content were correlated nonlinearly.  相似文献   

13.

The role of lowland tropical forest tree communities in shaping soil nutrient cycling has been challenging to elucidate in the face of high species diversity. Previously, we showed that differences in tree species composition and canopy foliar nitrogen (N) concentrations correlated with differences in soil N availability in a mature Costa Rican rainforest. Here, we investigate potential mechanisms explaining this correlation. We used imaging spectroscopy to identify study plots containing 10–20 canopy trees with either high or low mean canopy N relative to the landscape mean. Plots were restricted to an uplifted terrace with relatively uniform parent material and climate. In order to assess whether canopy and soil N could be linked by litterfall inputs, we tracked litter production in the plots and measured rates of litter decay and the carbon and N content of leaf litter and leaf litter leachate. We also compared the abundance of putative N fixing trees and rates of free-living N fixation as well as soil pH, texture, cation exchange capacity, and topographic curvature to assess whether biological N fixation and/or soil properties could account for differences in soil N that were, in turn, imprinted on the canopy. We found no evidence of differences in legume communities, free-living N fixation, or abiotic properties. However, soils beneath high canopy N assemblages received ~ 60% more N via leaf litterfall due to variability in litter N content between plot types. The correlation of N in canopy leaves, leaf litter, and soil suggests that, under similar abiotic conditions, litterfall-mediated feedbacks can help maintain soil N differences among tropical tree assemblages in this diverse tropical forest.

  相似文献   

14.
The long-term response of leaf photosynthesis to rising CO2 concentrations [CO2] depends on biochemical and morphological feedbacks. Additionally, responses to elevated [CO2] might depend on the nutrient availability and the light environment, affecting the net carbon uptake of a forest stand. After 6 yr of exposure to free-air CO2 enrichment (EUROFACE) during two rotation cycles (with fertilization during the second cycle), profiles of light, leaf characteristics and photosynthetic parameters were measured in the closed canopy of a poplar (Populus) short-rotation coppice. Net photosynthetic rate (A(growth)) was 49% higher in poplars grown in elevated [CO2], independently of the canopy position. Jmax significantly increased (15%), whereas leaf carboxylation capacity (Vcmax), leaf nitrogen (N(a)) and chlorophyll (Chl(a)) were unaffected in elevated [CO2]. Leaf mass per unit area (LMA) increased in the upper canopy. Fertilization created more leaves in the top of the crown. These results suggest that the photosynthetic stimulation by elevated [CO2] in a closed-canopy poplar coppice might be sustained in the long term. The absence of any down-regulation, given a sufficient sink capacity and nutrient availability, provides more carbon for growth and storage in this bioenergy plantation.  相似文献   

15.
利用红边面积形状参数估测水稻叶层氮浓度   总被引:2,自引:0,他引:2       下载免费PDF全文
研究红边面积参数与叶层氮素状况的定量关系, 有助于水稻(Oryza sativa)生长信息的实时无损获取及精确追氮管理。该研究基于多年不同施氮水平和不同水稻品种的冠层高光谱数据, 系统分析了水稻的红边区域光谱、面积形状特征及其与叶层氮浓度的定量关系。结果表明, 水稻冠层红边区域微分光谱随不同氮素水平变化出现“三峰”现象, 峰值分别出现在700、720和730 nm附近, 且3个波段的峰值高低发生交替变化; 同时, 以3个峰值波段为中心与x坐标轴组成的微分光谱面积和形状相应发生变化。发现基于两两峰值波段划分所得红边子面积所构成的比值(双峰对称度)、归一化差值(归一化对称度)参数与叶层氮浓度具有密切的定量关系, 可作为估测水稻叶层氮浓度的红边面积形状参数。经曲线拟合和模型检验的结果显示, 双峰对称度DPS (A675-700, A675-755), 即由675~700 nm区域面积与675~755 nm区域面积的比值, 和DPS (A730-755,A675-700) (由730~755 nm区域面积和675~700 nm区域面积的比值)对水稻叶层氮浓度的估测效果最好, 可用于不同水稻品种和生长条件下的叶层氮浓度估测。  相似文献   

