首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamine is a major nutrient utilized by the intestinal epithelium and is primarily assimilated via Na-glutamine co-transport (NGcT) on the brush border membrane (BBM) of enterocytes. Recently we reported that B(0)AT1 (SLC6A19) mediates glutamine absorption in villus while SN2 (SLC38A5) does the same in crypt cells. However, how B(0)AT1 and SN2 are affected during intestinal inflammation is unknown. In the present study it was shown that during chronic enteritis NGcT was inhibited in villus cells, however, it was stimulated in crypt cells. Our studies also demonstrated that the mechanism of inhibition of NGcT during chronic enteritis was secondary to a reduction in the number of B(0)AT1 co-transporters in the villus cell BBM without a change in the affinity of the co-transporter. In contrast, stimulation of NGcT in crypt cells was secondary to an increase in the affinity of SN2 for glutamine without an alteration in the number of co-transporters. Thus, glutamine assimilation which occurs via distinct transporters in crypt and villus cells is altered in the chronically inflamed intestine.  相似文献   

2.
Glutamine is a major nutrient utilized by the intestinal epithelium and is primarily assimilated via Na-glutamine co-transport (NGcT) on the brush border membrane (BBM) of enterocytes. Recently we reported that B0AT1 (SLC6A19) mediates glutamine absorption in villus while SN2 (SLC38A5) does the same in crypt cells. However, how B0AT1 and SN2 are affected during intestinal inflammation is unknown. In the present study it was shown that during chronic enteritis NGcT was inhibited in villus cells, however, it was stimulated in crypt cells. Our studies also demonstrated that the mechanism of inhibition of NGcT during chronic enteritis was secondary to a reduction in the number of B0AT1 co-transporters in the villus cell BBM without a change in the affinity of the co-transporter. In contrast, stimulation of NGcT in crypt cells was secondary to an increase in the affinity of SN2 for glutamine without an alteration in the number of co-transporters. Thus, glutamine assimilation which occurs via distinct transporters in crypt and villus cells is altered in the chronically inflamed intestine.  相似文献   

3.
Short-chain fatty acids (SCFA) have been demonstrated to at least partially ameliorate chronic intestinal inflammation. However, whether and how intestinal SCFA absorption may be altered during chronic intestinal inflammation is unknown. A rabbit model of chronic ileitis produced by coccidia was used to determine the effect of chronic inflammation on ileal SCFA/HCO(-)(3) exchange. SCFA/HCO(-)(3) exchange was present in the brush-border membrane (BBM) of villus but not crypt cells from normal rabbit ileum. An anion-exchange inhibitor, DIDS, significantly inhibited SCFA/HCO(-)(3) exchange. Extravesicular Cl(-) did not alter the uptake of SCFA, suggesting that SCFA/HCO(-)(3) exchange is a transport process distinct from Cl(-)/HCO(-)(3) exchange. In chronically inflamed ileum, SCFA/HCO(-)(3) exchange was also present only in BBM of villus cells. The exchanger was sensitive to DIDS and was unaffected by extravesicular Cl(-). However, SCFA/HCO(-)(3) exchange was significantly reduced in villus cell BBM vesicles (BBMV) from chronically inflamed ileum. Kinetic studies demonstrated that the maximal rate of uptake of SCFA, but not the affinity for SCFA, was reduced in chronically inflamed rabbit ileum. These data demonstrate that a distinct SCFA/HCO(-)(3) exchange is present on BBMV of villus but not crypt cells in normal rabbit ileum. SCFA/HCO(-)(3) exchange is inhibited in chronically inflamed rabbit ileum. The mechanism of inhibition is most likely secondary to a reduction in transporter numbers rather than altered affinity for SCFA.  相似文献   

