首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural organization of gap junction channels   总被引:10,自引:0,他引:10  
Gap junctions were initially described morphologically, and identified as semi-crystalline arrays of channels linking two cells. This suggested that they may represent an amenable target for electron and X-ray crystallographic studies in much the same way that bacteriorhodopsin has. Over 30 years later, however, an atomic resolution structural solution of these unique intercellular pores is still lacking due to many challenges faced in obtaining high expression levels and purification of these structures. A variety of microscopic techniques, as well as NMR structure determination of fragments of the protein, have now provided clearer and correlated views of how these structures are assembled and function as intercellular conduits. As a complement to these structural approaches, a variety of mutagenic studies linking structure and function have now allowed molecular details to be superimposed on these lower resolution structures, so that a clearer image of pore architecture and its modes of regulation are beginning to emerge.  相似文献   

2.
Advances in structural biology are opening greater opportunities for understanding biological structures from the cellular to the atomic level. Particularly promising are the links that can be established between the information provided by electron microscopy and the atomic structures derived from X-ray crystallography and nuclear magnetic resonance spectroscopy. Combining such different kinds of structural data can result in novel biological information on the interaction of biomolecules in large supramolecular assemblies. As a consequence, the need to develop new databases in the field of structural biology that allow for an integrated access to data from all the experimental techniques is becoming critical. Pilot studies performed in recent years have already established a solid background as far as the basic information that an integrated macromolecular structure database should contain, as well as the basic principles for integration. These efforts started in the context of the BioImage project, and resulted in a first complete database prototype that provided a versatile platform for the linking of atomic models or X-ray diffraction data with electron microscopy information. Analysis of the requirements needed to combine data at different levels of resolution have resulted in sets of specifications that make possible the integration of all these different types in the context of a web environment. The case of a structural study linking electron microscopy and X-ray data, which is already contained within the BioImage data base and in the Protein Data Bank, is used here to illustrate the current approach, while a general discussion highlights the urgent need for integrated databases. Received: 26 January 2000 / Revised version: 15 May 2000 / Accepted: 15 May 2000  相似文献   

3.
4.
Abstract

Gap junctions are specialized membrane structures that provide an intercellular pathway for the propagation and/or amplification of signaling cascades responsible for impulse propagation, cell growth, and development. Prior to the identification of the proteins that comprise gap junctions, elucidation of channel structure began with initial observations of a hexagonal nexus connecting apposed cellular membranes. Concomitant with technological advancements spanning over 50 years, atomic resolution structures are now available detailing channel architecture and the cytoplasmic domains that have helped to define mechanisms governing the regulation of gap junctions. Highlighted in this review are the seminal structural studies that have led to our current understanding of gap junction biology.  相似文献   

5.
Photosynthetic reaction centres and light harvesting complexes have been at the forefront of crystallographic studies of integral membrane proteins. In recent years, there have been spectacular advances in our understanding of the structure of (bacterio)chlorophyll-containing membrane proteins from oxygenic and anoxygenic phototrophs. In these complex structures, the protein scaffold encases different combinations of cofactors and interacts with several tightly bound lipid species that play a variety of hitherto unrecognized structural roles. Some of these lipids have relevance to the physiological function of the protein, whereas others are important for the formation of highly ordered crystals. The first site-directed mutagenesis studies of individual lipid binding sites have now underlined the importance of the lipid component for the structural stability of protein-cofactor-lipid complexes.  相似文献   

6.
Molecular organization of gap junction membrane channels   总被引:7,自引:0,他引:7  
Gap junctions regulate a variety of cell functions by creating a conduit between two apposing tissue cells. Gap junctions are unique among membrane channels. Not only do the constituent membrane channels span two cell membranes, but the intercellular channels pack into discrete cell-cell contact areas formingin vivo closely packed arrays. Gap junction membrane channels can be isolated either as two-dimensional crystals, individual intercellular channels, or individual hemichannels. The family of gap junction proteins, the connexins, create a family of gap junctions channels and structures. Each channel has distinct physiological properties but a similar overall structure. This review focuses on three aspects of gap junction structure: (1) the molecular structure of the gap junction membrane channel and hemichannel, (2) the packing of the intercellular channels into arrays, and (3) the ways that different connexins can combine into gap junction channel structures with distinct physiological properties. The physiological implications of the different structural forms are discussed.  相似文献   

