首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以ND4L和ND4基因为标记探讨黑腹果蝇种组的系统发育关系   总被引:2,自引:0,他引:2  
多年来的形态学、染色体组学以及DNA序列几个方面的研究均没有很好地阐明黑腹果蝇种组内的系统发育关系。本实验测定了33个样品的ND4和31个样品的ND4L基因序列,以D.obscuroides为外群,用最大简约法和Bayesian法分别构建进化树。结果表明两种方法构建的拓扑结构一致,而且大部分支系的支持率较高。整个黑腹果蝇种组分成三大谱系:1)montium种亚组;2)ananssae种亚组;3)Oriental种亚组(melanogaster、ficsphila、eugracilis、elegans、suzukii、takahashii)。montium是最早分化的种亚组。在第三谱系中,melanogaster分化得最早;然后依次是ficsphila,eugracilis,elegans;suzukii与takahashii为姐妹种亚组,最后分化。  相似文献   

2.
We infer the phylogeny of fishes in the New World Cynoscion group (Cynoscion, Isopisthus, Macrodon, Atractoscion, Plagioscion) using 1603 bp of DNA sequence data from three mitochondrial genes. With the exception of Plagioscion, whose position was ambiguous, the Cynoscion group is monophyletic. However, several genera examined are not monophyletic. Atlantic and Pacific species of Cynoscion are interspersed in the tree and geminate species pairs are identified. Intergeneric relationships in the group are clarified. Our analysis is the first comprehensive phylogeny for the Cynoscion group based on molecular data and provides a baseline for future comparative studies of this important group.  相似文献   

3.
Nucleotide sequences of the spacer region of the histone gene H2A-H2B from 36 species of Drosophila melanogaster species group were determined. The phylogenetic trees were reconstructed with maximum parsimony, maximum likelihood, and Bayesian methods by using Drosophila pseudoobscura as the out group. Our results show that the melanogaster species group clustered in three main lineages: (1). montium subgroup; (2). ananassae subgroup; and (3). the seven oriental subgroups, among which the montium subgroup diverged first. In the third main lineage, suzukii and takahashii subgroups formed a clade, while eugracilis, melanogaster, elegans, ficusphila, and rhopaloa subgroups formed another clade. The bootstrap values at subgroup levels are high. The phylogenetic relationships of these species subgroups derived from our data are very different from those based on some other DNA data and morphology data.  相似文献   

4.
We investigated the phylogenetic relationships among 20 species of Oriental torrent frogs in the genus Amolops and its allies from China and Southeast Asia based on 1346-bp sequences of the mitochondrial 12S and 16S rRNA genes. Oriental species of the tribe Ranini form a monophyletic group containing 11 clades (Rana temporaria + Pseudoamolops, R. chalconota, four clades of Amolops, Meristogenys, three clades of Huia species, and Staurois) for which the phylogenetic relationships are unresolved. The genus Amolops consists of southern Chinese, southwestern Chinese, Thai, and Vietnamese-Malaysian lineages, but their relationships are also unresolved. The separation of southern and southwestern lineages within China conforms to previous morphological and karyological results. Species of Huia do not form a monophyletic group, whereas those of Meristogenys are monophyletic. Because P. sauteri is a sister species of R. temporaria, distinct generic status of Pseudoamolops is unwarranted.  相似文献   

5.
Drosophila melanogaster and its close relatives are used extensively in comparative biology. Despite the importance of phylogenetic information for such studies, relationships between some melanogaster species group members are unclear due to conflicting phylogenetic signals at different loci. In this study, we use twelve nuclear loci (eleven coding and one non-coding) to assess the degree of phylogenetic incongruence in this model system. We focus on two nodes: (1) the node joining the Drosophila erecta-Drosophila orena, Drosophila melanogaster-Drosophila simulans, and Drosophila yakuba-Drosophila teissieri lineages, and (2) the node joining the lineages leading to the melanogaster, takahashii, and eugracilis subgroups. We find limited evidence for incongruence at the first node; our data, as well as those of several previous studies, strongly support monophyly of a clade consisting of D. erecta-D. orena and D. yakuba-D. teissieri. By contrast, using likelihood based tests of congruence, we find robust evidence for topological incongruence at the second node. Different loci support different relationships among the melanogaster, takahashii, and eugracilis subgroups, and the observed incongruence is not easily attributable to homoplasy, non-equilibrium base composition, or positive selection on a subset of loci. We argue that lineage sorting in the common ancestor of these three subgroups is the most plausible explanation for our observations. Such lineage sorting may lead to biased estimation of tree topology and evolutionary rates, and may confound inferences of positive selection.  相似文献   