4.
In the normal ileum, coupled NaCl absorption occurs via the dual operation of Na(+)/H(+) and Cl(-)/HCO(-)(3) exchange on the brush-border membrane (BBM) of villus cells. In a rabbit model of chronic small intestinal inflammation we determined the cellular mechanism of inhibition of NaCl absorption and the effect of steroids on this inhibition. Cl(-)/HCO(-)(3) but not Na(+)/H(+) exchange was reduced in the BBM of villus cells during chronic ileitis. Cl(-)/HCO(-)(3) exchange was inhibited secondary to a decrease in the affinity for Cl(-) rather than an alteration in the maximal rate of uptake of Cl(-) (V(max)). Methylprednisolone (MP) stimulated Cl(-)/HCO(-)(3) exchange in the normal ileum by increasing the V(max) of Cl(-) uptake rather than altering affinity for Cl(-). MP reversed the inhibition of Cl(-)/HCO(-)(3) exchange in rabbits with chronic ileitis. However, MP alleviated the Cl(-)/HCO(-)(3) exchange inhibition by restoring the affinity for Cl(-) rather than altering the V(max) of Cl(-) uptake. These data suggest that glucocorticoids mediate the alleviation of Cl(-)/HCO(-)(3) exchange inhibition in chronically inflamed ileum by reversing the same mechanism that was responsible for inhibition of this transporter rather than exerting a direct effect on the transporter itself, as was the case in normal ileum.  相似文献   

5.
In a rabbit model of chronic intestinal inflammation, we previously demonstrated inhibition of neutral Na-amino acid cotransport. The mechanism of the inhibition was secondary to a decrease in the affinity for amino acid rather than the number of cotransporters. Since leukotriene (LT)D4 is known to be elevated in enterocytes during chronic intestinal inflammation, we used rat intestinal epithelial cell (IEC-18) monolayers to determine the mechanism of regulation of Na-alanine cotransport (alanine, serine, cysteine transporter 1: ASCT1) by LTD4. Na-alanine cotransport was inhibited by LTD4 in IEC-18 cells. The mechanism of inhibition of ASCT1 (solute carrier, SLC1A4) by LTD4 is secondary to a decrease in the affinity of the cotransporter for alanine without a significant change in cotransporter numbers and is not secondary to an alteration in the Na+ extruding capacity of the cells. Real-time quantitative PCR and Western blot analysis results indicate that ASCT1 message and protein levels are also unchanged in LTD4-treated IEC-18 cells. These results indicate that LTD4 inhibits Na-dependent neutral amino acid cotransport in IEC. The mechanism of inhibition is secondary to a decrease in the affinity for alanine, which is identical to that seen in villus cells from the chronically inflamed rabbit small intestine, where LTD4 levels are significantly increased.  相似文献   

6.
In the rabbit small intestine, there are three functionally different brush-border membrane (BBM) anion/HCO3- exchangers: 1) Cl/HCO3- exchange on the BBM of villus cells responsible for coupled NaCl absorption; 2) Cl/HCO3- exchange on the BBM of crypt cells possibly involved in HCO3- secretion; and 3) short-chain fatty acid (SCFA)/HCO3- exchange on the BBM of villus cells, which facilitates SCFA absorption. Although constitutive nitric oxide (cNO) has been postulated to alter many gastrointestinal tract functions, how cNO may specifically alter these three transporters is unknown. Inhibition of cNO synthase with NG-nitro-L-arginine methyl ester (L-NAME) 1) did not affect villus cell BBM Cl/HCO3 change, 2) stimulated crypt cell BBM Cl/HCO3- exchange, and 3) inhibited villus cell BBM SCFA/HCO3- exchange. D-NAME, an inactive analog of L-NAME, and L-N6-(1-iminoethyl)lysine, a more selective inhibitor of inducible NO, did not affect these transport processes. Kinetic studies demonstrated that 1) the mechanism of inhibition of crypt cell BBM Cl/HCO3- exchange is secondary to a decrease in the maximal rate of uptake of Cl, without an alteration in the affinity of the transporter for Cl, and 2) the mechanism of stimulation of villus cell BBM SCFA/HCO3- exchange is secondary to an increase in the affinity of the transporter for SCFA without an alteration in the maximal rate of uptake of SCFA. These results indicate that cNO uniquely regulates the three BBM anion/HCO3- transporters in the rabbit small intestine.  相似文献   

