首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Dark-operative protochlorophyllide oxidoreductase (DPOR) is a nitrogenase-like enzyme consisting of two components, L-protein as a reductase component and NB-protein as a catalytic component. Elucidation of the crystal structures of NB-protein (Muraki et al., Nature 2010, 465: 110–114) has enabled us to study its reaction mechanism in combination with biochemical analysis. Here we demonstrate that nicotinamide (NA) inhibits DPOR activity by blocking the electron transfer from L-protein to NB-protein. A reaction scheme of DPOR, in which the binding of protochlorophyllide (Pchlide) to the NB-protein precedes the electron transfer from the L-protein, is proposed based on the NA effects.  相似文献   

2.
Dark-operative protochlorophyllide oxidoreductase (DPOR) is a nitrogenase-like enzyme catalyzing D-ring reduction of protochlorophyllide in chlorophyll and bacteriochlorophyll biosynthesis. DPOR consists of two components, L-protein and NB-protein, which are structurally related to nitrogenase Fe-protein and MoFe-protein, respectively. Neither Fe-protein nor MoFe-protein is expressed as an active form in Escherichia coli due to the requirement of many Nif proteins for the assembly of the metallocenter and the maturation specific for diazotrophs. Here we report the functional expression of DPOR components from Rhodobacter capsulatus in Escherichia coli. Two overexpression plasmids for L-protein and NB-protein were constructed. L-protein and NB-protein purified from E. coli showed spectroscopic properties similar to those purified from R. capsulatus. L-protein and NB-protein activities were evaluated using a crude extract of E. coli overexpressing NB-protein and L-protein, respectively. Specific activities of the purified L-protein and NB-protein were 219+/-38 and 52.8+/-5.5 nmolChlorophyllide min(-1) mg(-1), respectively, which were even higher than those of L-protein and NB-protein purified from R. capsulatus. These E. coli strains provide a promising system for structural and kinetic analyses of the nitrogenase-like enzymes.  相似文献   

3.
Dark-operative protochlorophyllide (Pchlide) oxidoreductase (DPOR) is a nitrogenase-like enzyme consisting of the two components, L-protein (a ChlL dimer) and NB-protein (a ChlN-ChlB heterotetramer), to catalyze Pchlide reduction in Chl biosynthesis. While nitrogenase is distributed only among certain prokaryotes, the probable structural genes for DPOR are encoded by chloroplast DNA in lower plants. Here we show functional evaluation of DPOR encoded by chloroplast DNA in a moss Physcomitrella patens by the complementation analysis of the cyanobacterium Leptolyngbya boryana and the heterologous reconstitution of the moss L-protein and the cyanobacterial NB-protein. Two shuttle vectors to overexpress chlL and chlN-chlB from P. patens were introduced into the cyanobacterial chlL- and chlB-lacking mutants, respectively. Both transformants restored the ability to perform Chl biosynthesis in the dark, indicating that the chloroplast-encoded DPOR components form an active complex with the cyanobacterial components. The L-protein of P. patens was purified from the cyanobacterial transformant, and DPOR activity was reconstituted in a heterologous combination with the cyanobacterial NB-protein. The specific activity of the L-protein from P. patens was determined to be 118 nmol min(-1) mg (-1), which is even higher than that of the cyanobacterial L-protein (76 nmol min(-1) mg (-1)). Upon exposure to air, the activity of the L-protein from P. patens decayed with a half-life of 30 s, which was eight times faster than that of the cyanobacterial L-protein (240 s). These results suggested that the chloroplast-encoded L-protein functions as efficiently as the cyanobacterial L-protein but is more oxygen labile than the cyanobacterial L-protein.  相似文献   

4.
Dark-operative protochlorophyllide oxidoreductase, a nitrogenase-like enzyme, contains two [4Fe–4S] clusters, one in the L-protein ((BchL)2) and the other in the NB-protein ((BchN–BchB)2). The reduced NB-cluster in the NB-protein, which is ligated by 1Asp/3Cys residues, showed a broad S = 3/2 electron paramagnetic resonance signal that is rather rare in [4Fe–4S] clusters. A 4Cys-ligated NB-cluster in the mutated variant BchB–D36C protein, in which the Asp36 was replaced by a Cys, gave a rhombic normal S = 1/2 signal and lost the catalytic activity. The results suggest that Asp36 contributes to the low redox potential necessary to reduce protochlorophyllide.  相似文献   

5.
Nomata J  Kitashima M  Inoue K  Fujita Y 《FEBS letters》2006,580(26):6151-6154
Dark-operative protochlorophyllide reductase (DPOR) in bacteriochlorophyll biosynthesis is a nitrogenase-like enzyme consisting of L-protein (BchL-dimer) as a reductase component and NB-protein (BchN-BchB-heterotetramer) as a catalytic component. Metallocenters of DPOR have not been identified. Here we report that L-protein has an oxygen-sensitive [4Fe-4S] cluster similar to nitrogenase Fe protein. Purified L-protein from Rhodobacter capsulatus showed absorption spectra and an electron paramagnetic resonance signal indicative of a [4Fe-4S] cluster. The activity quickly disappeared upon exposure to air with a half-life of 20s. These results suggest that the electron transfer mechanism is conserved in nitrogenase Fe protein and DPOR L-protein.  相似文献   