16.
Monitoring leaf photosynthesis with canopy spectral reflectance in rice   总被引:3,自引:0,他引:3  
Non-destructive and rapid method for assessment of leaf photosynthetic characteristics is needed to support photosynthesis modelling and growth monitoring in crop plants. We determined the quantitative relationships between leaf photosynthetic characteristics and canopy spectral reflectance under different water supply and nitrogen application rates. The responses of reflectance at red radiation (wavelength 680 nm) to different water contents and nitrogen rates were parallel to those of leaf net photosynthetic rate (P N). The relationships of reflectance at 680 nm and ratio index of R(810,680) (near infrared/red, NIR/R) to P N of different leaf positions and leaf layers in rice indicated that the top two full leaves were the best leaf positions for quantitative monitoring of leaf P N with remote sensing technique, and the ratio index R(810,680) was the best ratio index for evaluating leaf photosynthetic characteristics in rice. Testing of the models with independent data sets indicated that R(810,680) could well estimate P N of top two leaves and canopy leaf photosynthetic potential in rice, with the root mean square error of 0.25, 0.16, and 4.38, respectively. Hence R(810,680) can be used to monitor leaf photosynthetic characteristics at different growth stages of rice under diverse growing conditions.  相似文献   

17.
Nitrogen (N) addition typically increases overall plant growth, but the nature of this response depends upon patterns of plant nitrogen allocation that vary throughout the growing season and depend upon canopy position. In this study seasonal variations in leaf traits were investigated across a canopy profile in Miscanthus (Miscanthus × giganteus) under two N treatments (0 and 224 kg ha?1) to determine whether the growth response of Miscanthus to N fertilization was related to the response of photosynthetic capacity and nitrogen allocation. Miscanthus yielded 24.1 Mg ha?1 in fertilized plots, a 40% increase compared to control plots. Photosynthetic properties, such as net photosynthesis (A), maximum rate of rubisco carboxylation (Vcmax), stomatal conductance (gs) and PSII efficiency (Fv'/Fm'), all decreased significantly from the top of the canopy to the bottom, but were not affected by N fertilization. N fertilization increased specific leaf area (SLA) and leaf area index (LAI). Leaf N concentration in different canopy layers was increased by N fertilization and the distribution of N concentration within canopy followed irradiance gradients. These results show that the positive effect of N fertilization on the yield of Miscanthus was unrelated to changes in photosynthetic rates but was achieved mainly by increased canopy leaf area. Vertical measurements through the canopy demonstrated that Miscanthus adapted to the light environment by adjusting leaf morphological and biochemical properties independent of nitrogen treatments. GPP estimated using big leaf and multilayer models varied considerably, suggesting a multilayer model in which Vcmax changes both through time and canopy layer could be adopted into agricultural models to more accurately predict biomass production in biomass crop ecosystems.  相似文献   

18.
Abstract. Rapid, tropic leaf movements and photo-synthetic responses of the heliotropic plant, soybean, Glycine max cv. Cumberland, grown under two different nitrogen, three different light and two different water treatments were examined. Measurements of leaf orientation during midday periods outdoors, and tropic reorientation of leaflets in response to vertical illumination indoors, revealed a positive, linear relationship between leaf water potential and the cosine of the angle of incidence between the leaf and the direct beam of the excitation light. This relationship was altered by nitrogen availability, such that a lower cosine of incidence (lower leaf irradiance) for a given leaf water potential was measured for plants grown under low nitrogen compared to those grown under high nitrogen. Additionally, plants grown under low nitrogen and low water availability showed more rapid rates of leaf movement compared to plants receiving high levels of these resources. Light regime during growth had no effect on the relationship between the cosine of incidence and leaf water potential. Reduced water and nitrogen availabilities during growth resulted in lower photosaturated rates of photosynthesis and stomatal conductance, as well as alterations in the relationship between these parameters. Thus, higher values for the ratio of intercellular CO2/ambient CO2 were measured for low-N grown plants (higher nitrogen use efficiencies) and lower values of this ratio for water stressed plants (higher water use efficiencies). The results show that environmental growth conditions other than water availability have the potential to modify leaf orientation responses to vectorial light in heliotropic legumes such as soybean. This has implications for the potential of heliotropic movements to minimize environmental stress-induced damage to the photosynthetic apparatus, and to modulate leaf-level resource use efficiencies.  相似文献   

