共查询到20条相似文献,搜索用时 9 毫秒
1.
Y.J.E. Björkqvist 《生物化学与生物物理学报:生物膜》2008,1778(4):954-962
Sulfatides (galactosylceramidesulfates) are negatively charged glycosphingolipids that are important constituents of brain myelin membranes. These membranes are also highly enriched in galactosylceramide and cholesterol. It has been implicated that sulfatides, together with other sphingolipids, take part in lateral domain formation in biological membranes. This study was conducted to characterize the lateral phase behavior of N-palmitoyl-sulfatide in mixed bilayer membranes. Going from simple lipid mixtures with sulfatide as the only sphingolipid in a fluid matrix of POPC, to more complex membranes including other sphingolipids, we have examined 1) ordered domain formation with sulfatide, 2) sterol enrichment in such domains and 3) stabilization of the domains against temperature by the addition of calcium. Using two distinct phase selective fluorescent probes, trans-parinaric acid and cholestatrienol, together with a quencher in the fluid phase, we were able to distinguish between ordered domains in general and ordered domains enriched in sterol. We found that N-palmitoyl-sulfatide formed ordered domains when present as the only sphingolipid in a fluid phospholipid bilayer, but these domains did not contain sterol and their stability was unaffected by calcium. However, at low, physiologically relevant concentrations, sulfatide partitioned favorably into domains enriched in other sphingolipids and cholesterol. These domains were stabilized against temperature in the presence of divalent cations. We conclude that sulfatides are likely to affect the lateral organization of biomembranes. 相似文献
2.
1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphocholine (OMPC, edelfosine) and 1-hexadecylphosphocholine (HePC, miltefosine) represent two groups of synthetic ether lipid analogues with anti-tumor activity. Because of their hydrophobic nature, they may become incorporated into plasma membranes of cells, and it has been argued that they may act via association with lipid rafts. With the quenching of steady-state fluorescence of probes preferentially partitioning into sterol-rich ordered domains (cholestatrienol and trans-parinaric acid), we showed that OMPC and HePC by themselves did not form sterol-rich domains in fluid model membranes, in contrast to the two chain ether lipid 1,2-O-dihexadecyl-sn-glycero-3-phosphocholine. Nevertheless, all three ether lipids significantly stabilized palmitoyl-sphingomyelin/cholesterol-rich domains against temperature induced melting. In conclusion, this study shows that anti-tumor ether lipids are likely to affect the properties of cholesterol-sphingomyelin domains (i.e., lipid rafts) when incorporated into cell membranes. 相似文献
3.
David Miller Kalypso Charalambous Dvir Rotem Paul Curnow 《Journal of molecular biology》2009,393(4):815-52
The composition of the lipid bilayer is increasingly being recognised as important for the regulation of integral membrane protein folding and function, both in vivo and in vitro. The folding of only a few membrane proteins, however, has been characterised in different lipid environments. We have refolded the small multidrug transporter EmrE in vitro from a denatured state to a functional protein and monitored the influence of lipids on the folding process. EmrE is part of a multidrug resistance protein family that is highly conserved amongst bacteria and is responsible for bacterial resistance to toxic substances. We find that the secondary structure of EmrE is very stable and only small amounts are denatured even in the presence of unusually high denaturant concentrations involving a combination of 10 M urea and 5% SDS. Substrate binding by EmrE is recovered after refolding this denatured protein into dodecylmaltoside detergent micelles or into lipid vesicles. The yield of refolded EmrE decreases with lipid bilayer compositional changes that increase the lateral chain pressure within the bilayer, whilst conversely, the apparent rate of folding seems to increase. These results add further weight to the hypothesis that an increased lateral chain pressure hinders protein insertion across the bilayer. Once the protein is inserted, however, the greater pressure on the transmembrane helices accelerates correct packing and final folding. This work augments the relatively small number of biophysical folding studies in vitro on helical membrane proteins. 相似文献
4.
Ganguly B Banerjee J Elegbede AI Klocke DJ Mallik S Srivastava DK 《FEBS letters》2007,581(29):5723-5726
We provide evidence that matrix metalloproteinase-7 (MMP-7) interacts with anionic, cationic and neutral lipid membranes, although it interacts strongest with anionic membranes. While the catalytic activity of the enzyme remains unaffected upon binding to neutral and negatively charged membranes, it is drastically impaired upon binding to the positively charged membranes. The structural data reveal that the origin of these features lies in the "bipolar" distribution of the electrostatic surface potentials on the crystallographic structure of MMP-7. 相似文献
5.
