首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Smooth muscle cells use an actin-myosin II-based contractile apparatus to produce force for a variety of physiological functions, including blood pressure regulation and gut peristalsis. The organization of the smooth muscle contractile apparatus resembles that of striated skeletal and cardiac muscle, but remains much more poorly understood. We have found that avian vascular and visceral smooth muscles contain a novel, megadalton protein, smitin, that is similar to striated muscle titin in molecular morphology, localization in a contractile apparatus, and ability to interact with myosin filaments. Smitin, like titin, is a long fibrous molecule with a globular domain on one end. Specific reactivities of an anti-smitin polyclonal antibody and an anti-titin monoclonal antibody suggest that smitin and titin are distinct proteins rather than differentially spliced isoforms encoded by the same gene. Smitin immunofluorescently colocalizes with myosin in chicken gizzard smooth muscle, and interacts with two configurations of smooth muscle myosin filaments in vitro. In physiological ionic strength conditions, smitin and smooth muscle myosin coassemble into irregular aggregates containing large sidepolar myosin filaments. In low ionic strength conditions, smitin and smooth muscle myosin form highly ordered structures containing linear and polygonal end-to-end and side-by-side arrays of small bipolar myosin filaments. We have used immunogold localization and sucrose density gradient cosedimentation analyses to confirm association of smitin with both the sidepolar and bipolar smooth muscle myosin filaments. These findings suggest that the titin-like protein smitin may play a central role in organizing myosin filaments in the contractile apparatus and perhaps in other structures in smooth muscle cells.  相似文献   

2.
3.
Structural analysis of functionally different smooth muscles   总被引:1,自引:0,他引:1  
Summary The ultrastructure of the longitudinal and circular muscle cells of the guinea pig stomach which show different contractile responses was compared. The extracellular space within the muscle bundles is about 12.1% in the longitudinal layer and about 4.4% in the circular layer. Nexuses were consistently found in the circular muscle layer but not in the longitudinal muscle layer. Numbers of both mitochondria and microtubules per unit area of smooth muscle cell are larger in the longitudinal than in the circular muscle. Cellular area occupied by sarcoplasmic reticulum is about 4.7% in the longitudinal muscle, 2.3% in the circular muscle. The numbers of caveolae are almost the same in both tissues. The most distinct difference between the two types of smooth muscle is the appearance of the thick filaments. The circular muscle cell contains approximately 50 thick filaments per 0.5 m2 of cytoplasmic area, while the longitudinal muscle cell has only about 25 filaments which were usually much thinner than those of the circular muscle. These results indicate that the contractile apparatus itself is different in longitudinal and circular smooth muscles of the guinea pig stomach.We are grateful to Dr. Y. Furukawa, Physical Section, Institute of Low Temperature Science, Hokkaido University, for help in the use of their film analyzing system. We are also indebted to the Department of Pathology of our college, for the use of a Photo Pattern Analyzer throughout this experiment.  相似文献   

4.
It is believed that the contractile filaments in smooth muscle are organized into arrays of contractile units (similar to the sarcomeric structure in striated muscle), and that such an organization is crucial for transforming the mechanical activities of actomyosin interaction into cell shortening and force generation. Details of the filament organization, however, are still poorly understood. Several models of contractile filament architecture are discussed here. To account for the linear relationship observed between the force generated by a smooth muscle and the muscle length at the plateau of an isotonic contraction, a model of contractile unit is proposed. The model consists of 2 dense bodies with actin (thin) filaments attached, and a myosin (thick) filament lying between the parallel thin filaments. In addition, the thick filament is assumed to span the whole contractile unit length, from dense body to dense body, so that when the contractile unit shortens, the amount of overlap between the thick and thin filaments (i.e., the distance between the dense bodies) decreases in exact proportion to the amount of shortening. Assembly of the contractile units into functional contractile apparatus is assumed to involve a group of cells that form a mechanical syncytium. The contractile apparatus is assumed malleable in that the number of contractile units in series and in parallel can be altered to accommodate strains on the muscle and to maintain the muscle's optimal mechanical function.  相似文献   

