首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic cells (DCs) comprise heterogeneous subsets of professional antigen-presenting cells, linking innate and adaptive immunity. Analysis of DC subsets has been hampered by a lack of specific DC markers and reliable quantitation assays. We characterised the immunophenotype and functional characteristics of psoriatic arthritis (PsA)-derived and rheumatoid arthritis (RA)-derived myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) to evaluate their potential role in arthritis. Circulating peripheral blood (PB) pDC numbers were significantly reduced in PsA patients (P = 0.0098) and RA patients (P = 0.0194), and mDCs were significantly reduced in RA patients (P = 0.0086) compared with healthy controls. The number of circulating mDCs in RA PB was significantly inversely correlated to C-reactive protein (P = 0.021). The phenotype of both DC subsets in PsA PB and RA PB was immature as compared with healthy controls. Moreover, CD62L expression was significantly decreased on both mDCs (PsA, P = 0.0122; RA, P = 0.0371) and pDCs (PsA, P = 0.0373; RA, P = 0.0367) in PB. Both mDCs and pDCs were present in PsA synovial fluid (SF) and RA SF, with the mDC:pDC ratio significantly exceeding that in matched PB (PsA SF, P = 0.0453; RA SF, P = 0.0082). pDCs isolated from RA SF and PsA SF displayed an immature phenotype comparable with PB pDCs. RA and PsA SF mDCs, however, displayed a more mature phenotype (increased expression of CD80, CD83 and CD86) compared with PB mDCs. Functional analysis revealed that both SF DC subsets matured following toll-like receptor stimulation. pDCs from PB and SF produced interferon alpha and tumour necrosis factor alpha on TLR9 stimulation, but only SF pDCs produced IL-10. Similarly, mDCs from PB and SF produced similar tumour necrosis factor alpha levels to TLR2 agonism, whereas SF mDCs produced more IL-10 than PB controls. Circulating DC subset numbers are reduced in RA PB and PsA PB with reduced CD62L expression. Maturation is incomplete in the inflamed synovial compartment. Immature DCs in SF may contribute to the perpetuation of inflammation via sampling of the inflamed synovial environment, and in situ presentation of arthritogenic antigen.  相似文献   

2.
Dendritic cells (DCs) are powerful APCs capable of activating naive lymphocytes. Of the DC subfamilies, plasmacytoid DCs (pDCs) are unique in that they secrete high levels of type I IFNs in response to viruses but their role in inducing adaptive immunity remains divisive. In this study, we examined the importance of pDCs and their ability to recognize a virus through TLR9 in immunity against genital HSV-2 infection. We show that a low number of pDCs survey the vaginal mucosa at steady state. Upon infection, pDCs are recruited to the vagina and produce large amounts of type I IFNs in a TLR9-dependent manner and suppress local viral replication. Although pDCs are critical in innate defense against genital herpes challenge, adaptive Th1 immunity developed normally in the absence of pDCs. Thus, by way of migrating directly into the peripheral mucosa, pDCs act strictly as innate antiviral effector cells against mucosal viral infection in situ.  相似文献   

