首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang B  Kuspa A 《Eukaryotic cell》2002,1(1):126-136
Dictyostelium amoebae accomplish a starvation-induced developmental process by aggregating into a mound and forming a single fruiting body with terminally differentiated spores and stalk cells. culB was identified as the gene disrupted in a developmental mutant with an aberrant prestalk cell differentiation phenotype. The culB gene product appears to be a homolog of the cullin family of proteins that are known to be involved in ubiquitin-mediated protein degradation. The culB mutants form supernumerary prestalk tips atop each developing mound that result in the formation of multiple small fruiting bodies. The prestalk-specific gene ecmA is expressed precociously in culB mutants, suggesting that prestalk cell differentiation occurs earlier than normal. In addition, when culB mutant cells are mixed with wild-type cells, they display a cell-autonomous propensity to form stalk cells. Thus, CulB appears to ensure that the proper number of prestalk cells differentiate at the appropriate time in development. Activation of cyclic AMP-dependent protein kinase (PKA) by disruption of the regulatory subunit gene (pkaR) or by overexpression of the catalytic subunit gene (pkaC) enhances the prestalk/stalk cell differentiation phenotype of the culB mutant. For example, culB pkaR cells form stalk cells without obvious multicellular morphogenesis and are more sensitive to the prestalk O (pstO) cell inducer DIF-1. The sensitized condition of PKA activation reveals that CulB may govern prestalk cell differentiation in Dictyostelium, in part by controlling the sensitivity of cells to DIF-1, possibly by regulating the levels of one or more proteins that are rate limiting for prestalk differentiation.  相似文献   

2.
Cyclic AMP and DIF-1 (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)-1-hexanone) together induce stalk cell differentiation in vitro in Dictyostelium discoideum strain V12M2. The induction can proceed in two stages: in the first, cyclic AMP brings cells to a DIF-responsive state; in the second, DIF-1 alone can induce stalk cell formation. We report here that during the DIF-1-dependent stage, cyclic AMP is a potent inhibitor of stalk cell differentiation. Addition of cyclic AMP at this stage to V12M2 cells appreciably delays, but does not prevent, stalk cell formation. In contrast, stalk cell differentiation in the more common strain NC4 is completely suppressed by the continued presence of cyclic AMP. This fact explains earlier failures to induce stalk cells in vitro in NC4. We now consistently obtain efficient stalk cell induction in NC4 by removing cyclic AMP in the DIF-1-dependent stage. Cyclic AMP also inhibits the production of a stalk-specific protein (ST310) in both NC4 and a V12M2 derivative. Adenosine, a known antagonist of cyclic AMP action, does not relieve this inhibition by cyclic AMP and does not itself promote stalk cell formation. Finally, stalk cell differentiation of NC4 cells at low density appears to require factors in addition to cyclic AMP and DIF-1, but their nature is not yet known. The inhibition of stalk cell differentiation by cyclic AMP may be important in establishing the prestalk/prespore pattern during normal development, and in preventing the maturation of prestalk into stalk cells until culmination.  相似文献   

3.
The major inducers of cell differentiation in Dictyostelium appear to be cyclic AMP and DIF-1. Recently we have chemically identified DIF-1, together with the closely related DIF-2 and -3. They represent a new chemical class of potent effector molecules, based on a phenyl alkanone with chloro, hydroxy, and methoxy substitution of the benzene ring. Previous work has shown that DIF-1 can induce prestalk-specific gene expression within 15 min, whereas it suppresses prespore differentiation. Hence, DIF-1 can control the choice of pathway of cell differentiation in Dictyostelium and is therefore likely to be involved in establishing the prestalk/prespore pattern in the aggregate. In support of this, we show that DIF treatment of slugs results in an enlarged prestalk zone. Cyclic AMP seems less likely to have such a pathway-specific role, but later in development it becomes inhibitory to stalk cell differentiation. This inhibition may be important in suppressing terminal stalk cell differentiation until culmination. Spore differentiation can be induced efficiently by high levels of Br-cyclic AMP, a permeant analogue of cyclic AMP. In this, it phenocopies certain spore-maturation mutants, and we propose that during normal development spore differentiation is triggered by an elevation in intracellular cyclic AMP levels. How this elevation in cyclic AMP levels is brought about is not known. The experiments with Br-cyclic AMP also provide the first direct evidence that elevated levels of intracellular cyclic AMP induce differentiation in Dictyostelium.  相似文献   