5.
《The Journal of cell biology》1996,134(5):1255-1270
Desmin, the muscle specific intermediate filament (IF) protein encoded by a single gene, is expressed in all muscle tissues. In mature striated muscle, desmin IFs surround the Z-discs, interlink them together and integrate the contractile apparatus with the sarcolemma and the nucleus. To investigate the function of desmin in all three muscle types in vivo, we generated desmin null mice through homologous recombination. Surprisingly, desmin null mice are viable and fertile. However, these mice demonstrated a multisystem disorder involving cardiac, skeletal, and smooth muscle. Histological and electron microscopic analysis in both heart and skeletal muscle tissues revealed severe disruption of muscle architecture and degeneration. Structural abnormalities included loss of lateral alignment of myofibrils and abnormal mitochondrial organization. The consequences of these abnormalities were most severe in the heart, which exhibited progressive degeneration and necrosis of the myocardium accompanied by extensive calcification. Abnormalities of smooth muscle included hypoplasia and degeneration. The present data demonstrate the essential role of desmin in the maintenance of myofibril, myofiber, and whole muscle tissue structural and functional integrity, and show that the absence of desmin leads to muscle degeneration.  相似文献   

6.
Pleiotrophin (PTN) is a growth factor with both pro-angiogenic and limited pro-tumorigenic activity. We evaluated the potential for PTN to be used for safe angiogenic gene therapy using the full length gene and a truncated gene variant lacking the domain implicated in tumorigenesis. Mouse myoblasts were transduced to express full length or truncated PTN (PTN or T-PTN), along with a LacZ reporter gene, and injected into mouse limb muscle and myocardium. In cultured myoblasts, PTN was expressed and secreted via the Golgi apparatus, but T-PTN was not properly secreted. Nonetheless, no evidence of uncontrolled growth was observed in cells expressing either form of PTN. PTN gene delivery to myocardium, and non-ischemic skeletal muscle, did not result in a detectable change in vascularity or function. In ischemic hindlimb at 14 days post-implantation, intramuscular injection with PTN-expressing myoblasts led to a significant increase in skin perfusion and muscle arteriole density. We conclude that (1) delivery of the full length PTN gene to muscle can be accomplished without tumorigenesis, (2) the truncated PTN gene may be difficult to use in a gene therapy context due to inefficient secretion, (3) PTN gene delivery leads to functional benefit in the mouse acute ischemic hindlimb model.  相似文献   

7.
Despite lacking jaws and substantial rigid support for feeding muscles, hagfishes can forcefully grasp and ingest chunks of flesh from their prey. When feeding, bilaterally folding dental plates protrude from the mouth, then forcefully retract. This cyclic protraction and retraction occurs in the anterior region of the hagfish feeding apparatus (HFA) and involves both a cartilaginous skeleton and a complex array of muscles that act as a hydrostat. We recorded motor patterns from the largest muscles in the HFA in six specimens of Myxine glutinosa: the deep protractor muscle (DPM), clavatus muscle (CM), perpendicularis muscle (PM), and tubulatus muscle (TM). Individuals normally used four gape cycles to ingest food and four gape cycles to intraorally transport food. We measured burst duration from each muscle and the onsets of kinematic events and the onsets of CM, PM, and TM bursts relative to the onset of the DPM. The DPM fired during protraction, while the CM, PM and TM fired during retraction. Our study corroborates our anatomical predictions about DPM and CM function. Activation of the circumferentially and vertically oriented fibers of the TM and PM stiffens the origin of the CM, allowing it to forcefully retract the dental plates. The progressive decrease in retractor muscle activity during gape cycles following ingestion suggests a reliance on passive properties of the musculoskeletal system for retraction.  相似文献   

8.
Isolated whole frog gastrocnemius muscles were electrically stimulated to peak twitch tension while held isometrically in a bath at 4 degrees C. A quartz hydrophone detected vibrations of the muscle by measuring the pressure fluctuations caused by muscle movement. A small steel collar was slipped over the belly of the muscle. Transient forces including plucks and steady sinusoidal driving were applied to the collar by causing currents to flow in a coil held near the collar. The instantaneous resonant frequencies measured by the pluck and driving techniques were the same at various times during a twitch contraction cycle. The strain produced by the plucking technique in the outermost fibers was less than 1.6 x 10(-4%), a strain three orders of magnitude less than that required to drop the tension to zero in quick-length-change experiments. Because the pressure transients recorded by the hydrophone during plucks and naturally occurring sounds were of comparable amplitude, strains in the muscle due to naturally occurring sound must also be of the order 10(-3%). A simple model assuming that the muscle is an elastic bar under tension was used to calculate the instantaneous elastic modulus E as a function of time during a twitch, given the tension and resonant frequency. The result for Emax, the peak value of E during a twitch, was typically 2.8 x 10(6) N/m2. The methods used here for measuring muscle stiffness are unusual in that the apparatus used for measuring stiffness is separate from the apparatus controlling and measuring force and length.  相似文献   