7.
Atomic-resolution structures have had a tremendous impact on modern biological science. Much useful information also has been gleaned by merging and correlating atomic-resolution structural details with lower-resolution (15–40 Å), three-dimensional (3D) reconstructions computed from images recorded with cryo-transmission electron microscopy (cryoTEM) procedures. One way to merge these structures involves reducing the resolution of an atomic model to a level comparable to a cryoTEM reconstruction. A low-resolution density map can be derived from an atomic-resolution structure by retrieving a set of atomic coordinates editing the coordinate file, computing structure factors from the model coordinates, and computing the inverse Fourier transform of the structure factors. This method is a useful tool for structural studies primarily in combination with 3D cryoTEM reconstructions. It has been used to assess the quality of 3D reconstructions, to determine corrections for the phase-contrast transfer function of the transmission electron microscope, to calibrate the dimensions and handedness of 3D reconstructions, to produce difference maps, to model features in macromolecules or macromolecular complexes, and to generate models to initiate model-based determination of particle orientation and origin parameters for 3D reconstruction.  相似文献   

8.
《FEBS letters》2014,588(8):1230-1237
Connexin gap junctions comprise assembled channels penetrating two plasma membranes for which gating regulation is associated with a variety of factors, including voltage, pH, Ca2+, and phosphorylation. Functional studies have established that various parts of the connexin peptides are related to channel closure and electrophysiology studies have provided several working models for channel gating. The corresponding structural models supporting these findings, however, are not sufficient because only small numbers of closed connexin structures have been reported. To fully understand the gating mechanisms, the channels should be visualized in both the open and closed states. Electron crystallography and X-ray crystallography studies recently revealed three-dimensional structures of connexin channels in a couple of states in which the main difference is the conformation of the N-terminal domain, which have helped to clarify the structure in regard to channel closure. Here the closure models for connexin gap junction channels inferred from structural and functional studies are described in the context of each domain of the connexin protein associated with gating modulation.  相似文献   

9.
Themes in RNA-protein recognition.   总被引:11,自引:0,他引:11  
Atomic resolution structures are now available for more than 20 complexes of proteins with specific RNAs. This review examines two main themes that appear in this set of structures. A "groove binder" class of proteins places a protein structure (alpha-helix, 310-helix, beta-ribbon, or irregular loop) in the groove of an RNA helix, recognizing both the specific sequence of bases and the shape or dimensions of the groove, which are sometimes distorted from the normal A-form. A second class of proteins uses beta-sheet surfaces to create pockets that examine single-stranded RNA bases. Some of these proteins recognize completely unstructured RNA, and in others RNA secondary structure indirectly promotes binding by constraining bases in an appropriate orientation. Thermodynamic studies have shown that binding specificity is generally a function of several factors, including base-specific hydrogen bonds, non-polar contacts, and mutual accommodation of the protein and RNA-binding surfaces. The recognition strategies and structural frameworks used by RNA binding proteins are not exotically different from those employed by DNA-binding proteins, suggesting that the two kinds of nucleic acid-binding proteins have not evolved independently.  相似文献   

10.
The recent technological advances in electron microscopes, detectors, as well as image processing and reconstruction software have brought single particle cryo-electron microscopy (cryo-EM) into prominence for determining structures of bio-molecules at near atomic resolution. This has been particularly true for virus capsids, ribosomes, and other large assemblies, which have been the ideal specimens for structural studies by cryo-EM approaches. An analysis of time series metadata of virus structures on the methods of structure determination, resolution of the structures, and size of the virus particles revealed a rapid increase in the virus structures determined by cryo-EM at near atomic resolution since 2010. In addition, the data highlight the median resolution (~3.0?Å) and size (~310.0?Å in diameter) of the virus particles determined by X-ray crystallography while no such limits exist for cryo-EM structures, which have a median diameter of 508?Å. Notably, cryo-EM virus structures in the last four years have a median resolution of 3.9?Å. Taken together with minimal sample requirements, not needing diffraction quality crystals, and being able to achieve similar resolutions of the crystal structures makes cryo-EM the method of choice for current and future virus capsid structure determinations.  相似文献   

