首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secondary structures of histones H1, H2A, H2B, H3, H4 and H5 have been calculated by the computer program ALB based on a molecular theory of protein secondary structure. The predicted secondary structures of all histones are predominantly alpha-helical. The calculated secondary structure of linker histones H1 and H5 is close to that previously obtained from two-dimensional NMR data. For each of the core histones (H2A, H2B, H3, H4) one long alpha-helix and several short ones have been predicted. These long helices can be identified with rods in the low-resolution electron density map.  相似文献   

2.
The localization of DNA-recognizing supersecondary structure alpha-helix--turn--alpha-helix in 85 amino acid sequences of histones is predicted. According to the prediction method based on the necessary requirements of amino acid coding this structure may be localized in the following segments of amino acid sequences of calf thymus histones: H1--90--112, H2A--54--76, H2B--50--72 and 102--124, H3--15--37 and 73--95, H4--5--27 or 6--28 and 32--54 or 42--64. According to the known experimental data on the secondary structure of histones only the following localizations are possible: H1--90--112, H2A--54--76, H2B--50--72, H3--73--95, H4--42--64. Using the known experimental data on DNA-histone interactions it is possible to suggest that these localizations of structures alpha-helix--turn--alpha-helix possible in histones H2A, H2B and H4 allows them to participate in close or structurally essential interactions of histones with DNA. The role of the predicted structure in nucleosome formation and in the autoregulation of histone biosynthesis is discussed.  相似文献   

3.
Chromatin dynamics is essential for maintaining genomic integrity and regulating gene expression. Conserved bromodomain-containing AAA+ ATPases play important roles in nucleosome organization as histone chaperones. Recently, the high-resolution cryo-electron microscopy structures of Schizosaccharomyces pombe Abo1 revealed that it forms a hexameric ring and undergoes a conformational change upon ATP hydrolysis. In addition, single-molecule imaging demonstrated that Abo1 loads H3-H4 histones onto DNA in an ATP hydrolysis-dependent manner. However, the molecular mechanism by which Abo1 loads histones remains unknown. Here, we investigated the details concerning Abo1-mediated histone loading onto DNA and the Abo1-DNA interaction using single-molecule imaging techniques and biochemical assays. We show that Abo1 does not load H2A-H2B histones. Interestingly, Abo1 deposits multiple copies of H3-H4 histones as the DNA length increases and requires at least 80 bp DNA. Unexpectedly, Abo1 weakly binds DNA regardless of ATP, and neither histone nor DNA stimulates the ATP hydrolysis activity of Abo1. Based on our results, we propose an allosteric communication model in which the ATP hydrolysis of Abo1 changes the configuration of histones to facilitate their deposition onto DNA.  相似文献   

4.
Two H3 histone variants are found in equal amount in HeLa cells, and they have been characterized by two-dimensional gel electrophoresis followed by reaction with specific antibodies. These molecules are the only cysteine-containing histones, and they have been used as the target for thiol-specific reagents, in intact nuclei, isolated nucleosomes, histone complexes, and purified histones. Cysteine residues are available to N-ethylmaleimide only when histones are disassembled from the core particles. Upon reaction with these reagents, one of the H3 variants undergoes profound conformational changes, as revealed by an altered electrophoretic mobility.  相似文献   

5.
The conformational state of histones in isolated chicken erythrocyte chromatin was studied using procedures developed for probing surface proteins on membranes. Under controlled conditions, only exposed tyrosyl residues react with iodide radicals, generated either by the oxidant, chloramine-T (paratoluenesulfonyl chloramide), or the enzyme lactoperoxidase, giving monoidotyrosine. Using 125-iodine, this study compared the reactive tyrosines in free and bound histones H4, and H5. The relative extent of iodination of these histones within (H4) and outside (H5) of the nucleosomes was measured after extraction and gel electrophoresis. Each of the histones was further analyzed for the extent of specific tyrosine iodination by separating the tryptic peptides by high voltage electrophoresis. The identity of the labeled peptide was determined by dansylation of the amino acids present in each hydrolyzed peptide. The results show that there is a difference in the conformational arrangement of these histones on chromatin and in the free forms, since in chromatin not all tyrosine residues are as accessible for iodination as in the denatured state. Residue 53 of histone H5 for instance is more reactive than residues 28 and 58, indicating that the segments containing the latter residues are involved in either protein-DNA or protein-protein interactions. In histone H4, preferential labeling of 2 of the 4 tyrosines present was also observed.  相似文献   

6.
Two H3 histone variants are found in equal amount in HeLa cells, and they have been characterized by two-dimensional gel electrophoresis followed by reaction with specific antibodies. These molecules are the only cysteine-containing histones, and they have been used as the target for thiol-specific reagents, in intact nuclei, isolated nucleosomes, histone complexes, and purified histones. Cysteine residues are available toN-ethylmaleimide only when histones are disassembled from the core particles. Upon reaction with these reagents, one of the H3 variants undergoes profound conformational changes, as revealed by an altered electrophoretic mobility.  相似文献   