7.
8.
9.
The cloned intestinal peptide transporter is capable of electrogenic H+-coupled cotransport of neutral di- and tripeptides and selected peptide mimetics. Since the mechanism by which PepT1 transports substrates that carry a net negative or positive charge at neutral pH is poorly understood, we determined in Xenopus oocytes expressing PepT1 the characteristics of transport of differently charged glycylpeptides. Transport function of PepT1 was assessed by flux studies employing a radiolabeled dipeptide and by the two-electrode voltage-clamp-technique. Our studies show, that the transporter is capable of translocating all substrates by an electrogenic process that follows Michaelis Menten kinetics. Whereas the apparent K0.5 value of a zwitterionic substrate is only moderately affected by alterations in pH or membrane potential, K0.5 values of charged substrates are strongly dependent on both, pH and membrane potential. Whereas the affinity of the anionic dipeptide increased dramatically by lowering the pH, a cationic substrate shows only a weak affinity for PepT1 at all pH values (5.5–8.0). The driving force for uptake is provided mainly by the inside negative transmembrane electrical potential. In addition, affinity for proton interaction with PepT1 was found to depend on membrane potential and proton binding subsequently affects the substrate affinity. Furthermore, our studies suggest, that uptake of the zwitterionic form of a charged substrate contributes to overall transport and that consequently the stoichiometry of the flux-coupling ratios for peptide: H+/H3O+ cotransport may vary depending on pH. Received: 19 August 1996/Revised: 10 October 1996  相似文献   

10.
End products of digestion are absorbed by the body through the action of transporter proteins expressed on the apical membrane of intestinal epithelial cells. We investigated the mRNA abundance and distribution of a peptide transporter (PepT1), a glucose transporter (SGLT1), two amino acid transporters (NBAT and b(o,+)AT), and a digestive enzyme, aminopeptidase N (APN), in the intestinal tract of black bears (Ursus americanus). Intestinal total RNA was isolated from 10 bears and abundance of PepT1, SGLT1, NBAT, b(o,+)AT, and APN mRNA were determined by Northern blots. Abundance of PepT1 (P<0.05), APN (P<0.05), and SGLT1 (P<0.0001) changed quadratically from the proximal to distal intestine with abundance being greatest in the midregion. Abundance of b(o,+)AT mRNA increased linearly (P<0.05) from the proximal to distal intestine. The number of molecules of mRNA/ng of total RNA for each gene was determined using Real-Time PCR. PepT1 mRNA was present at 10-fold or greater levels than amino acid transporter mRNA in all segments of the intestine, suggesting that di- and tripeptides constitute a major form in which amino acids are absorbed in the black bear. The abundance of NBAT and b(o,+)AT mRNA was greater towards the distal intestine, suggesting a role in salvaging unabsorbed amino acids.  相似文献   

11.
The oligopeptide transporter (PepT1) is located on the brush-border membrane of the intestinal epithelium, and plays an important role in dipeptide and tripeptide absorptions from protein digestion. In this study, we cloned the PepT1 cDNA from grass carp and characterized its expression profile in response to dietary protein and feed additives (sodium butyrate) treatments. The PepT1 gene encodes a protein of 714 amino acids with high sequence similarity with other vertebrate homologues. Expression analysis revealed highest levels of PepT1 mRNA expression in the foregut of grass carp. In addition, PepT1 mRNA expression exhibited diurnal variation in all three bowel segments of intestine with lower levels of expression in daytime than nighttime. During embryonic development, PepT1 showed a dynamic pattern of expression reaching maximal levels of expression in the gastrula stage and minimal levels in the organ stage. The PepT1 expression showed constant levels from 14 to 34 day post-hatch. To determine whether fish diet of different protein contents may have any effect on PepT1 expression, we extended our research to dietary regulation of PepT1 expression. We found that dietary protein levels had a significant effect on PepT1 gene expression. In addition, PepT1 mRNA levels were higher after feeding with fish meal than with soybean meal. Moreover, in vitro and in vivo sodium butyrate treatments increased PepT1 expression in the intestine of grass carp. The results demonstrate for the first time that PepT1 mRNA expression is regulated in a temporal and spatial pattern during development, and dietary protein and feed additives had a significant effects on PepT1 gene expression in grass carp.  相似文献   