11.
12.
Cryo-electron tomography (cryo-ET) allows the visualization of cellular structures under close-to-life conditions and at molecular resolution. While it is inherently a static approach, yielding structural information about supramolecular organization at a certain time point, it can nevertheless provide insights into function of the structures imaged, in particular, when supplemented by other approaches. Here, we review the use of experimental methods that supplement cryo-ET imaging of whole cells. These include genetic and pharmacological manipulations, as well as correlative light microscopy and cryo-ET. While these methods have mostly been used to detect and identify structures visualized in cryo-ET or to assist the search for a feature of interest, we expect that in the future they will play a more important role in the functional interpretation of cryo-tomograms.  相似文献   

13.
Sokolova O 《FEBS letters》2004,564(3):251-256
A large barrier in the way to obtaining high-resolution structures of eukaryotic ion channels remains the expression and purification of sufficient amounts of channel protein to carry out crystallization trials. In the absence of crystals, the main available source of structural information has been electron microscopy (EM), which is well suited to the visualization of isolated macromolecular complexes and their conformational changes. The recently published EM structures outline native conformations of eukaryotic cation channels that until now have eluded crystallization. According to these results, homo-tetrameric K(+) channels have a distinct two-layer architecture with connectors conjoining the two layers, while the pseudo-tetrameric Ca(2+) or Na(+) channels are more globular and have flexible surface loops, which makes the identification of subunits complicated. Subunits can be identified using atomic structure docking into the EM maps, labeling, or deletion studies.  相似文献   

14.
Protein structure determination in solution by NMR spectroscopy   总被引:1,自引:0,他引:1  
The introduction of nuclear magnetic resonance (NMR) spectroscopy as a second method for protein structure determination at atomic resolution, in addition to x-ray diffraction in single crystals, has already led to a significant increase in the number of known protein structures. The NMR method provides data that are in many ways complementary to those obtained from x-ray crystallography and thus promises to widen our view of protein molecules, giving a clearer insight into the relation between structure and function.  相似文献   

15.
We have previously reported the purification of Sak 57 (for spermatogenic cell/sperm-associated keratin of molecular mass 57 kDa) from outer dense fibers of rat sperm tails. Internal protein sequence analysis of Sak 57 revealed 70–100% homology to the 1A and 2A regions of the α-helical rod domain of human, mouse, and rat keratins. A multiple antigen peptide was synthesized using the KQYEDIAQK sequence corresponding to the 2A region and a polyclonal antibody was produced in rabbit to detect Sak 57. During spermiogenesis, Sak 57 associates with the microtubular manchette before becoming a component of para-axonemal keratin structures of the developing tail. We now report that during late meiotic prophase, intercellular bridges linking late pachytene-diplotene spermatocytes display a distinct ribbon containing a Sak 57/β-tubulin complex, separated by a nonimmunoreactive midzone. Indirect immunofluorescence demonstrates that the ribbon is the final stage of a three-step developmental sequence: (1) a spindlelike arrangement radiating from equidistant spherical centers in early pachytene spermatocytes, (2) an ectoplasmic shell like framework in mid-to-late pachytene spermatocytes, and (3) a Sak 57/β-tubulin-containing ribbon found in intercellular bridges linking adjacent late pachytene-diplotene spermatocytes. Shear forces causing a breakdown of one of the conjoined spermatocytes do not disrupt the cytoskeletal ribbon. Results of this work, together with previous observations during spermiogenesis, show that Sak 57 associates with cytoplasmic microtubules in a timely fashion. Upon completion of late meiotic prophase, the Sak 57/microtubule complex behaves as an intercellular ligament and contributes to both the strength of intercellular bridges and the cohesiveness of members of a spermatocyte lineage. © 1996 Wiley-Liss, Inc.  相似文献   