4.
Previous work has shown that multicellular morphogenesis of submerged Dictyostelium cells is inhibited when they bind to glucosides covalently linked to polyacrylamide gels. The amoebae aggregate normally, but then the aggregates repeatedly disperse and reaggregate, whereas control cells go on to form tight aggregates. We have investigated the role of the stalk cell differentiation inducing factors (DIFs) in this process. In the presence of cyclic AMP, amoebae submerged at high cell density accumulate DIF and differentiate into stalk cells. We find that stalk cell differentiation is inhibited by interaction of the cells with glucoside gels in these conditions, but can be restored by the addition of exogenous DIF-1. Since the responsiveness of cells to DIF-1 is not altered, it appears likely that the effect of the glucoside gel is to block DIF-1 production. Further, the addition of DIF-1 or DIF-2 stimulates the formation of tight aggregates by cells developing on glucoside gels in the absence of cyclic AMP, thus preventing the rounds of aggregation and disaggregation otherwise seen. This suggests a role for DIF in morphogenesis as well as in controlling cell differentiation. We propose a model in which immobilized glucosides activate a specific receptor ("food sensor") which drives the amoebae toward the vegetative state and inhibits DIF accumulation. DIF, on the other hand, induces tight aggregate formation and so locks the amoebae into the developmental program.  相似文献   

5.
6.
Copines are calcium-dependent membrane-binding proteins found in many eukaryotic organisms. We are studying the function of copines using the model organism, Dictyostelium discoideum. When under starvation conditions, Dictyostelium cells aggregate into mounds that become migrating slugs, which can move toward light and heat before culminating into a fruiting body. Previously, we showed that Dictyostelium cells lacking the copine A (cpnA) gene are not able to form fruiting bodies and instead arrest at the slug stage. In this study, we compared the slug behavior of cells lacking the cpnA gene to the slug behavior of wild-type cells. The slugs formed by cpnA- cells were much larger than wild-type slugs and exhibited no phototaxis and negative thermotaxis in the same conditions that wild-type slugs exhibited positive phototaxis and thermotaxis. Mixing as little as 5% wild-type cells with cpnA- cells rescued the phototaxis and thermotaxis defects, suggesting that CpnA plays a specific role in the regulation of the production and/or release of a signaling molecule. Reducing extracellular levels of ammonia also partially rescued the phototaxis and thermotaxis defects of cpnA- slugs, suggesting that CpnA may have a specific role in regulating ammonia signaling. Expressing the lacZ gene under the cpnA promoter in wild-type cells indicated cpnA is preferentially expressed in the prestalk cells found in the anterior part of the slug, which include the cells at the tip of the slug that regulate phototaxis, thermotaxis, and the initiation of culmination into fruiting bodies. Our results suggest that CpnA plays a role in the regulation of the signaling pathways, including ammonia signaling, necessary for sensing and/or orienting toward light and heat in the prestalk cells of the Dictyostelium slug.  相似文献   