12.
13.
Immunocytochemical distribution in rat small intestine of PepT1, the oligopeptide transporter responsible for nutritionally important peptide uptake from the adult small intestinal lumen, has been measured during development using an antibody to the C-terminal sequence of PepT1. Distribution is exclusively in the apical brush border of enterocytes from both prenatal and mature animals. However, immediately after birth immunolocalisation of PepT1 extends to the subapical cytoplasm and to the basolateral membrane of enterocytes. No staining is found in crypts or over Goblet cells. Our results imply that the peptide transporter at the basolateral membrane in adult rats must be distinct from PepT1. They also shed new light on the trafficking of PepT1 in enterocytes.  相似文献   

14.
15.
The present study evaluates the effect of protein source (dipeptides, free amino acids, and intact protein) on development and growth of Salmonid fish alevin. Specifically, we follow the expression of oligopeptide transporter protein PepT1 in the intestine of rainbow trout (Oncorhynchus mykiss). Fish were fed exogenously one of four diets: three formulated (lysyl–glycine dipeptide supplemented diet — PP, free lysine and glycine supplemented diet — AA, control diet with no lysine — CON) or commercial starter (Aller Futura — AF). Fish increased mean body weight 8 fold with PP- and AA-supplemented diets resulting in significantly higher weight gain than fish fed CON. Statistical analysis revealed a significant increase in relative PepT1 expression of fish fed experimental diets. Immunohistochemical staining with PepT1 antibody showed the presence of the transporter protein in the brush border membrane of the proximal intestinal enterocytes of fish from all experimental groups. Leptin immunoreactivity occurred not only in the gastric glands but also in proximal intestine and pyloric caeca of fish fed PP, AA and AF diets. Leptin immunoreactivity was also observed in hepatocyte cytoplasm and pancreatic acinar cells. Gastrin/CCK immunoreactive cells were present in the proximal intestine and pyloric caeca.  相似文献   

16.
The major sialic acid containing glycolipid has been isolated from rat intestinal mucosa. Characterization of this ganglioside by thin layer and gas chromatographic analysis indicates that it is an hematoside (GM3) with the major portion of the sialic acid in the N-glycolyl form. The distribution of this ganglioside was determined in villus and crypt cells isolated from rat intestine. The hematoside content of crypt cells was found to be significantly decreased when compared to villus cells. CMP-sialic acid:lactosylceramide sialyltransferase, responsible for the sialylation of lactosylceramide, was measured in differentiated villus and undifferentiated crypt cells and found to be greatly reduced in the crypt cell fraction. The present study demonstrates that marked differences in ganglioside content and biosynthesis occur in contiguous populations of cells in varying states of differentiation when isolated from normal rat intestine.  相似文献   

17.
Na-nutrient cotransport processes are not only important for the assimilation of essential nutrients but also for the absorption of Na in the mammalian small intestine. The effect of constitutive nitric oxide (cNO) on Na-glucose (SGLT-1) and Na-amino acid cotransport (NAcT) in the mammalian small intestine is unknown. Inhibition of cNO synthase with N(G)-nitro-l-arginine methyl ester (L-NAME) resulted in the inhibition of Na-stimulated (3)H-O-methyl-D-glucose uptake in villus cells. However, Na-stimulated alanine uptake was not affected in these cells. The L-NAME-induced reduction in SGLT-1 in villus cells was not secondary to an alteration in basolateral membrane Na-K-ATPase activity, which provides the favorable Na gradient for this cotransport process. In fact, SGLT-1 was inhibited in villus cell brush-border membrane (BBM) vesicles prepared from animals treated with L-NAME. Kinetic studies demonstrated that the mechanism of inhibition of SGLT-1 was secondary to a decrease in the affinity for glucose without a change in the maximal rate of uptake of glucose. Northern blot studies demonstrated no change in the mRNA levels of SGLT-1. Western blot studies demonstrated no significant change in the immunoreactive protein levels of SGLT-1 in ileal villus cell BBM from L-NAME-treated rabbits. These studies indicate that inhibition of cNO production inhibits SGLT-1 but not NAcT in the rabbit small intestine. Therefore, whereas cNO promotes Na-glucose cotransport, it does not affect NAcT in the mammalian small intestine.  相似文献   