3.
Dendritic cells (DCs) comprise heterogeneous subsets of professional antigen-presenting cells, linking innate and adaptive immunity. Analysis of DC subsets has been hampered by a lack of specific DC markers and reliable quantitation assays. We characterised the immunophenotype and functional characteristics of psoriatic arthritis (PsA)-derived and rheumatoid arthritis (RA)-derived myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) to evaluate their potential role in arthritis. Circulating peripheral blood (PB) pDC numbers were significantly reduced in PsA patients (P = 0.0098) and RA patients (P = 0.0194), and mDCs were significantly reduced in RA patients (P = 0.0086) compared with healthy controls. The number of circulating mDCs in RA PB was significantly inversely correlated to C-reactive protein (P = 0.021). The phenotype of both DC subsets in PsA PB and RA PB was immature as compared with healthy controls. Moreover, CD62L expression was significantly decreased on both mDCs (PsA, P = 0.0122; RA, P = 0.0371) and pDCs (PsA, P = 0.0373; RA, P = 0.0367) in PB. Both mDCs and pDCs were present in PsA synovial fluid (SF) and RA SF, with the mDC:pDC ratio significantly exceeding that in matched PB (PsA SF, P = 0.0453; RA SF, P = 0.0082). pDCs isolated from RA SF and PsA SF displayed an immature phenotype comparable with PB pDCs. RA and PsA SF mDCs, however, displayed a more mature phenotype (increased expression of CD80, CD83 and CD86) compared with PB mDCs. Functional analysis revealed that both SF DC subsets matured following toll-like receptor stimulation. pDCs from PB and SF produced interferon alpha and tumour necrosis factor alpha on TLR9 stimulation, but only SF pDCs produced IL-10. Similarly, mDCs from PB and SF produced similar tumour necrosis factor alpha levels to TLR2 agonism, whereas SF mDCs produced more IL-10 than PB controls. Circulating DC subset numbers are reduced in RA PB and PsA PB with reduced CD62L expression. Maturation is incomplete in the inflamed synovial compartment. Immature DCs in SF may contribute to the perpetuation of inflammation via sampling of the inflamed synovial environment, and in situ presentation of arthritogenic antigen.  相似文献   

4.
Dendritic cells (DCs), including conventional DCs (cDCs) and plasmacytoid DCs (pDCs) are critical for initiating and controlling the immune response. However, study of DC, particularly pDC, function is hampered by their low frequency in lymphoid organs, and existing methods for in vitro DC generation preferentially favor the production of cDCs over pDCs. Here, we demonstrated that pDCs could be efficiently generated in vitro from common lymphoid progenitors (CLPs) using Flt3 ligand (FL) in three different culture systems, namely feeder-free, BM-feeder and AC-6-feeder. This was in stark contrast to common DC progenitors (CDPs), in which cDCs were prominently generated under the same conditions. Moreover, the efficiency and function of pDCs generated from these three systems varied. While AC-6 system showed the greatest ability to support pDC development from CLPs, BM-feeder system was able to develop pDCs with better functionality. pDCs could also be expanded in vivo using hydrodynamic gene transfer of FL, which was further enhanced by the combined treatment of FL and IFN-α. Interestingly, IFN-α selectively promoted the proliferation of CLPs and not CDPs, which might contribute to enhanced pDC development. Together, we have defined conditions for in vitro and in vivo generation of pDCs, which may be useful for investigating the biology of pDCs.  相似文献   

5.
Plasmacytoid dendritic cells (pDCs), not only inhibit viral replication, but also play an essential role in linking the innate and adaptive immune system. In this study, we explored the effects of human immunodeficiency virus (HIV) gp120 and tat on CpG-A-induced inflammatory cytokines in pDCs. The results provided fundamental insights into HIV pathogenesis that may hold promise for preventative and even curative strategies. pDCs were isolated using blood DC antigen 4 (BDCA-4) DC isolation kit, and the purity was analyzed using BDCA-2 antibody by flow cytometry. pDCs and peripheral blood mononuclear cells (PBMCs) were stimulated by either CpG-A (5 μg/ml), gp120 (0.5 μg/ml), tat (0.5 μg/ml), or CpG-A treatment combined with gp120 or tat. The production of type I interferons (IFNs) and other inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interlukine-6 (IL-6), and interferon-gamma-inducible protein-10 (IP-10) in the culture supernatant, was determined by enzyme-linked immunosorbent assay. The results showed that CpG-A induced high levels of type I IFNs and other inflammatory cytokines, including TNF-α, IL-6, and IP-10, in pDCs. Concomitant treatment with gp120 reduced the levels of IFN-α, IFN-β, TNF-α, IL-6, and IP-10 induced by CpG-A in pDCs by 79%, 53%, 60%, 50%, and 34%, respectively, while tat suppressed them by 88%, 66%, 71%, 64%, and 53%, respectively. Similar results were demonstrated in CpG-A-treated PBMCs. In conclusion, gp120 and tat are effective inhibitors of the CpG-A-mediated induction of type I IFNs and other inflammatory cytokines from pDCs and PBMCs.  相似文献   

