共查询到20条相似文献,搜索用时 140 毫秒
1.
阿尔茨海默病(Alzheimer’s disease, AD)是一种具有复杂病理学特征的老年失智症.淀粉样蛋白级联假说与寡聚体毒性假说在解释AD病理机制方面占据主导地位. AD患者数量庞大,但目前尚未发现治疗AD的有效疗法,多数药物在Ⅲ期临床试验的结果不够理想.本文对影响β-淀粉样肽(β-amyloid, Aβ)聚集的国内外相关研究进展进行总结,并阐述小分子化合物加速Aβ纤维形成过程的可能机理.这一过程与传统疗法相悖却在动物模型中取得了相当好的疗效,意味着促进Aβ聚集可能成为AD治疗的新策略,为新药开发指明了新方向. 相似文献
2.
3.
4.
淀粉样β肽(Aβ)在阿尔茨海默病(AD)病理过程中发挥重要致病作用。部分非类固醇抗炎药(NSAID)不依赖于抑制环氧合酶(COX)特异性降低Aβ42水平,并不影响r-分泌酶的重要生理功能,可作为新一代抗淀粉样蛋白药物。 相似文献
5.
目的:建立β淀粉样肽(Aβ1-40)诱导激活小胶质细胞的上清致海马神经元损伤的细胞模型,并初步研究神经元损伤的机制。方法:用不同浓度的可溶性Aβ1-40诱导激活小胶质细胞,光镜下观察不同时间点的细胞形态,ELISA检测其分泌的肿瘤坏死因子仪;用激活后的小胶质细胞条件培养基刺激海马神经元,光镜下观察细胞形态,Western blot检测刺激后海马神经元内诱导型一氧化氮合酶(iNOS)和硝基酪氨酸(NT)的表达水平,ELISA检测海马神经元内胱冬蛋白酶-3(caspase-3)活性来评价神经元的损伤程度。结果:终浓度为10μmol/L的Aβ1-40与小胶质细胞孵育24h后,取上清液加到培养的海马神经元,孵育24-72h,海马神经元较对照组形态有明显变化;经Western blot检测,神经元内iNOS、NT表达明显增加;ELISA检测神经元内caspase-3活性明显增高。结论:小胶质细胞被Aβ1-40激活后,其释放物有明显的致神经元损伤效应,表明建立了神经元损伤模型。 相似文献
6.
神经介素S(neuromedin S,NMS)是一种由36个氨基酸组成的新的神经肽。Takanori Ida等在2005年Endocrinology上报道在大鼠脑中发现NMS,主要在视交叉神经核上表达,是G蛋白偶联受体FM-3/GPR66和FM-4/TGR—l的配体,这些受体分别是神经介素U(neuromedin U,NMU)1型和2型。他们研究发现NMS是一种新的食欲调节肽。给大鼠侧脑室内注射NMS后,NMS可以剂量依赖性地降低大鼠夜间12小时的食物和水的摄入量.其摄含抑制作用较相同剂量的NMU的抑制作用强,持续时间久, 相似文献
7.
8.
早老素与阿尔茨海默病 总被引:1,自引:1,他引:1
早老素(presenilin,PS)与阿尔茨海默病(alzheimer’s disease,AD)密切相关,其基因突变是遗传性家族型AD的主要病因。PS可能作为γ分泌酶和(或)通过影响蛋白质的膜转运参与β淀粉样前体蛋白质(β-amyloid precur-sor protein,APP)代谢生成Aβ42的过程,而PS多蛋白质复合物的形成可能是其中的关键步骤,突变的PS则通过“获得功能”的方式引起Aβ42的产生和沉积增加。PS还可能通过影响未折叠蛋白质反应等多种途径来影响神经细胞对凋亡的敏感性。本综述旨在探讨PS在AD中的上述病理作用。 相似文献
9.
胰高血糖素样肽1:阿尔茨海默病治疗新策略 总被引:3,自引:0,他引:3
2型糖尿病(type2diabetes mellitus,T2DM)与阿尔茨海默病(Alzheimer’s disease,AD)的病理生理过程具有密切的相关性。人们正在逐步深入研究治疗T2DM的最新药物——胰高血糖素样肽1(glucagon-likepe ptide1,GLP-1)的神经保护作用,并大胆地提出了利用GLP-1治疗AD的设想。本文对T2DM与AD的发病相关性、GLP-1的合成与分泌、GLP-1受体的中枢分布及其生理效应,特别是GLP-1与AD治疗策略相关的研究进展作一综述。 相似文献
10.