Elaidic acid is a trans-fatty acid found in many food products and implicated for having potentially health hazardous effects in humans. Elaidic acid is readily incorporated into membrane lipids in vivo and therefore affects processes regulating membrane physical properties. In this study the membrane properties of sphingomyelin and phosphatidylcholine containing elaidic acid (N-E-SM and PEPC) were determined in bilayer membranes with special emphasis on their interaction with cholesterol and participation in ordered domain formation. In agreement with previous studies the melting temperatures were found to be about 20 °C lower for the elaidoyl than for the corresponding saturated lipids. The trans-unsaturation increased the polarity at the membrane-water interface as reported by Laurdan fluorescence. Fluorescence quenching experiments using cholestatrienol as a probe showed that both N-E-SM and PEPC were incorporated in lateral membrane domains with sterol and saturated lipids. At low temperatures the elaidoyl lipids were even able to form sterol-rich domains without any saturated lipids present in the bilayer. We conclude from this study that the ability of N-E-SM and PEPC to form ordered domains together with cholesterol and saturated phospho- and sphingolipids in model membranes indicates that they might have an influence on raft formation in biological membranes. 相似文献
6.
Regine Willumeit Sérgio S. Funari Beatriz Pozo Navas Sebastian Linser 《生物化学与生物物理学报:生物膜》2005,1669(2):125-134
We have developed a novel α-helical peptide antibiotic termed NK-2. It efficiently kills bacteria, but not human cells, by membrane destruction. This selectivity could be attributed to the different membrane lipid compositions of the target cells. To understand the mechanisms of selectivity and membrane destruction, we investigated the influence of NK-2 on the supramolecular aggregate structure, the phase transition behavior, the acyl chain fluidity, and the surface charges of phospholipids representative for the bacterial and the human cell cytoplasmic membranes. The cationic NK-2 binds to anionic phosphatidylglycerol liposomes, causing a thinning of the membrane and an increase in the phase transition temperature. However, this interaction is not solely of electrostatic but also of hydrophobic nature, indicated by an overcompensation of the Zeta potential. Whereas NK-2 has no effect on phosphatidylcholine liposomes, it enhances the fluidity of phosphatidylethanolamine acyl chains and lowers the phase transition enthalpy of the gel to liquid cristalline transition. The most dramatic effect, however, was observed for the lamellar/inverted hexagonal transition of phosphatidylethanolamine which was reduced by more than 10 °C. Thus, NK-2 promotes a negative membrane curvature which can lead to the collapse of the phosphatidylethanolamine-rich bacterial cytoplasmic membrane. 相似文献
7.
Shishir Jaikishan 《生物化学与生物物理学报:生物膜》2010,1798(10):1987-1994
Sphingolipids have been found to have single methyl branchings both in their long-chain base and in their N-linked acyl chains. In this study we determined how methyl-branching in the N-linked acyl chain of sphingomyelin (SM) affected their membrane properties. SM analogs with a single methyl-branching at carbon 15 (of a 17:0 acyl chain; anteiso) had a lower gel-liquid transition temperature as compared to an iso-branched SM analog. Phytanoyl SM (methyls at carbons 3, 7, 11 and 15) as well as a SM analog with a methyl on carbon 10 in a hexadecanoyl chain failed to show a gel-liquid transition above 10 °C. Only the two distally branched SM analogs (iso and anteiso) formed ordered domains with cholesterol in a 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer. However, domains formed by the branched SM analogs appeared to contain less sterol when compared to palmitoyl SM (PSM) as the saturated phospholipid. Sterol-enriched domains formed by the anteiso SM analog were also less stable against temperature than domains formed by PSM. Both the 10-methyl and phytanoyl SM analogs failed to form sterol-enriched domains in the POPC bilayer. Acyl chain branching weakened SM/sterol interactions markedly when compared to PSM, as also evidenced from the decreased affinity of cholestatrienol to bilayers containing branched SM analogs. Our results show that methyl-branching weakened intermolecular interactions in a position-dependent manner. 相似文献
8.