6.
Dendritic cell differentiation from hematopoietic CD34+ progenitor cells   总被引:7,自引:0,他引:7  
Dendritic cells (DC) are the most powerful antigen presenting cells (APC) and play a pivotal role in initiating the immune response. In light of their unique properties, DC have been proposed as a tool to enhance immunity against infectious agents and in anticancer vaccine strategies. In the last few years, the development of DC has been extensively investigated. The present paper summarizes the most recent findings on the differentiation of myeloid DC from hematopoietic CD34+ progenitors and methods for DC generation in vitro. A better understanding of DC function has important implications for their use in clinical settings.  相似文献   

7.
Dendritic cells (DCs) are central players of the immune response. To date, DC-based immunotherapy is explored worldwide in clinical vaccination trials with cancer patients, predominantly with ex vivo-cultured monocyte-derived DCs (moDCs). However, the extensive culture period and compounds required to differentiate them into DCs may negatively affect their immunological potential. Therefore, it is attractive to consider alternative DC sources, such as blood DCs. Two major types of naturally occurring DCs circulate in peripheral blood, myeloid DCs (mDCs) and plasmacytoid (pDCs). These DC subsets express different surface molecules and are suggested to have distinct functions. Besides scavenging pathogens and presenting antigens, DCs secrete cytokines, all of which is vital for both the acquired and the innate immune system. These immunological functions relate to Toll-like receptors (TLRs) expressed by DCs. TLRs recognize pathogen-derived products and subsequently provoke DC maturation, antigen presentation and cytokine secretion. However, not every TLR is expressed on each DC subset nor causes the same effects when activated. Considering the large amount of clinical trials using DC-based immunotherapy for cancer patients and the decisive role of TLRs in DC maturation, this review summarizes TLR expression in different DC subsets in relation to their function. Emphasis will be given to the therapeutic potential of TLR-matured DC subsets for DC-based immunotherapy.  相似文献   

8.
In this study, we analyzed the phenotypic and physiological consequences of the interaction of plasmacytoid dendritic cells (pDCs) with human immunodeficiency virus type 1 (HIV-1). pDCs are one cellular target of HIV-1 and respond to the virus by producing alpha/beta interferon (IFN-alpha/beta) and chemokines. The outcome of this interaction, notably on the function of bystander myeloid DC (CD11c+ DCs), remains unclear. We therefore evaluated the effects of HIV-1 exposure on these two DC subsets under various conditions. Blood-purified pDCs and CD11c+ DCs were exposed in vitro to HIV-1, after which maturation markers, cytokine production, migratory capacity, and CD4 T-cell stimulatory capacity were analyzed. pDCs exposed to different strains of infectious or even chemically inactivated, nonreplicating HIV-1 strongly upregulated the expression of maturation markers, such as CD83 and functional CCR7, analogous to exposure to R-848, a synthetic agonist of toll-like receptor-7 and -8. In addition, HIV-1-activated pDCs produced cytokines (IFN-alpha and tumor necrosis factor alpha), migrated in response to CCL19 and, in coculture, matured CD11c+ DCs, which are not directly activated by HIV. pDCs also acquired the ability to stimulate na?ve CD4+ T cells, albeit less efficiently than CD11c+ DCs. This HIV-1-induced maturation of both DC subsets may explain their disappearance from the blood of patients with high viral loads and may have important consequences on HIV-1 cellular transmission and HIV-1-specific T-cell responses.  相似文献   