11.
Humanin (HN) has been proved to be an extensive neuroprotective peptide against AD-related and unrelated insults, but little is know about the effect of HN in inflammation response. Current studies indicated the receptors of HN have a close relationship with immune system, which led us to hypothesize HN might have a role in inflammatory response. In this study, we used lipopolysaccharide (LPS) to induce astrocyte inflammation response. This model in vitro allowed us to study the effect of HN on the pure response of astrocyte without the exogenous influence between cells in vivo. Our results showed that 1.0 μg/ml LPS induced a significant activation of astrocyte, shown as the marked increase in the glial fibrillary acidic protein (GFAP) expression, the cell viability and the number of 5-bromo-2′-deoxyuridine (BrdU)-positive living cells. Pretreatment with HN (5, 10, 20 μM) led to a significant inhibition in astrocyte overactivation in a concentration dependent manner. We also found pretreatment with HN decreased the level of proinflammatory cytokines, interleukin (IL)-6, IL-1β and tumor necrosis factor α (TNFα) induced by LPS. Furthermore, we noticed HN couldn’t completely reverse the above inflammatory injury. Our findings imply that HN partly antagonizes inflammation injury induced by LPS and the protective effect of HN on astrocyte is concentration-dependent. 相似文献
12.
David G. Zacharias Sung Gyun Kim Alfonso Eirin Massat Adi R. Bachar Yun K. Oh Joerg Herrmann Martin Rodriguez-Porcel Pinchas Cohen Lilach O. Lerman Amir Lerman 《PloS one》2012,7(2)
Objective
The mechanism of atherosclerotic plaque progression leading to instability, rupture, and ischemic manifestation involves oxidative stress and apoptosis. Humanin (HN) is a newly emerging endogenously expressed cytoprotective peptide. Our goal was to determine the presence and localization of HN in carotid atherosclerotic plaques.Methods and Results
Plaque specimens from 34 patients undergoing carotid endarterectomy were classified according to symptomatic history. Immunostaining combined with digital microscopy revealed greater expression of HN in the unstable plaques of symptomatic compared to asymptomatic patients (29.42±2.05 vs. 14.14±2.13% of plaque area, p<0.0001). These data were further confirmed by immunoblot (density of HN/β-actin standard symptomatic vs. asymptomatic 1.32±0.14 vs. 0.79±0.11, p<0.01). TUNEL staining revealed a higher proportion of apoptotic nuclei in the plaques of symptomatic patients compared to asymptomatic (68.25±3.61 vs. 33.46±4.46% of nuclei, p<0.01). Double immunofluorescence labeling revealed co-localization of HN with macrophages (both M1 and M2 polarization), smooth muscle cells, fibroblasts, and dendritic cells as well as with inflammatory markers MMP2 and MMP9.Conclusions
The study demonstrates a higher expression of HN in unstable carotid plaques that is localized to multiple cell types within the plaque. These data support the involvement of HN in atherosclerosis, possibly as an endogenous response to the inflammatory and apoptotic processes within the atheromatous plaque. 相似文献13.
14.
Sindy Escobar-Alvarez Yehuda Goldgur Ouathek Ouerfelli David A. Scheinberg 《Journal of molecular biology》2009,387(5):1211-4532
Peptide deformylase proteins (PDFs) participate in the N-terminal methionine excision pathway of newly synthesized peptides. We show that the human PDF (HsPDF) can deformylate its putative substrates derived from mitochondrial DNA-encoded proteins. The first structural model of a mammalian PDF (1.7 Å), HsPDF, shows a dimer with conserved topology of the catalytic residues and fold as non-mammalian PDFs. The HsPDF C-terminus topology and the presence of a helical loop (H2 and H3), however, shape a characteristic active site entrance. The structure of HsPDF bound to the peptidomimetic inhibitor actinonin (1.7 Å) identified the substrate-binding site. A defined S1′ pocket, but no S2′ or S3′ substrate-binding pockets, exists. A conservation of PDF-actinonin interaction across PDFs was observed. Despite the lack of true S2′ and S3′ binding pockets, confirmed through peptide binding modeling, enzyme kinetics suggest a combined contribution from P2′and P3′ positions of a formylated peptide substrate to turnover. 相似文献
15.