Hydration and lateral organization in phospholipid bilayers containing sphingomyelin: a 2H-NMR study 下载免费PDF全文
Interfacial properties of lipid bilayers were studied by (2)H nuclear magnetic resonance spectroscopy, with emphasis on a comparison between phosphatidylcholine and sphingomyelin. Spectral resolution and sensitivity was improved by macroscopic membrane alignment. The motionally averaged quadrupolar interaction of interlamellar deuterium oxide was employed to probe the interfacial polarity of the membranes. The D(2)O quadrupolar splittings indicated that the sphingomyelin lipid-water interface is less polar above the phase transition temperature T(m) than below T(m). The opposite behavior was found in phosphatidylcholine bilayers. Macroscopically aligned sphingomyelin bilayers also furnished (2)H-signals from the amide residue and from the hydroxyl group of the sphingosine moiety. The rate of water-hydroxyl deuteron exchange could be measured, whereas the exchange of the amide deuteron was too slow for the inversion-transfer technique employed, suggesting that the amide residue is involved in intermolecular hydrogen bonding. Order parameter profiles in mixtures of sphingomyelin and chain-perdeuterated phosphatidylcholine revealed an ordering effect as a result of the highly saturated chains of the sphingolipids. The temperature dependence of the (2)H quadrupolar splittings was indicative of lateral phase separation in the mixed systems. The results are discussed with regard to interfacial structure and lateral organization in sphingomyelin-containing biomembranes. 相似文献
9.
Biologically important peptides such as the Alzheimer peptide Abeta(1-40) display a reversible random coil <==>beta-structure transition at anionic membrane surfaces. In contrast to the well-studied random coil left arrow over right arrow alpha-helix transition of amphipathic peptides, there is a dearth on information on the thermodynamic and kinetic parameters of the random coil left arrow over right arrow beta-structure transition. Here, we present a new method to quantitatively analyze the thermodynamic parameters of the membrane-induced beta-structure formation. We have used the model peptide (KIGAKI)(3) and eight analogues in which two adjacent amino acids were substituted by their d-enantiomers. The positions of the d,d pairs were shifted systematically along the three identical segments of the peptide chain. The beta-structure content of the peptides was measured in solution and when bound to anionic lipid membranes with circular dichroism spectroscopy. The thermodynamic binding parameters were determined with isothermal titration calorimetry and the binding isotherms were analysed by combining a surface partition equilibrium with the Gouy-Chapman theory. The thermodynamic parameters were found to be linearly correlated with the extent of beta-structure formation. beta-Structure formation at the membrane surface is characterized by an enthalpy change of DeltaH(beta)=-0.23 kcal/mol per residue, an entropy change of DeltaS(beta)=-0.24 cal/mol K residue and a free energy change of DeltaG(beta)=-0.15 kcal/mol residue. An increase in temperature induces an unfolding of beta-structure. The residual free energy of membrane-induced beta-structure formation is close to that of membrane-induced alpha-helix formation. 相似文献
10.
The glycolipid transfer protein (GLTP)-mediated movement of galactosylceramide from model membrane donor vesicles to acceptor vesicles is sensitive to the membrane environment surrounding the glycolipid. GLTP can catalyze the transfer of a fluorescently labeled GSL, anthrylvinyl-galactosylceramide (AV-GalCer), from vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and dipalmitoylphosphatidylcholine matrices, but not from vesicles prepared from N-palmitoylsphingomyelin, regardless of the cholesterol content of the vesicles. In this study, we have examined the structural features of sphingomyelin (SM) that are responsible for its inhibition of the rate of GLTP-catalyzed transfer of AV-GalCer. The rate of glycolipid transfer was enhanced when the N-palmitoyl chain of SM was replaced with an N-oleoyl chain. Analogs of N-palmitoyl-SM in which the 4,5-double bond of the long-chain base is reduced or the 3-hydroxy group is removed did not inhibit GLTP-catalyzed transfer of AV-GalCer. When the donor vesicles were prepared with phosphatidylcholines or ether-linked phosphatidylcholine analogs, the transfer rates of AV-GalCer increased with increasing degree of unsaturation. The rate of AV-GalCer transfer was strongly dependent on the unsaturation degree of the acyl and/or alkyl chains. For ester-linked PCs, the transfer rate increased in the order DPPC < POPC < DOPC, which have 0, 1, and 2 cis double bonds, respectively. 相似文献
11.