9.
Human and animal hemorrhagic viruses initially target dendritic cells (DCs). It has been proposed, but not documented, that both plasmacytoid DCs (pDCs) and conventional DCs (cDCs) may participate in the cytokine storm encountered in these infections. In order to evaluate the contribution of DCs in hemorrhagic virus pathogenesis, we performed a genome-wide expression analysis during infection by Bluetongue virus (BTV), a double-stranded RNA virus that induces hemorrhagic fever in sheep and initially infects cDCs. Both pDCs and cDCs accumulated in regional lymph nodes and spleen during BTV infection. The gene response profiles were performed at the onset of the disease and markedly differed with the DC subtypes and their lymphoid organ location. An integrative knowledge-based analysis revealed that blood pDCs displayed a gene signature related to activation of systemic inflammation and permeability of vasculature. In contrast, the gene profile of pDCs and cDCs in lymph nodes was oriented to inhibition of inflammation, whereas spleen cDCs did not show a clear functional orientation. These analyses indicate that tissue location and DC subtype affect the functional gene expression program induced by BTV and suggest the involvement of blood pDCs in the inflammation and plasma leakage/hemorrhage during BTV infection in the real natural host of the virus. These findings open the avenue to target DCs for therapeutic interventions in viral hemorrhagic diseases.  相似文献   

10.
Reduced frequencies of myeloid and plasmacytoid dendritic cell (DC) subsets (mDCs and pDCs, respectively) have been observed in the peripheral blood of HIV-1-infected individuals throughout the course of disease. Accumulation of DCs in lymph nodes (LNs) may partly account for the decreased numbers observed in blood, but increased DC death may also be a contributing factor. We used multiparameter flow cytometry to evaluate pro- and antiapoptotic markers in blood mDCs and pDCs from untreated HIV-1-infected donors, from a subset of infected donors before and after receiving antiretroviral therapy (ART), and from uninfected control donors. Blood mDCs, but not pDCs, from untreated HIV-1-infected donors expressed lower levels of antiapoptotic Bcl-2 than DCs from uninfected donors. A subset of HIV-1-infected donors had elevated frequencies of proapoptotic caspase-3(+) blood mDCs, and positive correlations were observed between caspase-3(+) mDC frequencies and plasma viral load and CD8(+) T-cell activation levels. Caspase-3(+) mDC frequencies, but not mDC Bcl-2 expression, were reduced with viral suppression on ART. Apoptosis markers on DCs in blood and LN samples from a cohort of untreated, HIV-1-infected donors with chronic disease were also evaluated. LN mDCs displayed higher levels of Bcl-2 and lower caspase-3(+) frequencies than did matched blood mDCs. Conversely, LN pDCs expressed lower Bcl-2 levels than their blood counterparts. In summary, blood mDCs from untreated HIV-1-infected subjects displayed a proapoptotic profile that was partially reversed with viral suppression, suggesting that DC death may be a factor contributing to blood DC depletion in the setting of chronic, untreated HIV disease.  相似文献   

11.
树突状细胞免疫调节作用及其信号转导机制   总被引:2,自引:0,他引:2  
Xu S  Yao YM  Sheng ZY 《生理科学进展》2006,37(4):313-318
树突状细胞(DC)是最强效的抗原提呈细胞。,在抗原的刺激下,DC通过趋化因子作用由外周组织迁移至淋巴组织和器官,同时上调主要组织相容性复合体分子、共刺激分子和黏附分子的表达,分泌细胞因子,获得预激幼稚T细胞的独特能力。DC通过不同的受体吞饮、吞噬和胞吞抗原,例如C型凝集素受体捕获和呈递抗原,通过Toll样受体识别病原体和激活DC。本文主要综述了DC的免疫调节效应及其不同病原体识别受体活化和细胞内信号机制。  相似文献   

12.
Over the years, the unique capacity of dendritic cells (DC) for efficient activation of naive T cells has led to their extensive use in cancer immunotherapy protocols. In order to be able to fulfil their role as antigen-presenting cells, the antigen of interest needs to be efficiently introduced and subsequently correctly processed and presented by the DC. For this purpose, a variety of both viral and non-viral antigen-delivery systems have been evaluated. Amongst those, HIV-1-derived lentiviral vectors have been used successfully to transduce DC.This review considers the use of HIV-1-derived lentiviral vectors to transduce human and murine DC for cancer immunotherapy. Lentivirally transduced DC have been shown to present antigenic peptides, prime transgene-specific T cells in vitro and elicit a protective cytotoxic T-lymphocyte (CTL) response in animal models. Different parameters determining the efficacy of transduction are considered. The influence of lentiviral transduction on the DC phenotype and function is described and the induction of immune responses by lentivirally transduced DC in vitro and in vivo is discussed in detail. In addition, direct in vivo administration of lentiviral vectors aiming at the induction of antigen-specific immunity is reviewed. This strategy might overcome the need for ex vivo generation and antigen loading of DC. Finally, future perspectives towards the use of lentiviral vectors in cancer immunotherapy are presented.  相似文献   