7.
8.
Developing Dictyostelium discoideum amoebae form a stalked fruiting body in which individual cells differentiate into either stalk cells or spores. The major known inducer of stalk cell differentiation is the chlorinated polyketide DIF-1 (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one); however a mutant blocked in the terminal step of DIF-1 biosynthesis still produces one of the prestalk cell subtypes – the pstA cells – as well as some mature stalk cells. We therefore searched for additional stalk cell-inducing factors in the medium supporting development of this mutant. These factors were purified by solvent extraction and HPLC and identified by mass spectroscopy and NMR. The mutant lacked detectable DIF-2 and DIF-3 (the pentanone and deschloro homologues of DIF-1) but four major stalk cell-inducing activities were detected, of which three were identified. Two compounds were predicted intermediates in DIF-1 biosynthesis: the desmethyl, and desmethyl-monochloro analogues of DIF-1 (dM-DIF-1 and Cl-THPH, respectively), supporting the previously proposed pathway of DIF-1 biosynthesis. The third compound was a novel factor and was identified as 4-methyl-5-pentylbenzene-1,3-diol (MPBD) with the structure confirmed by chemical synthesis. To investigate the potential roles of these compounds as signal molecules, their effects on morphological stalk and spore differentiation were examined in cell culture. All three induced morphological stalk cell differentiation. We found that synthetic MPBD also stimulated spore cell differentiation. Now that these factors are known to be produced and released during development, their biological roles can be pursued further.  相似文献   

9.
Abstract. The expression of three prestalk cell-specific genes ( ecm A, ecm B and pDd26) was examined during in vitro differentiation in cell monolayers, in an attempt to explain the spatial heterogeneity of the prestalk region of migrating Dictyostelium pseudoplasmodia. Under these conditions ecm A, ecm B and pDd26 mRNAs were expressed sequentially in response to the addition of differentiation inducing factor-1 (DIF)-1, a temporal sequence similar to that observed during normal development. ecm A and ecm B mRNAs reached a maximum level 2–4 h after DIF-1 supplementation and then declined, whereas pDd26 mRNA levels increased more slowly but remained high 24 h after DIF addition. The increases in expression in response to increasing concentrations of either DIF-1 or DIF-2 were identical for the three genes, suggesting that neither alteration in DIF concentration nor species was an important determinant of spatial heterogeneity. Ammonia had the same inhibitory effect on the expression of all three prestalk cell-specific genes and stimulated the expression of the prespore cell-specific gene, D19. These results indicate that ammonia is also not responsible for the spatial heterogeneity of the prestalk cell region. In contrast, cyclic AMP had a differential effect on the expression of the prestalk cell specific genes: ecm A expression was variably stimulated, pDd26 expression was inhibited and ecm B expression was sometimes stimulated and sometimes inhibited. These results are difficult to explain in terms of a gradient of cyclic AMP in the prestalk region. We postulate that temporal responses are more important than spatial responses to cyclic AMP in regulating stalk cell differentiation.  相似文献   

10.
Developing Dictyostelium discoideum amoebae form a stalked fruiting body in which individual cells differentiate into either stalk cells or spores. The major known inducer of stalk cell differentiation is the chlorinated polyketide DIF-1 (1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one); however a mutant blocked in the terminal step of DIF-1 biosynthesis still produces one of the prestalk cell subtypes - the pstA cells - as well as some mature stalk cells. We therefore searched for additional stalk cell-inducing factors in the medium supporting development of this mutant. These factors were purified by solvent extraction and HPLC and identified by mass spectroscopy and NMR. The mutant lacked detectable DIF-2 and DIF-3 (the pentanone and deschloro homologues of DIF-1) but four major stalk cell-inducing activities were detected, of which three were identified. Two compounds were predicted intermediates in DIF-1 biosynthesis: the desmethyl, and desmethyl-monochloro analogues of DIF-1 (dM-DIF-1 and Cl-THPH, respectively), supporting the previously proposed pathway of DIF-1 biosynthesis. The third compound was a novel factor and was identified as 4-methyl-5-pentylbenzene-1,3-diol (MPBD) with the structure confirmed by chemical synthesis. To investigate the potential roles of these compounds as signal molecules, their effects on morphological stalk and spore differentiation were examined in cell culture. All three induced morphological stalk cell differentiation. We found that synthetic MPBD also stimulated spore cell differentiation. Now that these factors are known to be produced and released during development, their biological roles can be pursued further.  相似文献   