6.
Voles of the genus Microtus represent one of the most speciose mammalian genera in the Holarctic. We established a molecular phylogeny for Microtus to resolve contentious issues of systematic relationships and evolutionary history in this genus. A total of 81 specimens representing ten Microtus species endemic to Europe as well as eight Eurasian, six Asian and one Holarctic species were sequenced for the entire cytochrome b gene (1140 bp). A further 25 sequences were retrieved from GenBank, providing data on an additional 23, mainly Nearctic, Microtus species. Phylogenetic analysis of these 48 species generated four well-supported monophyletic lineages. The genus Chionomys, snow voles, formed a distinct and well-supported lineage separate from the genus Microtus. The subgenus Microtus formed the strongest supported lineage with two sublineages displaying a close relationship between the arvalis species group (common voles) and the socialis species group (social voles). Monophyly of the Palearctic pitymyid voles, subgenus Terricola, was supported, and this subgenus was also subdivided into two monophyletic species groups. Together, these groupings clarify long-standing taxonomic uncertainties in Microtus. In addition, the "Asian" and the Nearctic lineages reported previously were identified although the latter group was not supported. However, relationships among the main Microtus branches were not resolved, suggesting a rapid and potentially simultaneous radiation of a widespread ancestor early in the history of the genus. This and subsequent radiations discernible in the cytochrome b phylogeny, show the considerable potential of Microtus for analysis of historical and ecological determinants of speciation in small mammals. It is evident that speciation is an ongoing process in the genus and that the molecular data provides a vital insight into current species limits as well as cladogenic events of the past.  相似文献   

7.
Many outstanding questions about dinoflagellate evolution can potentially be resolved by establishing a robust phylogeny. To do this, we generated a data set of mitochondrial cytochrome b (cob) and mitochondrial cytochrome c oxidase 1 (cox1) from a broad range of dinoflagellates. Maximum likelihood, maximum parsimony, and Bayesian methods were used to infer phylogenies from these genes separately and as a concatenated alignment with and without small subunit (SSU) rDNA sequences. These trees were largely congruent in topology with previously published phylogenies but revealed several unexpected results. Prorocentrum benthic and planktonic species previously placed in different clusters formed a monophyletic group in all trees, suggesting that the Prorocentrales is a monophyletic group. More strikingly, our analyses placed Amphidinium and Heterocapsa as early splits among dinoflagellates that diverged after the emergence of O. marina. This affiliation received strong bootstrap support, but these lineages exhibited relatively long branches. The approximately unbiased (AU-) test was used to assess this result using a three-gene (cob + cox1 + SSU rDNA) DNA data set and the inferred tree. This analysis showed that forcing Amphidinium or Heterocapsa to relatively more derived positions in the phylogeny resulted in significantly lower likelihood scores, consistent with the phylogenies. The position of these lineages needs to be further verified. Reviewing Editor: Dr. Martin Kreitman  相似文献   