13.
BCG rectal administration to newborn and adult mice induced protective immune responses against tuberculosis. BCG reaches the sub-epithelial site and the draining mesenteric lymph nodes (MLNs), and dendritic cells (DC) could be recruited to these sites. Using polarized Caco-2 epithelial cells, we showed that BCG translocates epithelial cells to basolateral compartment. Delayed in newborn BALB/c mice, an important recruitment of CD11c+ DCs, was documented in the rectal lamina propria and the MLNs during the first two weeks after rectal BCG delivery. In MLNs, two major DC subtypes were observed: conventional DCs (cDCs) (B220) and plasmacytoid DCs (pDCs) (B220+). CIRE, mouse DC-specific intracellular adhesion molecule 3 grabbing non-integrin (DC-SIGN) is predominantly expressed on pDCs and at a higher level on pDCs from the adult compared to newborn MLNs. cDCs with a higher capacity to induce the proliferation of naïve CD4+ T cells than pDCs, triggered CD4+ T cells to produce interferon-γ whereas pDCs triggered them to release interleukin-10. Both DC subtypes equilibrates T cells as a source of microbicidal/microbiostatic signals and those acting as source of counter-inflammatory signals, preventing tissue damage and/or accelerating tissue repair. Thus, rectal delivery of BCG could be a safe and efficient route of vaccination against tuberculosis.  相似文献   

14.
Plasmacytoid dendritic cells (pDCs) represent a unique and crucial immune cell population capable of producing large amounts of type I interferons (IFNs) in response to viral infection. The function of pDCs as the professional type I IFN-producing cells is linked to their selective expression of Toll-like receptor 7 (TLR7) and TLR9, which sense viral nucleic acids within the endosomal compartments. Type I IFNs produced by pDCs not only directly inhibit viral replication but also play an essential role in linking the innate and adaptive immune system. The aberrant activation of pDCs by self nucleic acids through TLR signaling and the ongoing production of type I IFNs do occur in some autoimmune diseases. Therefore, pDC may serve as an attractive target for therapeutic manipulations of the immune system to treat viral infectious diseases and autoimmune diseases.  相似文献   

15.
Recent data suggest a critical role for dendritic cells (DCs) in the generation of immunoglobulin-secreting plasma cells. In the work reported herein, we analyzed the frequency of peripheral blood plasmacytoid DCs (pDCs) and myeloid DCs (mDCs) in a cohort of 44 adults with common variable immunodeficiency (CVID) classified according to their CD27 membrane expression status on B cells. A deep alteration in the distribution of DC subsets, especially of pDCs, in the peripheral blood of CVID patients was found. Patients with a reduced number of class-switched CD27+IgD-IgM- memory B cells and patients with granulomatous disease had a dramatic decrease in pDCs (P = 0.00005 and 0.0003 vs controls, respectively) and, to a lesser extent, of mDCs (P = 0.001 and 0.01 vs controls, respectively). In contrast, patients with normal numbers of switched memory B cells had a DC distribution pattern similar to that in controls. Taken together, our results raise the possibility that innate immunity contributes to pathogenesis in CVID.  相似文献   