11.
12.
The polyketide DIF-1 induces Dictyostelium amoebae to form stalk cells in culture. To better define its role in normal development, we examined the phenotype of a mutant blocking the first step of DIF-1 synthesis, which lacks both DIF-1 and its biosynthetic intermediate, dM-DIF-1 (des-methyl-DIF-1). Slugs of this polyketide synthase mutant (stlB) are long and thin and rapidly break up, leaving an immotile prespore mass. They have ∼ 30% fewer prestalk cells than their wild-type parent and lack a subset of anterior-like cells, which later form the outer basal disc. This structure is missing from the fruiting body, which perhaps in consequence initiates culmination along the substratum. The lower cup is rudimentary at best and the spore mass, lacking support, slips down the stalk. The dmtA methyltransferase mutant, blocked in the last step of DIF-1 synthesis, resembles the stlB mutant but has delayed tip formation and fewer prestalk-O cells. This difference may be due to accumulation of dM-DIF-1 in the dmtA mutant, since dM-DIF-1 inhibits prestalk-O differentiation. Thus, DIF-1 is required for slug migration and specifies the anterior-like cells forming the basal disc and much of the lower cup; significantly the DIF-1 biosynthetic pathway may supply a second signal - dM-DIF-1.  相似文献   

13.
During culmination of Dictyostelium fruiting bodies, prespore and prestalk cells undergo terminal differentiation to form spores and a cellular stalk. A genomic fragment was isolated by random cloning that hybridizes to a 1.4-kb mRNA present during culmination. Cell type separations at culmination showed that the mRNA is present in prespore cells and spores, but not in prestalk or stalk cells. After genomic mapping, an additional 3 kb of DNA surrounding the original 1-kb fragment was cloned. The gene was sequenced and named Dd31 after the size of the predicted protein product in kilodaltons. Accumulation of Dd31 mRNA occurs immediately prior to sporulation. Addition of 20 mM 8-Br-cAMP to cells dissociated from Mexican hat stage culminants induced sporulation and the accumulation of Dd31 mRNA, while 20 mM cAMP did not. Dd31 mRNA does not accumulate in the homeotic mutant stalky in which prespore cells are converted to stalk cells rather than spores. Characterization of Dd31 extends the known temporal dependent sequence of molecular differentiations to sporulation.  相似文献   

14.
A key event in Dictyostelium development is the formation of the Mexican hat. This corresponds to a commitment step in morphogenesis that irreversibly signals progression from the slug stage to the fruiting body. We describe the characterization of the dhkK gene that controls this morphogenetic step. Null mutants of dhkK repeatedly attempt, and fail, to undergo morphogenesis from the slug to the Mexican hat, causing them to exhibit a "slugger" phenotype, which cannot be corrected by co-development with wild-type cells. The dhkK gene encodes a putative receptor histidine kinase whose expression is enriched in prestalk cells in the slug. Uniquely for a histidine kinase, DhkK is located in the nuclear envelope. Entry into culmination requires the DhkK response regulator domain, which appears to directly regulate cyclic AMP signaling.  相似文献   

15.
In Dictyostelium development, prestalk cells first differentiate at scattered positions in the aggregate and then sort out, probably by chemotaxis to cAMP. They may regulate their proportions by selective depletion of the stalk cell inducer, DIF-1. Once sorted, prestalk cells form a DIF-1 sink, which can produce gradients of DIF-1 and its metabolites in the slug. Global movements of cells in the slug may be regulated by cAMP signals, as in aggregation. Terminal differentiation of stalk and spore cells requires activation of cAMP-dependent protein kinase, possibly brought about by ammonia depletion. Finally, a technique for insertional mutagenesis promises the ready isolation of developmental genes.  相似文献   