Sphingolipids containing very long acyl chains are abundant in certain specialized tissues and minor components of plasma membranes in most mammalian cells. There are cellular processes in which these sphingolipids are required, and the function seems to be mediated through sphingolipid-rich membrane domains. This study was conducted to explore how very long acyl chains of sphingolipids influence their lateral distribution in membranes. Differential scanning calorimetry showed that 24:0- and 24:1-sphingomyelins, galactosylceramides and glucosylceramides exhibited complex thermotropic behavior and partial miscibility with palmitoyl sphingomyelin. The Tm was decreased by about 20 °C for all 24:1-sphingolipids compared to the corresponding 24:0-sphingolipids. The ability to pack tightly with ordered and extended acyl chains is a necessity for membrane lipids to partition into ordered domains in membranes and thus the 24:1-sphingolipids appeared less likely to do so. Fluorescence quenching measurements showed that the 24:0-sphingolipids formed ordered domains in multicomponent membranes, both as the only sphingolipid and mixed with palmitoyl sphingomyelin. These domains had a high packing density which appeared to hinder the partitioning of sterols into them, as reported by the fluorescent cholesterol analog cholestatrienol. 24:0-SM was, however, better able to accommodate sterol than the glycosphingolipids. The 24:1-sphingolipids could, depending on head group structure, either stabilize or disrupt ordered sphingolipid/cholesterol domains. We conclude that very long chain sphingolipids, when present in biological membranes, may affect the physical properties of or the distribution of sterols between lateral domains. It was also evident that not only the very long acyl chain but also the specific molecular structure of the sphingolipids was of importance for their membrane properties. 相似文献
12.
Light chain (or AL) amyloidosis is the most common form of systemic amyloidosis, characterized by the pathological deposition of insoluble fibrils of immunoglobulin light-chain fragments in various organs and tissues, especially in the kidney and heart. Both the triggering factors and the mechanisms involved in the abnormal formation of the insoluble fibrillar aggregates from the soluble proteins are poorly understood. For example, although the fibrillar deposits are typically found associated with the extracellular matrix and basement membranes, it is not clear whether fibrils are initially formed intra- or extracellularly, nor it is understood what determines where the deposits will occur; i.e., site tropism. In the present investigation, we studied the interaction of a recombinant amyloidogenic light-chain variable domain, SMA, with lipid vesicles. The nature of the interaction was dependent on the lipid composition and the SMA to lipid ratio. The most pronounced effect was found from vesicles composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate, which dramatically accelerated fibril growth. Interestingly, spectral probes, such as intrinsic fluorescence and far-UV CD spectroscopy did not show significant conformational changes in the presence of the vesicles. The presence of cholesterol or divalent cations, such as Ca2+ and Mg2+, lead to decreased membrane-induced SMA fibrillation. Thus, membranes may have significant effects on light-chain fibrillation and may contribute to the site selectivity observed in AL amyloidosis. 相似文献
13.
Petrache HI Tristram-Nagle S Gawrisch K Harries D Parsegian VA Nagle JF 《Biophysical journal》2004,86(3):1574-1586
Using x-ray diffraction and NMR spectroscopy, we present structural and material properties of phosphatidylserine (PS) bilayers that may account for the well documented implications of PS headgroups in cell activity. At 30 degrees C, the 18-carbon monounsaturated DOPS in the fluid state has a cross-sectional area of 65.3 A(2) which is remarkably smaller than the area 72.5 A(2) of the DOPC analog, despite the extra electrostatic repulsion expected for charged PS headgroups. Similarly, at 20 degrees C, the 14-carbon disaturated DMPS in the gel phase has an area of 40.8 A(2) vs. 48.1 A(2) for DMPC. This condensation of area suggests an extra attractive interaction, perhaps hydrogen bonding, between PS headgroups. Unlike zwitterionic lipids, stacks of PS bilayers swell indefinitely as water is added. Data obtained for osmotic pressure versus interbilayer water spacing for fluid phase DOPS are well fit by electrostatic interactions calculated for the Gouy-Chapman regime. It is shown that the electrostatic interactions completely dominate the fluctuational pressure. Nevertheless, the x-ray data definitively exhibit the effects of fluctuations in fluid phase DOPS. From our measurements of fluctuations, we obtain the product of the bilayer bending modulus K(C) and the smectic compression modulus B. At the same interbilayer separation, the interbilayer fluctuations are smaller in DOPS than for DOPC, showing that B and/or K(C) are larger. Complementing the x-ray data, (31)P-chemical shift anisotropy measured by NMR suggest that the DOPS headgroups are less sensitive to osmotic pressure than DOPC headgroups, which is consistent with a larger K(C) in DOPS. Quadrupolar splittings for D(2)O decay less rapidly with increasing water content for DOPS than for DOPC, indicating greater perturbation of interlamellar water and suggesting a greater interlamellar hydration force in DOPS. Our comparisons between bilayers of PS and PC lipids with the same chains and the same temperature enable us to focus on the effects of these headgroups on bilayer properties. 相似文献
14.