9.
Using pan-kinesin antibodies to screen a differentiating C2C12 cell library, we identified the kinesin proteins KIF3A, KIF3B, and conventional kinesin heavy chain to be present in differentiating skeletal muscle. We compared the expression and subcellular localization characteristics of these kinesins in myogenic cells to others previously identified in muscle, neuronal, and mitotic systems (KIF1C, KIF3C, and mitotic-centromere-associated kinesin). Because members of the KIF3 subfamily of kinesin-related proteins showed altered subcellular fractionation characteristics in differentiating cells, we focused our study of kinesins in muscle on the function of kinesin-II. Kinesin-II is a motor complex comprised of dimerized KIF3A and KIF3B proteins and a tail-associated protein, KAP. The Xenopus homologue of KIF3B, Xklp3, is predominantly localized to the region of the Golgi apparatus, and overexpression of motorless-Xklp3 in Xenopus A6 cells causes mislocalization of Golgi components (). In C2C12 myoblasts and myotubes, KIF3B is diffuse and punctate, and not primarily associated with the Golgi. Overexpression of motorless-KIF3B does not perturb localization of Golgi components in myogenic cells, and myofibrillogenesis is normal. In adult skeletal muscle, KIF3B colocalizes with the excitation-contraction-coupling membranes. We propose that these membranes, consisting of the transverse-tubules and sarcoplasmic reticulum, are dynamic structures in which kinesin-II may function to actively assemble and maintain in myogenic cells.  相似文献   

10.
The dystrophin complex is a multimolecular membrane-associated protein complex whose defects underlie many forms of muscular dystrophy. The dystrophin complex is postulated to function as a structural element that stabilizes the cell membrane by linking the contractile apparatus to the extracellular matrix. A better understanding of how this complex is organized and localized will improve our knowledge of the pathogenic mechanisms of diseases that involve the dystrophin complex. In a Caenorhabditis elegans genetic study, we demonstrate that CTN-1/α-catulin, a cytoskeletal protein, physically interacts with DYB-1/α-dystrobrevin (a component of the dystrophin complex) and that this interaction is critical for the localization of the dystrophin complex near dense bodies, structures analogous to mammalian costameres. We further show that in mouse α-catulin is localized at the sarcolemma and neuromuscular junctions and interacts with α-dystrobrevin and that the level of α-catulin is reduced in α-dystrobrevin-deficient mouse muscle. Intriguingly, in the skeletal muscle of mdx mice lacking dystrophin, we discover that the expression of α-catulin is increased, suggesting a compensatory role of α-catulin in dystrophic muscle. Together, our study demonstrates that the interaction between α-catulin and α-dystrobrevin is evolutionarily conserved in C. elegans and mammalian muscles and strongly suggests that this interaction contributes to the integrity of the dystrophin complex.  相似文献   

11.
12.
Electrophysiological experiments are helpful for students to understand the role of electrical activity in heart function. Papillary muscle, which belongs to the ventricle, offers the advantage of being easily studied using glass microelectrodes. In addition, there is commercially available software that simulates ventricular electrical activity and can help overcome some difficulties, such as voltage clamp experiments, which need expensive apparatus when used for studies on living preparations. Here, we present a class practical session that is taken by undergraduate students at our University. In the first part of this class, students record action potentials from papillary muscles with the use of glass microelectrodes, and they change extracellular conditions to study the ionic basis of the action potential. In the second part of the class, students simulate action potentials using the Oxsoft Heart model (v. 4.0) and model their previous experiments on papillary muscle to quantify the effects. In particular, the model is very helpful in promoting understanding of the effect that extracellular potassium has on cardiac action potential by simulating voltage clamp experiments. This twin approach of papillary muscle experiments and computer modeling leads to a good understanding of the functioning of the action potential and can help introduce discussion of some abnormal cardiac functioning.  相似文献   

13.
14.
This study provides comprehensive documentation of silk production in the pest moth Helicoverpa armigera from gland secretion to extrusion of silk thread. The structure of the silk glands, accessory structures and extrusion apparatus are reported. The general schema of the paired silk glands follows that found for Lepidoptera. Morphology of the duct, silk press, muscle attachments and spigot are presented as a three-dimensional reconstruction and the cuticular crescent-shaped profile of the silk press is demonstrated in both open and closed forms with attendant muscle blocks, allowing advances in our knowledge of how the silk press functions to regulate the extrusion of silk. Growth of the spigot across instars is documented showing a distinctive developmental pattern for this extrusion device. Its shape and structure are related to use and load-bearing activity.  相似文献   