8.
The Australo-Papuan family Petroicidae (Aves: Passeriformes) has been the focus of much systematic debate about its relationships with other passerine families, as well as relationships within the family. Mostly conservative morphology within the group limits the effectiveness of traditional taxonomic analyses and has contributed to ongoing systematic debate. To assess relationships within the family, we sampled 47 individuals from 26 species, representing the majority of genera and species, for four loci: 528 base pairs (bp) of C-myc, 501 bp of BA20454 and 336 bp of BA23989 from nuclear DNA and 1005 bp of the mitochondrial ND2 gene. There was consensus between individual loci and overall support for major lineages was strong. Partitioned Bayesian analyses of all four loci produced a fully resolved and very well-supported phylogeny that addresses many of the previous systematic debates in this group. The Eopsaltriinae as construed is monophyletic with the exception of Eopsaltria flaviventris, which is nested within Microeca as an unremarkable member of that genus. This relationship is corroborated by morphology and egg color and pattern. Petroicinae as currently construed was not monophyletic and comprised two lineages that are paraphyletic with respect to each other. The third subfamily, Drymodinae, remains incertae sedis. The mangrove robin, Peneonanthe pulverulenta, of tropical Australia and New Guinea is nested within a clade that also contained the sampled species of Peneothello and Melanodryas, a novel relationship. Preliminary biogeographic and divergence time estimates from these results are discussed and a new subfamily arrangement proposed.  相似文献   

9.
10.
Complete 18S ribosomal RNA sequence data from representatives of all extant pteridophyte lineages together with RNA sequences from different seed plants were used to infer a molecular phylogeny of vascular plants that included all major land plant lineages. The molecular data indicate that lycopsids are monophyletic and are the earliest diverging group within the vascular land plants, whereasPsilotum nudum is more closely related to the seed plants than to other pteridophyte lineages. The phylogenetic trees based on maximum likelihood, parsimony and distance analyses show substantial agreement with the evolutionary relationships of land plants as interpreted from the fossil record.  相似文献   

11.
Rohde C  Garcia AC  Valiati VH  Valente VL 《Genetica》2006,126(1-2):77-88
The phylogenetic relationships among nine entities of Drosophila belonging to the D. willistoni subgroup were investigated by establishing the homologous chromosomal segments of IIR chromosome, Muller’s element B (equivalent to chromosome 2L of D. melanogaster). The sibling species of the D. willistoni group investigated include D. willistoni, D. tropicalis tropicalis, D. tropicalis cubana, D. equinoxialis, D. insularis and four semispecies of the D. paulistorum complex. The phylogenetic relationships were based on the existence of segments in different triads of species, which could only be produced by overlapping inversions. Polytene banding similarity maps and break points of inversions between species are presented. The implications of the chromosomal data for the phylogeny of the species and comparisons with molecular data are discussed. The aim of this study is to produce phylogenetic trees depicting accurately the sequence of natural events that have occurred in the evolution of these sibling species. Claudia Rohde, Ana Cristina Lauer Garcia: These authors contributed equally to this work  相似文献   

12.
Phylogenetic relationships were determined for 76 partial P-element sequences from 14 species of the melanogaster species group within the Drosophila subgenus Sophophora. These results are examined in the context of the phylogeny of the species from which the sequences were isolated. Sequences from the P-element family fall into distinct subfamilies, or clades, which are often characteristic for particular species subgroups. When examined locally among closely related species, the evolution of P elements is characterized by vertical transmission, whereby the P-element phylogeny traces the species phylogeny. On a broader scale, however, the P-element phylogeny is not congruent with the species phylogeny. One feature of P-element evolution in the melanogaster group is the presence of more than one P-element subfamily, differing by as much as 36%, in the genomes of some species. Thus, P elements from several individual species are not monophyletic, and a likely explanation for the incongruence between P-element and species phylogenies is provided by the comparison of paralogous sequences. In certain instances, horizontal transfer seems to be a valid alternative explanation for lack of congruence between species and P-element phylogenies. The canonical P-element subfamily, which represents the active, autonomous transposable element, is restricted to D. melanogaster. Thus, its origin clearly lies outside of the melanogaster species group, consistent with the earlier conclusion of recent horizontal transfer.   相似文献   