16.
The use of dendritic cells (DC) for the development of therapeutic cancer vaccines is attractive because of their unique ability to present tumor epitopes via the MHC class I pathway to induce cytotoxic CD8+ T lymphocyte responses. C-Type membrane lectins, DC-SIGN and the mannose receptor (MR), present on the DC surface, recognize oligosaccharides containing mannose and/or fucose and mediate sugar-specific endocytosis of synthetic oligolysine-based glycoclusters. We therefore asked whether a glycotargeting approach could be used to induce uptake and presentation of tumor antigens by DC. To this end, we designed and synthesized glycocluster conjugates containing a CD8+ epitope of the Melan-A/Mart-1 melanoma antigen. These glycocluster-Melan-A conjugates were obtained by coupling glycosynthons: oligosaccharyl-pyroglutamyl-beta-alanine derivatives containing either disaccharides, a dimannoside (Manalpha-6Man) or lactoside, or a Lewis oligosaccharide, to Melan-A 16-40 peptide comprising the 26-35 HLA-A2 restricted T cell epitope, extended with an oligolysine stretch at the C-terminal end. We showed by confocal microscopy and flow cytometry that fluorescent-labeled Melan-A glycoclusters containing either dimannoside or Lewis oligosaccharide were taken up by DC and concentrated in acidic vesicles; conversely lactoside glycopeptides were not at all taken up. Furthermore, using surface plasmon resonance, we showed that dimannoside and Lewis-Melan-A conjugates bind MR and DC-SIGN with high affinity. DC loaded with these conjugates, but not with the lactose-Melan-A conjugate, led to an efficient presentation of the Melan-A epitope eliciting a CD8+ T-lymphocyte response. These data suggest that synthetically designed glycocluster-tumor antigen conjugates may induce antigen cross-presentation by DC and represent a promising tool for the development of tumor vaccines.  相似文献   

17.
Plasmacytoid dendritic cells (pDCs), also known as type I interferon (IFN)-producing cells, are specialized immune cells characterized by their extraordinary capabilities of mounting rapid and massive type I IFN response to nucleic acids derived from virus, bacteria or dead cells. PDCs selectively express endosomal Toll-like receptor (TLR) 7 and TLR9, which sense viral RNA and DNA respectively. Following type I IFN and cytokine responses, pDCs differentiate into antigen presenting cells and acquire the ability to regulate T cell-mediated adaptive immunity. The functions of pDCs have been implicated not only in antiviral innate immunity but also in immune tolerance, inflammation and tumor microenvironments. In this review, we will focus on TLR7/9 signaling and their regulation by pDC-specific receptors.  相似文献   

18.
Chemokines and dendritic cells: a crucial alliance   总被引:8,自引:0,他引:8  
Dendritic cells (DC) are bone marrow-derived professional antigen-presenting cells that function as sentinels of the immune system. Their importance in immunity resides in their unique ability to prime or tolerize T lymphocytes, thereby initiating or inhibiting immune responses. They reside in all tissues and organs and upon appropriate activation, migrate to secondary lymphoid organs to present antigen to T lymphocytes in the T cell zones. Because of this central role in T cell activation, there is a great deal of interest in using DC therapeutically to deliver positive or negative signals to the immune system. The DC system is critically dependent on the ability of DC at different stages of maturation to respond to a range of soluble and cell-bound signals, including members of the chemokine gene superfamily. This review will describe the interactions between DC and the chemokine system.  相似文献   

19.
We have recently identified two groups of plasmacytoid dendritic cells (pDCs) isolated from murine liver based on the expression of CD4 and other cell surface markers uniquely expressed by pDCs. Herein, we describe the identification of both CD4+ and CD4- pDCs that clearly exist in lymph nodes (LNs), spleen, liver, thymus, bone marrow, and lung. Normally, CD4+ pDCs are enriched in LNs. However, after in vivo systemic injection with bacterial CpG, a larger number of CD4- pDCs are recruited to the LNs and local inoculation by CpG drives CD4- pDCs migrating into local sentinel LNs, suggesting that CD4- pDCs are the main subpopulation migrating to the peripheral LNs. Furthermore, although both freshly isolated CD4+ pDCs and CD4- pDCs appear as an immature plasmacytoid cell and develop into a DC morphology following activation, the two subsets have strikingly different immune features, including differences in the production pattern of cytokines stimulated with CpG and in T cell activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号