7.
8.
In eukaryotes, DNA is packaged into a basic unit, the nucleosome which consists of 147 bp of DNA wrapped around a histone octamer composed of two copies each of the histones H2A, H2B, H3 and H4. Nucleosome structures are diverse not only by histone variants, histone modifications, histone composition but also through accommodating different conformational states such as DNA breathing and dimer splitting. Variation in nucleosome structures allows it to perform a variety of cellular functions. Here, we identified a novel spontaneous conformational switching of nucleosomes under physiological conditions using single-molecule FRET. Using FRET probes placed at various positions on the nucleosomal DNA to monitor conformation of the nucleosome over a long period of time (30–60 min) at various ionic conditions, we identified conformational changes we refer to as nucleosome gaping. Gaping transitions are distinct from nucleosome breathing, sliding or tightening. Gaping modes switch along the direction normal to the DNA plane through about 5–10 angstroms and at minutes (1–10 min) time scale. This conformational transition, which has not been observed previously, may be potentially important for enzymatic reactions/transactions on nucleosomal substrate and the formation of multiple compression forms of chromatin fibers.  相似文献   

9.
10.
11.
Exchange of histones H1, H2A, and H2B in vivo   总被引:17,自引:0,他引:17  
L Louters  R Chalkley 《Biochemistry》1985,24(13):3080-3085
We have asked whether histones synthesized in the absence of DNA synthesis can exchange into nucleosomal structures. DNA synthesis was inhibited by incubating hepatoma tissue culture cells in medium containing 5.0 mM hydroxyurea for 40 min. During the final 20 min, the cells were pulsed with [3H]lysine to radiolabel the histones (all five histones are substantially labeled under these conditions). By two electrophoretic techniques, we demonstrate that histones H1, H2A, and H2B synthesized in the presence of hydroxyurea do not merely associate with the surface of the chromatin but instead exchange with preexisting histones so that for the latter two histones there is incorporation into nucleosome structures. On the other hand, H3 and H4 synthesized during this same time period appear to be only weakly bound, if at all, to chromatin. These two histones have been isolated from postnuclear washes and purified. Some possible implications of in vivo exchange are discussed.  相似文献   

12.
Transglutaminases, the enzymes that catalyze the acyl-transfer reaction between glutamine and primary amines, have been used to introduce probes into proteins in order to perform structural studies using physical techniques. Here we use an original approach in which the increasing accessibility of the glutamines of core histones to TGase is used to monitor the salt-induced conformational changes of the nucleosome. The rationale of this strategy is that the accessibility of a glutamine to transglutaminase depends on the blockage due to the presence of either other histones or DNA. At low ionic strength, only glutamines on the N-terminal tails of H2B and H3 are labeled with monodansylcadaverine when core particles are incubated with transglutaminase. The partial unfolding that occurs when going to higher ionic strength values results in an increase in the number of reactive glutamines up to a maximum value of 16 per nucleosome. Labeling of some residues (e.g., Gln(104) and Gln(112) of H2A) requires the unwinding of DNA and the dissociation of the H2A--H2B dimers. Gln(76) of H3 is labeled in the H3--H4 tetramer only when the H2A--H2B dimers are dissociated. Interestingly, the labeling of Gln(95) of H2B exclusively depends on the unwinding of DNA. The accurate analysis of these results indicates that the ionic-dependent unwinding of the DNA may occur following a two-state model.  相似文献   

13.
Histone self-aggregation processes have been studied by 13C and 1H nuclear magnetic resonance (NMR) as a function of ionic strength and protein concentration. Thus has led to a model involving apolar aggregation between structured regions of these molecules. This analysis supports the validity of the acquistion of conformational data on histones by the simulation of 13C NMR spectra at high concentration. Solution conformations for histones F2B and F3 are presented.  相似文献   

14.
The secondary structures and hydrophobicity of the histones H1 from sea-urchin sperm and calf thymus as well as H5 from avian erythrocytes were predicted. The results show three distinct structural domains in all three histones, which gives the histones similar properties in spite of considerable sequence variation. The results provide an explanation for the mechanisms involved in histone-histone and histone-DNA interactions observed in the nucleosome and show how histone sequence differences can cause differences in the higher order structure of chromatin.  相似文献   