13.
The Hawaiian Drosophilidae contains approximately 1000 species, placed in species groups and subgroups based largely on secondary sexual modifications to wings, forelegs and mouthparts. Members of the spoon tarsus subgroup possess a cup-shaped structure on the foretarsi of males. Eight of the twelve species in this subgroup are found only on the Big Island of Hawaii, suggesting that they have diverged within the past 600,000 years. This rapid diversification has made determining the relationships within this group difficult to infer. We use 13 genes, including nine rapidly evolving nuclear loci, to estimate relationships within the spoon tarsus species, as well as to test the monophyly of this subgroup. A variety of analytical approaches are used, including individual and concatenated analyses, Bayesian estimation of species trees and Bayesian untangling of concordance knots. We find widespread agreement between phylogenetic estimates derived from different methods, although some incongruence is present. Notably, our analyses suggest that the spoon tarsus subgroup, as currently defined, is not monophyletic.  相似文献   

14.
The genusPinus includes over 90 species with approximately 24 species native to Asia. We have analyzed the chloroplast (cp) DNA variation of 18Pinus species, including 15 Asian, two Eurasian, and one European species using seven restriction enzymes and ten non-overlapping probes and inferred their phylogenetic relationships. Results of phenetic and cladistic approaches to phylogeny reconstruction were largely in agreement, suggesting two major lineages within the genus and confirmed the ancient character of haploxylon and diploxylon subgenera. Species from sectionParrya appear to have diverged earliest from the hypothesized phylogenetic centre for the haploxylon pines, withP. bungeana andP. gerardiana forming two basal, monotypic lineages. The range of estimated pairwise nucleotide substitutions per site ( ) was higher among haploxylon pines than among diploxylon species. CpDNA divergence was found to be low within the sectionSylvestres, relative to the divergence among haploxylon species, suggesting that the radiation of this group of taxa from its common ancestor occurred after the diversification of other groups. The low cpDNA divergence in this subsection corroborated earlier evidence for its phylogenetic cohesiveness and existence as a monophyletic group.  相似文献   

15.
Gulls (Aves: Laridae) constitute a recent and cosmopolite family of well-studied seabirds for which a robust phylogeny is needed to perform comparative and biogeographical analyses. The present study, the first molecular phylogeny of all Larids species (N=53), is based on a combined segment of mtDNA (partial cytochrome b and control region). We discuss our phylogenetic tree in the light of previous suggestions based on morphological, behavioral, and plumage characters. Although the phylogeny is not fully resolved, it highlights several robust species groups and confirms or identifies for the first time some sister relationships that had never been suggested before. The Dolphin Gull (Leucophaeus scoresbii) for instance, is identified as the sister species of the Grey Gull (Larus modestus) and the Ross's Gull (Rhodostethia rosea) forms a monophyletic group with the Little Gull (Larus minutus). Our results clearly demonstrate that the genus Larus as currently defined is not monophyletic, since current taxonomy of gulls is based on the use of convergent phenotypic characters. We propose a new systematic arrangement that better reflects their evolutionary history.  相似文献   

16.
以从小麦抗白粉病相关基因差异表达分析中获得的EST-3 (Genbank序列号EX567360)为标签,采用电子克隆的方法对其进行延伸,并对电子克隆结果进行半定量RT-PCR验证,最后对白粉菌不同侵染时间进行了表达分析.经RT-PCR扩增,EST-3表达的带型变化趋势与其在抑制性消减杂交SSH-cDNA的差异显示情况一致,且RT-PCR获得的序列与电子克隆的序列一致性达98%.生物信息学分析表明,该序列是由875 bp核苷酸组成的,具有完整的开放阅读框架,编码蛋白为229个氨基酸,GenBank序列号JK841279,含有一个N端和C端谷胱甘肽硫转移酶结构域,该序列与小麦谷胱甘肽硫转移酶基因(GST)一致性较高,达97%.表达分析结果显示,白粉菌侵染24 h表达受到抑制,48 h开始表达,侵染72 h表达最强,96 h又开始下降,表明GST基因属于白粉菌诱导型相关基因,参与小麦对白粉病的应答反应.  相似文献   