Lucie Khemtémourian Maarten F.M. Engel Rob M.J. Liskamp J. Antoinette Killian 《生物化学与生物物理学报:生物膜》2010,1798(9):1805-15604
Human islet amyloid polypeptide (hIAPP) forms amyloid fibrils in pancreatic islets of patients with type 2 diabetes mellitus (DM2). The formation of hIAPP fibrils has been shown to cause membrane damage which most likely is responsible for the death of pancreatic islet β-cells during the pathogenesis of DM2. Previous studies have shown that the N-terminal part of hIAPP, hIAPP1-19, plays a major role in the initial interaction of hIAPP with lipid membranes. However, the exact role of this N-terminal part of hIAPP in causing membrane damage is unknown. Here we investigate the structure and aggregation properties of hIAPP1-19 in relation to membrane damage in vitro by using membranes of the zwitterionic lipid phosphatidylcholine (PC), the anionic lipid phosphatidylserine (PS) and mixtures of these lipids to mimic membranes of islet cells. Our data reveal that hIAPP1-19 is weakly fibrillogenic in solution and not fibrillogenic in the presence of membranes, where it adopts a secondary structure that is dependent on lipid composition and stable in time. Furthermore, hIAPP1-19 is not able to induce leakage in membranes of PC/PS or PC bilayers, indicating that the membrane interaction of the N-terminal fragment by itself is not responsible for membrane leakage under physiologically relevant conditions. In bilayers of the anionic lipid PS, the peptide does induce membrane damage, but this leakage is not correlated to fibril formation, as it is for mature hIAPP. Hence, membrane permeabilization by the N-terminal fragment of hIAPP in anionic lipids is most likely an aspecific process, occurring via a mechanism that is not relevant for hIAPP-induced membrane damage in vivo. 相似文献
15.
In oxidative environments, biomembranes contain oxidized lipids with short, polar acyl chains. Two stable lipid oxidation products are PoxnoPC and PazePC. PoxnoPC has a carbonyl group, and PazePC has an anionic carboxyl group pendant at the end of the short, oxidized acyl chain. We have used MD simulations to explore the possibility of complete chain reversal in OXPLs in POPC-OXPL mixtures. The polar AZ chain of PazePC undergoes chain reversal without compromising the lipid bilayer integrity at concentrations up to 25% OXPL, and the carboxyl group points into the aqueous phase. Counterintuitively, the perturbation of overall membrane structural and dynamic properties is stronger for PoxnoPC than for PazePC. This is because of the overall condensing and ordering effect of sodium ions bound strongly to the lipids in the PazePC simulations. The reorientation of AZ chain is similar for two different lipid force fields. This work provides the first molecular evidence of the “extended lipid conformation” in phospholipid membranes. The chain reversal of PazePC lipids decorates the membrane interface with reactive, negatively charged functional groups. Such chain reversal is likely to exert a profound influence on the structure and dynamics of biological membranes, and on membrane-associated biological processes. 相似文献
16.
Iren Constantinescu 《生物化学与生物物理学报:生物膜》2004,1667(1):26-37
We have examined the kinetics of the adsorption of melittin, a secondary amphipathic peptide extracted from bee venom, on lipid membranes using three independent and complementary approaches. We probed (i) the change in the polarity of the 19Trp of the peptide upon binding, (ii) the insertion of this residue in the apolar core of the membrane, measuring the 19Trp-fluorescence quenching by bromine atoms attached on lipid acyl chains, and (iii) the folding of the peptide, by circular dichroism (CD). We report a tight coupling of the insertion of the peptide with its folding as an α-helix. For all the investigated membrane systems (cholesterol-containing, phosphoglycerol-containing, and pure phosphocholine bilayers), the decrease in the polarity of 19Trp was found to be significantly faster than the increase in the helical content of melittin. Therefore, from a kinetics point of view, the formation of the α-helix is a consequence of the insertion of melittin. The rate of melittin folding was found to be influenced by the lipid composition of the bilayer and we propose that this was achieved by the modulation of the kinetics of insertion. The study reports a clear example of the coupling existing between protein penetration and folding, an interconnection that must be considered in the general scheme of membrane protein folding. 相似文献
17.