18.
19.
Liu Z  Wang C  Liu Q  Meng Q  Cang J  Mei L  Kaku T  Liu K 《Peptides》2011,32(4):747-754
Cyclo-trans-4-l-hydroxyprolyl-l-serine (JBP485) is a dipeptide with anti-hepatitis activity that has been chemically synthesized. Previous experiments in rats showed that JBP485 was well absorbed by the intestine after oral administration. The human peptide transporter (PEPT1) is expressed in the intestine and recognizes compounds such as dipeptides and tripeptides. The purposes of this study were to determine if JBP485 acted as a substrate for intestinal PEPT1, and to investigate the characteristics of JBP485 uptake and transepithelial transport by PEPT1. The uptake of JBP485 was pH dependent in human intestinal epithelial cells Caco-2. And JBP485 uptake was also significantly inhibited by glycylsarcosine (Gly-Sar, a typical substrate for PEPT1 transporters), JBP923 (a derivative of JBP485), and cephalexin (CEX, a β-lactam antibiotic and a known substrate of PEPT1) in Caco-2 cells. The rate of apical-to-basolateral transepithelial transport of JBP485 was 1.84 times higher than that for basolateral-to-apical transport. JBP485 transport was obviously inhibited by Gly-Sar, JBP923 and CEX in Caco-2 cells. The uptake of JBP485 was increased by verapamil but not by cyclosporin A (CsA) and inhibited by the presence of Zn2+ or the toxic metabolite of ethanol, acetaldehyde (AcH) in Caco-2 cells. The in vivo uptake of JBP485 was increased by verapamil and decreased by ethanol in vivo, which was consisted with the in vitro study. PEPT1 mRNA levels were enhanced after exposure of the cells to JBP485 for 24 h, compared to control. In conclusion, JBP485 was actively transported by the intestinal oligopeptide transporter PEPT1. This mechanism is likely to contribute to the rapid absorption of JBP485 by the gastrointestinal tract after oral administration.  相似文献   

20.
Expression and function of the oligopeptide transporter PepT1 in response to changes in environmental salinity have received little study despite the important role that dipeptides play in piscine nutrition. We cloned and sequenced two novel full-length cDNAs that encode Fundulus heteroclitus PepT1-type oligopeptide transporters, and examined their expression and functional properties in freshwater- and seawater-acclimated fish and in response to fasting and re-feeding. Phylogenetic analysis of vertebrate SLC15A1 sequences confirms the presence of two PepT1 isoforms, named SLC15A1a and SLC15A1b, in fish. Similar to other vertebrate SLC15A1s, these isoforms have 12 transmembrane domains, and amino acids essential for PepT1 function are conserved. Expression analysis revealed novel environment-specific expression of the SLC15A1 isoforms in F. heteroclitus, with only SLC15A1b expressed in seawater-acclimated fish, and both isoforms expressed in freshwater-acclimated fish. Fasting and re-feeding induced changes in the expression of SLC15A1a and SLC15A1b mRNA. Short-term fasting resulted in up-regulation of PepT1 mRNA levels, while prolonged fasting resulted in down-regulation. The resumption of feeding resulted in up-regulation of PepT1 above pre-fasted levels. Experiments using the in vitro gut sac technique suggest that the PepT1 isoforms differ in functional characteristics. An increased luminal pH resulted in decreased intestinal dipeptide transport in freshwater-acclimated fish but suggested an increased dipeptide transport in seawater-acclimated fish. Overall, this is the first evidence of multiple isoforms of PepT1 in fish whose expression is environmentally dependent and results in functional differences in intestinal dipeptide transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号