Huo Jiaying Luo Xuelian Huang Mingquan Wu Jihong Zhang Jinglin Liu Xingxun Li Hehe Sun Xiaotao 《International journal of peptide research and therapeutics》2020,26(3):1199-1210
International Journal of Peptide Research and Therapeutics - A novel peptide, Cys-Trp-Cys (CWC), which firstly isolated from Guojing Baijiu was qualitative and quantitative studied by... 相似文献
16.
17.
18.
Radhika H. Muzumdar Derek M. Huffman Gil Atzmon Christoph Buettner Laura J. Cobb Sigal Fishman Temuri Budagov Lingguang Cui Francine H. Einstein Aruna Poduval David Hwang Nir Barzilai Pinchas Cohen 《PloS one》2009,4(7)
Background
Decline in insulin action is a metabolic feature of aging and is involved in the development of age-related diseases including Type 2 Diabetes Mellitus (T2DM) and Alzheimer''s disease (AD). A novel mitochondria-associated peptide, Humanin (HN), has a neuroprotective role against AD-related neurotoxicity. Considering the association between insulin resistance and AD, we investigated if HN influences insulin sensitivity.Methods and Findings
Using state of the art clamp technology, we examined the role of central and peripheral HN on insulin action. Continuous infusion of HN intra-cerebro-ventricularly significantly improved overall insulin sensitivity. The central effects of HN on insulin action were associated with activation of hypothalamic STAT-3 signaling; effects that were negated by co-inhibition of hypothalamic STAT-3. Peripheral intravenous infusions of novel and potent HN derivatives reproduced the insulin-sensitizing effects of central HN. Inhibition of hypothalamic STAT-3 completely negated the effects of IV HN analog on liver, suggesting that the hepatic actions of HN are centrally mediated. This is consistent with the lack of a direct effect of HN on primary hepatocytes. Furthermore, single treatment with a highly-potent HN analog significantly lowered blood glucose in Zucker diabetic fatty rats. Based upon the link of HN with two age-related diseases, we examined if there were age associated changes in HN levels. Indeed, the amount of detectable HN in hypothalamus, skeletal muscle, and cortex was decreased with age in rodents, and circulating levels of HN were decreased with age in humans and mice.Conclusions
We conclude that the decline in HN with age could play a role in the pathogenesis of age-related diseases including AD and T2DM. HN represents a novel link between T2DM and neurodegeneration and along with its analogues offers a potential therapeutic tool to improve insulin action and treat T2DM. 相似文献19.
Mariana Figuera-Losada Marigo Stathis Joelle M. Dorskind Ajit G. Thomas Veera Venkata Ratnam Bandaru Seung-Wan Yoo Nicholas J. Westwood Graeme W. Rogers Justin C. McArthur Norman J. Haughey Barbara S. Slusher Camilo Rojas 《PloS one》2015,10(5)
Ceramide is a bioactive lipid that plays an important role in stress responses leading to apoptosis, cell growth arrest and differentiation. Ceramide production is due in part to sphingomyelin hydrolysis by sphingomyelinases. In brain, neutral sphingomyelinase 2 (nSMase2) is expressed in neurons and increases in its activity and expression have been associated with pro-inflammatory conditions observed in Alzheimer’s disease, multiple sclerosis and human immunodeficiency virus (HIV-1) patients. Increased nSMase2 activity translates into higher ceramide levels and neuronal cell death, which can be prevented by chemical or genetic inhibition of nSMase2 activity or expression. However, to date, there are no soluble, specific and potent small molecule inhibitor tool compounds for in vivo studies or as a starting point for medicinal chemistry optimization. Moreover, the majority of the known inhibitors were identified using bacterial, bovine or rat nSMase2. In an attempt to identify new inhibitor scaffolds, two activity assays were optimized as screening platform using the recombinant human enzyme. First, active hits were identified using a fluorescence-based high throughput compatible assay. Then, hits were confirmed using a 14C sphingomyelin-based direct activity assay. Pharmacologically active compounds and approved drugs were screened using this strategy which led to the identification of cambinol as a novel uncompetitive nSMase2 inhibitor (Ki = 7 μM). The inhibitory activity of cambinol for nSMase2 was approximately 10-fold more potent than for its previously known target, silence information regulator 1 and 2 (SIRT1/2). Cambinol decreased tumor necrosis factor-α or interleukin-1 β-induced increases of ceramide and cell death in primary neurons. A preliminary study of cambinol structure and activity allowed the identification of the main structural features required for nSMase2 inhibition. Cambinol and its analogs may be useful as nSMase2 inhibitor tool compounds to prevent ceramide-dependent neurodegeneration. 相似文献