15.
A flow assay device for the study of steady-state enzyme kinetics is described. The apparatus employs a peristaltic pump and has a fluorimeter as the monitoring device. An automatic data storage and handling system is used. Theoretical considerations are made on the determination of the apparent initial velocity and flow-induced distortion of the initial velocity versus initial substrate concentration profile. Several analytical expressions useful in calculating the magnitudes of errors and for designing experiments are given. The distortion of output evident in this and in a previously described apparatus of a similar kind is removed by use of Fourier deconvolution using the response of the instrument to a δ function input. Some data obtained with rabbit muscle glyceraldehyde-3-phosphate dehydrogenase, which displays nonhyperbolic kinetics, are discussed and used as an illustration of the application of the method.  相似文献   

16.
Body dimensions of organisms can have a profound impact on their functional and structural properties. We examined the morphological proportions of the feeding apparatus of 105 chameleon specimens representing 23 species in seven genera, spanning a 1,000‐fold range in body mass to test whether the feeding apparatus conforms to the null hypotheses of geometric similarity that is based on the prevalence of geometric similarity in other ectothermic vertebrates. We used a phylogenetically corrected regression analysis based on a composite phylogenetic hypothesis to determine the interspecific scaling patterns of the feeding apparatus. We also determined the intraspecific (ontogenetic) scaling patterns for the feeding apparatus in three species. We found that both intraspecifically and interspecifically, the musculoskeletal components of the feeding apparatus scale isometrically among themselves, independent of body length. The feeding apparatus is thus of conserved proportions regardless of overall body length. In contrast, we found that the tongue apparatus as a whole and its musculoskeletal components scale with negative allometry with respect to snout‐vent length—smaller individuals have a proportionately larger feeding apparatus than larger individuals, both within and among species. Finally, the tongue apparatus as a whole scales with negative allometry with respect to body mass through ontogeny, but with isometry interspecifically. We suggest that the observed allometry may be maintained by natural selection because an enlarged feeding apparatus at small body size may maximize projection distance and the size of prey that smaller animals with higher mass‐specific metabolic rates can capture. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Two types of multivariate analysis of cranial metrical data have been tried for the whole Primate Order (Hominoidea excluded). The Prosimian heterogeneous group has been analysed in greater detail. Principal component analysis using the Chi-square metric for 16 parameters resulted in good differentiation of subgroups, often down to generic level. Discriminant analysis pointed out the major importance of the opposition cranium-masticatory apparatus, in the whole order and at all taxonomial levels, together with the high weight of basal width discriminating power for comparison of Primate skulls shape. Thus, it seems legitimate to use such methods in our future research for locating fossil specimens with a limited number of measurements.  相似文献   

18.
Analysis of the contractile properties of chemically skinned, or permeabilized, skeletal muscle fibers offers a powerful means by which to assess muscle function at the level of the single muscle cell. Single muscle fiber studies are useful in both basic science and clinical studies. For basic studies, single muscle fiber contractility measurements allow investigation of fundamental mechanisms of force production, and analysis of muscle function in the context of genetic manipulations. Clinically, single muscle fiber studies provide useful insight into the impact of injury and disease on muscle function, and may be used to guide the understanding of muscular pathologies. In this video article we outline the steps required to prepare and isolate an individual skeletal muscle fiber segment, attach it to force-measuring apparatus, activate it to produce maximum isometric force, and estimate its cross-sectional area for the purpose of normalizing the force produced.  相似文献   

19.
Intermediate filaments (IFs) play a key role in the integration of structure and function of striated muscle, primarily by mediating mechanochemical links between the contractile apparatus and mitochondria, myonuclei, the sarcolemma and potentially the vesicle trafficking apparatus. Linkage of all these membranous structures to the contractile apparatus, mainly through the Z-disks, supports the integration and coordination of growth and energy demands of the working myocyte, not only with force transmission, but also with de novo gene expression, energy production and efficient protein and lipid trafficking and targeting. Desmin, the most abundant and intensively studied muscle intermediate filament protein, is linked to proper costamere organization, myoblast and stem cell fusion and differentiation, nuclear shape and positioning, as well as mitochondrial shape, structure, positioning and function. Similar links have been established for lysosomes and lysosome-related organelles, consistent with the presence of widespread links between IFs and membranous structures and the regulation of their fusion, morphology and stabilization necessary for cell survival.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号