Benzyl alcohol (BA) has a well-known fluidizing effect on both artificial and cellular membranes. BA is also likely to modulate the activities of certain membrane proteins by decreasing the membrane order. This phenomenon is presumably related to the ability of BA to interrupt interactions between membrane proteins and the surrounding lipids by fluidizing the lipid bilayer. The components of biological membranes are laterally diversified into transient assemblies of varying content and order, and many proteins are suggested to be activated or inactivated by their localization in or out of membrane domains displaying different physical phases. We studied the ability of BA to fluidize artificial bilayer membranes representing liquid-disordered, cholesterol-enriched and gel phases. Multilamellar vesicles were studied by steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene and trans-parinaric acid, which display different phase partitioning. Domains of different degree of order and thermal stability showed varying abilities to resist fluidization by BA. In bilayers composed of mixtures of an unsaturated phosphatidylcholine, a saturated high melting temperature lipid (sphingomyelin or phosphatidylcholine) and cholesterol, BA fluidized and lowered the melting temperature of the ordered and gel phase domains. In general, cholesterol-enriched domains were more resistant to BA than pure gel phase domains. In contrast, bilayers containing high melting temperature gel phase domains containing a ceramide or a galactosylceramide proved to be the most effective in resisting fluidization. The results of our study suggest that the ability of BA to affect the fluidity and lateral organization of the membranes was dependent on the characteristic features of the membrane compositions studied and related to the intermolecular cohesion in the domains. 相似文献
18.
We present a steady-state and time-resolved fluorescence emission spectra analysis of the membrane probe 1-myristoyl-2-[12-[(5-dimethylamino-1-naphthalenesulfonyl)amino]dodecanoyl]-sn-glycero-3-phosphocholine (DANSYL) in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol multi-lamellar vesicles (MLV) prepared by modified rapid solvent exchange. We report that the dose-dependent cholesterol-induced blue shifts in the steady-state fluorescence emission spectra observed in DMPC MLV are due to complex solvent effects that include time-dependent dipolar relaxation and the formation of internal charge transfer (ICT) states. A key finding of this investigation is identification of two distinguishable DANSYL populations existing at both shallow and deep locations in the membrane; these two DANSYL populations are evidence of laterally phase-separated domains at cholesterol compositions between X(chol) = 0.30 and 0.60 at 30 degrees C in DMPC MLV. 相似文献
19.
Antimicrobial peptides have raised much interest as pathogens become resistant against conventional antibiotics. We review biophysical studies that have been performed to better understand the interactions of linear amphipathic cationic peptides such as magainins, cecropins, dermaseptin, δ-lysin or melittin. The amphipathic character of these peptides and their interactions with membranes resemble the properties of detergent molecules and analogies between membrane-active peptide and detergents are presented. Several models have been suggested to explain the pore-forming, membrane-lytic and antibiotic activities of these peptides. Here we suggest that these might be ‘special cases’ within complicated phase diagrams describing the morphological plasticity of peptide/lipid supramolecular assemblies. 相似文献
20.
Moesin and calmodulin (CaM) jointly associate with the cytoplasmic domain of l-selectin in the cell to modulate the function and ectodomain shedding of l-selectin. Using fluorescence spectroscopy, we have examined the association of moesin FERM domain with the recombinant transmembrane and cytoplasmic domains of l-selectin (CLS) reconstituted in model phospholipid liposomes. The dissociation constant of moesin FERM domain to CLS in the phosphatidylcholine liposome is about 300 nM. In contrast to disrupting the CaM association with CLS, inclusion of anionic phosphatidylserine lipids in the phosphatidylcholine liposome increased the apparent binding affinity of moesin FERM domain for CLS. Using the environmentally sensitive fluorescent probe attached to the cytoplasmic domain of CLS and the nitroxide quencher attached to the lipid bilayer, we showed that the association of moesin FERM domain induced the desorption of the basic-rich cytoplasmic domain of CLS from the anionic membrane surface, which enabled subsequent association of CaM to the cytoplasmic domain of CLS. These results have elucidated the molecular basis for the moesin/l-selectin/CaM ternary complex and suggested an important role of phospholipids in modulating l-selectin function and shedding. 相似文献