16.
Bacterial cell shape is dictated by the cell wall, a plastic structure that must adapt to growth and division whilst retaining its function as a selectively permeable barrier. The modulation of cell wall structure is achieved by a variety of enzymatic functions, all of which must be spatially regulated in a precise manner. The membrane-spanning essential protein MreC has been identified as the central hub in this process, linking the bacterial cytoskeleton to a variety of cell wall-modifying enzymes. Additionally, MreC can form filaments, believed to run perpendicularly to the membrane. We present here the 1.2 A resolution crystal structure of the major periplasmic domain of Streptococcus pneumoniae MreC. The protein shows a novel arrangement of two barrel-shaped domains, one of which shows homology to a known protein oligomerization motif, with the other resembling a catalytic domain from a bacterial protease. We discuss the implications of these results for MreC function, and detail the structural features of the molecule that may be responsible for the binding of partner proteins.  相似文献   

17.
Coordination and synchrony of a variety of cellular activities in tissues of plants and animals occur as a consequence of the transfer of low molecular weight biosynthetic and signaling molecules through specialized structures (plasmodesmata in plant cells and gap junctions in mammalian cells) that form aqueous channels between contacting cells. Investigations with rat liver demonstrated that cell-cell communication is mediated by a 32 kilodalton polypeptide that forms a hexameric pore structure in the plasma membrane. Following association with the same structure in a contiguous cell, a trans-double membrane channel is created that has been termed a gap junction. In plant tissue, long tubelike structures called plasmodesmata are suggested to serve a similar cell-cell linking function between cytoplasmic compartments. Although morphologically distinct, dynamic observations suggest similarities in transport properties between gap junctions and plasmodesmata. Recent work now provides evidence that these functional similarities may reflect a more profound identity between the paradigm animal gap junction polypeptide (32 kilodalton rat liver polypeptide) and an immunologically homologous protein localized to plant plasma membrane/cell wall fractions that may be a component of plasmodesmata.  相似文献   

18.
The highly regulated structural components of the plant cell form the basis of its function. It is becoming increasingly recognized that cellular components are ordered into regulatory units ranging from the multienzyme complexes that allow metabolic channeling during primary metabolism to the "transducon" complexes of signal transduction elements that allow for the highly efficient transfer of information within the cell. Against this structural background the highly dynamic processes regulating cell function are played out. Recent technological advances in three areas have driven our understanding of the complexities of the structural and functional dynamics of the plant cell. First, microscope and digital camera technology has seen not only improvements in the resolution of the optics and sensitivity of detectors, but also the development of novel microscopy applications such as confocal and multiphoton microscopy. These technologies are allowing cell biologists to image the dynamics of living cells with unparalleled three-dimensional resolution. The second advance has been in the availability of increasingly powerful and affordable computers. The computer control/analysis required for many of the new microscopy techniques was simply unavailable until recently. Third, there have been dramatic advances in the available probes to use with these new microscopy approaches. Thus the plant cell biologist now has available a vast array of fluorescent probes that will report cell parameters as diverse as the pH of the cytosol, the oxygen level in a tissue, or the dynamics of the cytoskeleton. The combination of these new approaches has led to an increasingly detailed picture of how plant cells regulate their activities.  相似文献   

19.
20.
During the past few years, there have been exciting developments in the field of flavoenzymology. New flavoenzymes have been discovered that are implicated in a variety of biological processes, including cell signaling, chromatin remodeling and cell development. The structures of several of these new flavoenzymes have been described, as exemplified by crystallographic analyses of MICAL, histone demethylase LSD1 and tryptophan dehalogenase. In addition, new structural information has revealed the evolutionary and mechanistic complexity of the enzymes of the riboflavin biosynthetic pathway. The integration of the enzymology data with crystallographic studies at atomic resolution is resulting in unprecedented insight into the chemical and geometric properties underlying flavoenzyme function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号