6.
Nomata J  Ogawa T  Kitashima M  Inoue K  Fujita Y 《FEBS letters》2008,582(9):1346-1350
Dark-operative protochlorophyllide (Pchlide) oxidoreductase is a nitrogenase-like enzyme consisting of the two components, L-protein (BchL-dimer) and NB-protein (BchN-BchB-heterotetramer). Here, we show that NB-protein is the catalytic component with Fe-S clusters. NB-protein purified from Rhodobacter capsulatus bound Pchlide that was readily converted to chlorophyllide a upon the addition of L-protein and Mg-ATP. The activity of NB-protein was resistant to the exposure to air. A Pchlide-free form of NB-protein purified from a bchH-lacking mutant showed an absorption spectrum suggesting the presence of Fe-S centers. Together with the Fe and sulfide contents, these findings suggested that NB-protein carries two oxygen-tolerant [4Fe-4S] clusters.  相似文献   

7.
During chlorophyll and bacteriochlorophyll biosynthesis in gymnosperms, algae, and photosynthetic bacteria, dark-operative protochlorophyllide oxidoreductase (DPOR) reduces ring D of aromatic protochlorophyllide stereospecifically to produce chlorophyllide. We describe the heterologous overproduction of DPOR subunits BchN, BchB, and BchL from Chlorobium tepidum in Escherichia coli allowing their purification to apparent homogeneity. The catalytic activity was found to be 3.15 nmol min(-1) mg(-1) with K(m) values of 6.1 microm for protochlorophyllide, 13.5 microm for ATP, and 52.7 microm for the reductant dithionite. To identify residues important in DPOR function, 21 enzyme variants were generated by site-directed mutagenesis and investigated for their metal content, spectroscopic features, and catalytic activity. Two cysteine residues (Cys(97) and Cys(131)) of homodimeric BchL(2) are found to coordinate an intersubunit [4Fe-4S] cluster, essential for low potential electron transfer to (BchNB)(2) as part of the reduction of the protochlorophyllide substrate. Similarly, Lys(10) and Leu(126) are crucial to ATP-driven electron transfer from BchL(2). The activation energy of DPOR electron transfer is 22.2 kJ mol(-1) indicating a requirement for 4 ATP per catalytic cycle. At the amino acid level, BchL is 33% identical to the nitrogenase subunit NifH allowing a first tentative structural model to be proposed. In (BchNB)(2), we find that four cysteine residues, three from BchN (Cys(21), Cys(46), and Cys(103)) and one from BchB (Cys(94)), coordinate a second inter-subunit [4Fe-4S] cluster required for catalysis. No evidence for any type of molybdenum-containing cofactor was found, indicating that the DPOR subunit BchN clearly differs from the homologous nitrogenase subunit NifD. Based on the available data we propose an enzymatic mechanism of DPOR.  相似文献   

8.
During (bacterio)chlorophyll biosynthesis of many photosynthetically active organisms, dark operative protochlorophyllide oxidoreductase (DPOR) catalyzes the two-electron reduction of ring D of protochlorophyllide to form chlorophyllide. DPOR is composed of the subunits ChlL, ChlN, and ChlB. Homodimeric ChlL2 bearing an intersubunit [4Fe-4S] cluster is an ATP-dependent reductase transferring single electrons to the heterotetrameric (ChlN/ChlB)2 complex. The latter contains two intersubunit [4Fe-4S] clusters and two protochlorophyllide binding sites, respectively. Here we present the crystal structure of the catalytic (ChlN/ChlB)2 complex of DPOR from the cyanobacterium Thermosynechococcus elongatus at a resolution of 2.4 Å. Subunits ChlN and ChlB exhibit a related architecture of three subdomains each built around a central, parallel β-sheet surrounded by α-helices. The (ChlN/ChlB)2 crystal structure reveals a [4Fe-4S] cluster coordinated by an aspartate oxygen alongside three cysteine ligands. Two equivalent substrate binding sites enriched in aromatic residues for protochlorophyllide substrate binding are located at the interface of each ChlN/ChlB half-tetramer. The complete octameric (ChlN/ChlB)2(ChlL2)2 complex of DPOR was modeled based on the crystal structure and earlier functional studies. The electron transfer pathway via the various redox centers of DPOR to the substrate is proposed.  相似文献   