19.
Spectral changes with leaf aging in Amazon caatinga   总被引:1,自引:1,他引:0  
 Significant gaps exist in the knowledge of tropical leaf spectra and the manner in which spectra change as leaves age in their natural environment. Leaf aging effects may be particularly important in tropical vegetation growing on nutrient poor soils, such as Amazon caatinga, a white sand community common in the Amazon Basin. Spectral changes observed in six caatinga dominants include decreased reflectance and transmittance and increased absorptance for epiphyll-coated older leaves. Near-infrared (NIR) changes were most significant. More detailed spectral and physical changes were studied in one dominant, Aldina heterophylla. Over 16 months, Aldina study plants produced one or two leaf flushes. During leaf expansion, leaf water content and Specific Leaf Area decreased rapidly. Over the first 6 months spectral changes occurred across the spectrum, resulting in decreased transmittance and increased absorptance in the visible and NIR and decreased visible and increased NIR reflectance. In contrast, significant spectral changes were restricted to the NIR over the last 9 months, which showed a 10% absorptance increase associated primarily with increasing epiphylls and necrosis. At the canopy scale, increased NIR absorptance provides a mechanism for producing seasonally varying forest albedo and changing NIR to red ratios, independent of changes in other canopy attributes. In the Amazon caatinga studied, all canopy dominants were subject to epiphyllic growth providing a mechanism for distinguishing these forest types spectrally from more diverse terra-firme forest or forest types with more rapid leaf turnover, such as second growth. These changes are observable using remote sensing and could be used to map caatinga and monitor interannual or seasonal variability in phenology. If these results can be extended to other communities with long-lived foliage, they may offer a means for mapping vegetation on the basis of leaf longevity. Received: 18 November 1996/Accepted: 24 December 1997  相似文献   

20.
Leaves from 26 species with growth forms from annual herbs to trees were collected from open, intermediate, and shaded understory habitats in Mississippi and Kansas, USA. Leaf optical properties including reflectance, transmittance, and absorptance in visible and near infrared (NIR) wavelengths were measured along with leaf thickness and specific leaf mass (SLM). These leaf properties and internal light scattering have been reported to vary with light availability in studies that have focused on a limited number of species. Our objective was to determine whether these patterns in leaf optics and light availability were consistent when a greater number of species were evaluated. Leaf thickness and SLM varied by tenfold among species sampled, but within-habitat variance was high. Although there was a strong trend toward thicker leaves in open habitats, only SLM was significantly greater in open vs. understory habitats. In contrast, leaf optical properties were strikingly similar among habitats. Reflectance and reflectance/transmittance in the NIR were used to estimate internal light scattering and there were strong relationships (r1 > 0.65) between these optical properties and leaf thickness. We concluded that leaf thickness, which did not vary consistently among habitats, was the best predictor of NIR reflectance and internal light scattering. However, because carbon allocation to leaves was lower in understory species (low SLM) yet gross optical properties were similar among all habitats, the energy investment by shade leaves required to achieve optical equivalence with sun leaves was lower. Differences in leaf longevity and growth form within a habitat may help explain the lack of consistent patterns in leaf optics as the number of species sampled increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号