15.
A model for the initiation of the diffuse-condensed transition of chromatin induced by a change in the conformation of lysine-rich histones is proposed. Three levels of folded structures are discussed. The first-order folded structure refers to the structure of the repeat unit of chromatin, which is called the nucleosome. The nucleosome contains a nuclease resistant region in which 140 base pairs of DNA are wrapped around the surface of a histone aggregated of two copies each of the histones H2A, H2B, H3 and H4. This DNA-histone aggregate is called a core particle. The nuclease accessible region of the nucleosome is approximately 60 base pairs of DNA which link the core particle, hence the terminology “linker DNA.” The lysine-rich histones, (Hl, H5), which are more loosely bound than the core histones, are associated with the linker DNA. The second-order folded structure refers to the conformation of a polynucleosome. Based on neutron scattering and quasielastic light scattering studies the second-order folded structure is assumed to be an extended helix in solution with 5–7 nucleosome units per turn. The third-order folded structure is defined as that structure resulting from the first stage in the condensation process induced by a conformational change in the lysine-rich histones. Generation of the third-order folded structure in the proposed model is effected by an increased affinity of the lysine-rich histones for super-helical DNA in the core particles in adjacent turns of the second-order folded structure. Since the lysine-rich histones preferentially bind to A-T rich regions in DNA, the distribution of these regions would determine the third-order folded structure. The net effect of a non-random distribution of A-T rich regions as in the proposed model is the generation of a helix for the third-order folded structure. The assumption of a non-random distribution of A-T rich regions is indirectly supported by proflavine binding studies reported herein and by the existence of repetitive and non-repetitive DNA regions inferred from renaturation studies. One consequence of the proposed mechanism is that the majority of the A-T rich regions are in the interior of the third-order folded structure. Promoter sites of high A-T content would then be inaccessible to polymerases. The proposed model also suggests a role for spacer DNA in the genome. Higher order folded structures must also be present in the final state of condensed chromatin since the three orders of folded structures considered in this communication accounts for only 2% of that required in the diffuse-condensed transition.  相似文献   

16.
Judging from fluorescence modulation (quenching), short peptides (Ala-Glu-Asp-Gly, Glu-Asp-Arg, Ala-Glu-Asp-Leu, Lys-Glu-Asp-Gly, Ala-Glu-Asp-Arg, and Lys-Glu-Asp-Trp) bind with FITC-labeled wheat histones H1, H2в, H3, and H4. This results from the interaction of the peptides with the N-terminal histone regions that contain respective and seemingly homologous peptide-binding motifs. Because homologous amino acid sequences in wheat core histones were not found, the peptides seem to bind with some core histone regions having specific conformational structure. Peptide binding with histones and histone-deoxyribooligonucleotide complexes depends on the nature of the histone and the primary structures of the peptides and oligonucleotides; thus, it is site specific. Histones H1 bind preferentially with single-stranded oligonucleotides by homologous sites in the C-terminal region of the protein. Unlike histone H1, the core histones bind pre-dominantly with double-stranded methylated oligonucleotides and methylated DNA. Stern-Volmer constants of interaction of histone H1 and core histones with double-stranded hemimethylated oligonucleotides are higher compared with that of binding with unmethylated ones. DNA or deoxyribooligonucleotides in a complex with histones can enhance or inhibit peptide binding. It is suggested that site-specific interactions of short biologically active peptides with histone tails can serve in chromatin as control epigenetic mechanisms of regulation of gene activity and cellular differentiation.  相似文献   

17.
Contact site of histones 2A and 2B in chromatin and in solution   总被引:1,自引:0,他引:1  
Irradiation of isolated nuclei or of a complex of histones 2A (H2A) and 2B (H2B) with ultraviolet light produces a covalent cross-link between H2A and H2B. Sequence analysis of the peptides isolated from the H2A-H2B dimer formed in solution and in nuclei demonstrated that both dimers are produced through the covalent linkage of Tyr-40 of H2B and Pro-26 of H2A. Tyrosyl residues proximal to Tyr-40 did not produce a cross-link with H2A, thereby indicating that strict conformational parameters are required for production of the H2A-H2B cross-link. We conclude that the precise juxtaposition of Tyr-40 of H2B and Pro-26 of H2A in this region of the H2A/H2B contact site is not altered upon interaction of these histones with H3 and H4 (tetramer), DNA, or other chromosomal components during nucleosome assembly.  相似文献   

18.
Comparative studies on the conformational stability of histones H1 and H5 have been carried out by monitoring the pH-induced conformational transitions of the proteins by CD and 1H NMR spectroscopies. The transition point of H1 agrees with the pKa of the carboxyl groups of the acidic residues. In contrast, the transition of H5 is associated with the ionization of the histidine residues which exist exclusively in H5, as well as the deionization of the acidic residues. These observations, combined with the result of the deuterium exchange rates of the histidine C-2 protons, led us to conclude that His-25 and His-62, which are buried in the globular domain, play an important role in the conformational stability of histone H5.  相似文献   

19.
20.
In eukaryotic nuclei the majority of genomic DNA is believed to exist in higher order chromatin structures. Nonetheless, the nature of direct, long range nucleosome interactions that contribute to these structures is poorly understood. To determine whether these interactions are directly mediated by contacts between the histone H4 amino-terminal tail and the acidic patch of the H2A/H2B interface, as previously demonstrated for short range nucleosomal interactions, we have characterized the extent and effect of disulfide cross-linking between residues in histones contained in different strands of nucleosomal arrays. We show that in 208-12 5 S rDNA and 601-177-12 nucleosomal array systems, direct interactions between histones H4-V21C and H2A-E64C can be captured. This interaction depends on the extent of initial cross-strand association but does not require these specific residues, because interactions with residues flanking H4-V21C can also be captured. Additionally, we find that trapping H2A-H4 intra-array interactions antagonizes the ability of these arrays to undergo intermolecular self-association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号