17.
The complete coding region of the yellow (y) gene was sequenced in different Drosophila species. In the species of the melanogaster subgroup (D. melanogaster, D. simulans, D. mauritiana, D. yakuba, and D. erecta), this gene is located at the tip of the X chromosome in a region with a strong reduction in recombination rate. In contrast, in D. ananassae (included in the ananassae subgroup of the melanogaster group) and in the obscura group species (D. subobscura, D. madeirensis, D. guanche, and D. pseudoobscura), the y gene is located in regions with normal recombination rates. As predicted by the hitchhiking and background selection models, this change in the recombinational environment affected synonymous divergence in the y-gene-coding region. Estimates of the number of synonymous substitutions per site were much lower between the obscura group species and D. ananassae than between the species of the obscura group and the melanogaster subgroup. In fact, a highly significant increase in the rate of synonymous substitution was detected in all lineages leading to the species of the melanogaster subgroup relative to the D. ananassae lineage. This increase can be explained by a higher fixation rate of mutations from preferred to unpreferred codons (slightly deleterious mutations). The lower codon bias detected in all species of the melanogaster subgroup relative to D. ananassae (or to the obscura group species) would be consistent with this proposal. Therefore, at least in Drosophila, changes in the recombination rate in different lineages might cause deviations of the molecular-clock hypothesis and contribute to the overdispersion of the rate of synonymous substitution. In contrast, the change in the recombinational environment of the y gene has no detectable effect on the rate of amino acid replacement in the Yellow protein.  相似文献   

18.
Polystichum, one of the largest genera of ferns, occurs worldwide with the greatest diversity in southwest China and adjacent regions. Although there have been studies of Chinese Polystichum on its traditional classification, geographic distributions, and even a few on its molecular systematics, its relationships to other species outside China remain little known. Here, we investigated the phylogeny and biogeography of the Polystichum species from China and Australasia. The evolutionary relationships among 42 Polystichum species found in China (29 taxa) and Australasia (13 taxa) were inferred from phylogenetic analyses of two chloroplast DNA sequence data sets: rps4-trnS and trnL-F intergenic spacers. The divergence time between Chinese and Australasian Polystichum was estimated. The results indicated that the Australasian species comprise a monophyletic group that is nested within the Chinese diversity, and that the New Zealand species are likewise a monophyletic group nested within the Australasian species. The divergence time estimates suggested that Chinese Polystichum migrated into Australasia from around 40 Ma ago, and from there to New Zealand from about 14 Ma. The diversification of the New Zealand Polystichum species began about 10 Ma. These results indicated that Polystichum probably originated in eastern Asia and migrated into Australasia: first into Australia and then into New Zealand.  相似文献   

19.
Allozyme variation at 42 presumptive gene lociis presented for members of the C. formosa species group. This group iscorroborated as a monophyletic assemblage whosecommon ancestor occupied pluvial Lake Palomasof the Guzman Basin. With increasingaridity during the Pleistocene this basin andassociated populations of this commonancestor were fragmented into several lineagesthat diverged independently of oneanother. The pattern of relationships andlevels of anagenetic change observed inindependent lineages for this clade are notconsistent with expectations of the mostcommon modes of speciation, Model I large-scalevicariance or Model II peripheralisolation. Rather, divergence in these fishlineages is consistent with the rarely observedModel III allopatric speciation. Consistentwith predictions of this model, thephylogenetic pattern recovered revealspolychotomous relationships (a hard polytomy)and varied rates of anagenetic change acrossexamined lineages.  相似文献   

20.
We conducted a phylogenetic survey of the endogenous retrovirus Gypsy in the eight species of the Drosophila melanogaster subgroup. A 362-bp fragment from the integrase gene (int) was amplified, cloned, and sequenced. Phylogenetic relationships of the elements isolated from independent clones were compared with the host phylogeny. Our results indicate that two main lineages of Gypsy exist in the melanogaster subgroup and that vertical and horizontal transmission have played a crucial role in the evolution of this insect endogenous retrovirus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号