16.
17.
R Insall  O Nayler    R R Kay 《The EMBO journal》1992,11(8):2849-2854
DIF-1 is a novel chlorinated alkyl phenone which induces differentiation of prestalk cells in Dictyostelium discoideum. It is broken down and inactivated by a cytoplasmic enzyme, DIF-1 3(5)-dechlorinase (hereafter referred to as DIF-1 dechlorinase), which is found only in prestalk cells. We show that DIF-1 dechlorinase levels are induced at least 50-fold when cells are treated with DIF-1. This response is rapid--enzyme activity doubles within 15 min and is fully induced within an hour--and occurs early in development, before other prestalk markers can be induced by DIF-1. Maximum inducibility is seen towards the end of aggregation, when DIF-1 dechlorinase is barely detectable in uninduced cells. The dose-dependence reveals a threshold concentration of DIF-1 (15 nM) below which almost no response is seen. Cyclic AMP, which is the chemoattractant during aggregation and plays a key role in later development, suppresses the induction of DIF-1 dechlorinase by DIF-1. We conclude that induction of DIF-1 dechlorinase is one of the first steps on the developmental pathway which leads to prestalk cell differentiation, and suggest that the resulting negative feedback on DIF-1 levels is an important part of the mechanism by which cells decide whether to become prestalk or prespore cells.  相似文献   

18.
In Dictyostelium discoideum stalk cell formation is induced by cyclic AMP and differentiation-inducing factor (DIF) when cells are plated in in vitro monolayers (Kay et al., 1979, Differentiation 13: 7-14). The in vivo developmental stages at which cells became independent of these factors were determined. Independence was defined as the stage at which dispersed cells no longer required the factors for stalk cell formation in low density monolayers. Cyclic AMP independent cells were first detected at around 12 hr of development, a time that corresponds to the transition between the tipped aggregate and the first finger stages. In contrast cells did not become independent of DIF until late culmination. The prestalk cell-specific isozyme acid phosphatase II and a stalk cell-specific 41,000 Mr antigen (ST 41) were expressed during differentiation in low density monolayers in the presence of both cyclic AMP and DIF, but neither component was expressed in the presence of cyclic AMP alone. This result implies that DIF is essential for both prestalk and stalk cell formation. The two components were expressed within 2 hr of each other during differentiation in vitro, whereas during development in vivo acid phosphatase II was first detected at the first finger stage and ST 41 was first detected during late culmination, 8-12 hr later. These contrasting results suggest that the conversion of prestalk cells to stalk cells is unrestrained in monolayers, following directly after prestalk cell induction, but restrained in vivo until the culmination stage. This interpretation is consistent with the finding that cells become independent of DIF early during in vitro differentiation (A. Sobolewski, N. Neave, and G. Weeks, 1983, Differentiation 25, 93-100), but do not become independent of DIF until the culmination stage when differentiating in vivo.  相似文献   

19.
Folic acid pulses induced developmental processes in agip 71, a morphogenetic mutant of Dictyostelium discoideum, strain Ax-2. Cells that had received folic acid pulses were able to form EDTA-stable cell aggregates and to complete full differentiation to fruiting bodies. In these cells no autonomous periodic activities were observed by light scattering. Folic acid pulses elicited increases in the concentrations of cyclic GMP and cyclic AMP. In undifferentiated cells, folic acid caused a rapid increase in the level of cyclic GMP without a significant change in the level of cyclic AMP. In an advanced developmental state folic acid caused an increase in cyclic AMP in addition to two successsive peaks of cyclic GMP. Experiments performed with the parent strain, Ax-2, also showed that during the development towards aggregation competence, cells acquired the ability to produce a cyclic AMP peak in response to folic acid.  相似文献   

20.
During the developmental cycle of Dictyostelium discoideum cyclic AMP functions as both a chemotactic signal for aggregation and a regulatory molecule during later events of differentiation. Morphological and biochemical data suggest that cAMP may direct cells during morphogenesis and differentiation. We utilized microtechniques to determine the stage- and cell-specific levels of the cAMP-dependent protein kinase, the probable intracellular cAMP receptor. Kinase activity was low and non-cAMP-dependent in amoebae and early aggregates but increased and became cAMP-dependent in aggregates after the formation of tight cell contacts. Maximum kinase activity and cAMP dependency occurred during the slug and culmination stages. The only differential distribution of the kinase within a single stage occurred during culmination when the activity in the stalks was approximately one-fourth of that in the prespore mass. Preliminary evidence indicates that this difference is not due to an inhibitor. In all other stages tested cAMP-dependent protein kinase activity was equal in prespore and prestalk cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号