9.
10.
In the present studies, we have found a fragment of amino acid sequence, called TFT motif, both in light-dependent protochlorophyllide oxidoreductase (LPOR) and in the L subunit of dark-operative (light-independent) protochlorophyllide oxidoreductases (DPOR). Amino acid residues of this motif shared similar physicochemical properties in both types of the enzymes. In the present paper, physicochemical properties of amino acid residues of this common motif, its spatial arrangement and a possible physiological role are being discussed. This is the first report when similarity between LPOR and DPOR, phylogenetically unrelated, but functionally redundant enzymes, is described.  相似文献   

11.
Bacteriochlorophyll a biosynthesis requires the stereo- and regiospecific two electron reduction of the C7-C8 double bond of chlorophyllide a by the nitrogenase-like multisubunit metalloenzyme, chlorophyllide a oxidoreductase (COR). ATP-dependent COR catalysis requires interaction of the protein subcomplex (BchX)2 with the catalytic (BchY/BchZ)2 protein to facilitate substrate reduction via two redox active iron-sulfur centers. The ternary COR enzyme holocomplex comprising subunits BchX, BchY, and BchZ from the purple bacterium Roseobacter denitrificans was trapped in the presence of the ATP transition state analog ADP·AlF4. Electron paramagnetic resonance experiments revealed a [4Fe-4S] cluster of subcomplex (BchX)2. A second [4Fe-4S] cluster was identified on (BchY/BchZ)2. Mutagenesis experiments indicated that the latter is ligated by four cysteines, which is in contrast to the three cysteine/one aspartate ligation pattern of the closely related dark-operative protochlorophyllide a oxidoreductase (DPOR). In subsequent mutagenesis experiments a DPOR-like aspartate ligation pattern was implemented for the catalytic [4Fe-4S] cluster of COR. Artificial cluster formation for this inactive COR variant was demonstrated spectroscopically. A series of chemically modified substrate molecules with altered substituents on the individual pyrrole rings and the isocyclic ring were tested as COR substrates. The COR enzyme was still able to reduce the B ring of substrates carrying modified substituents on ring systems A, C, and E. However, substrates with a modification of the distantly located propionate side chain were not accepted. A tentative substrate binding mode was concluded in analogy to the related DPOR system.  相似文献   

12.
Biological nitrogen fixation is accomplished by prokaryotes through the catalytic action of complex metalloenzyme, nitrogenase. Nitrogenase is a two-protein component system comprising MoFe protein (NifD&K) and Fe protein (NifH). NifH shares structural and mechanistic similarities as well as evolutionary relationships with light-independent protochlorophyllide reductase (BchL), a photosynthesis-related metalloenzyme belonging to the same protein family. We performed a comprehensive bioinformatics analysis of the NifH/BchL family in order to elucidate the intrinsic functional diversity and the underlying evolutionary mechanism among the members. To analyse functional divergence in the NifH/BchL family, we have conducted pair-wise estimation in altered evolutionary rates between the member proteins. We identified a number of vital amino acid sites which contribute to predicted functional diversity. We have also made use of the maximum likelihood tests for detection of positive selection at the amino acid level followed by the structure-based phylogenetic approach to draw conclusion on the ancient lineage and novel characterization of the NifH/BchL protein family. Our investigation provides ample support to the fact that NifH protein and BchL share robust structural similarities and have probably deviated from a common ancestor followed by divergence in functional properties possibly due to gene duplication  相似文献   

13.
In most oxygenic phototrophs, including cyanobacteria, two independent enzymes catalyze the reduction of protochlorophyllide to chlorophyllide, which is the penultimate step in chlorophyll (Chl) biosynthesis. One is light-dependent NADPH:protochlorophyllide oxidoreductase (LPOR) and the second type is dark-operative protochlorophyllide oxidoreductase (DPOR). To clarify the roles of both enzymes, we assessed synthesis and accumulation of Chl-binding proteins in mutants of cyanobacterium Synechocystis PCC 6803 that either completely lack LPOR or possess low levels of the active enzyme due to its ectopic regulatable expression. The LPOR-less mutant grew photoautotrophically in moderate light and contained a maximum of 20 % of the wild-type (WT) Chl level. Both Photosystem II (PSII) and Photosystem I (PSI) were reduced to the same degree. Accumulation of PSII was mostly limited by the synthesis of antennae CP43 and especially CP47 as indicated by the accumulation of reaction center assembly complexes. The phenotype of the LPOR-less mutant was comparable to the strain lacking DPOR that also contained <25 % of the wild-type level of PSII and PSI when cultivated under light-activated heterotrophic growth conditions. However, in the latter case, we detected no reaction center assembly complexes, indicating that synthesis was almost completely inhibited for all Chl-proteins, including the D1 and D2 proteins.  相似文献   

14.
Nitrogenase-like light-independent protochlorophyllide oxidoreductase (DPOR) is involved in chlorophyll biosynthesis. Bacteriochlorophyll formation additionally requires the structurally related chlorophyllide oxidoreductase (COR). During catalysis, homodimeric subunit BchL2 or ChlL2 of DPOR transfers electrons to the corresponding heterotetrameric catalytic subunit, (BchNB)2 or (ChlNB)2. Analogously, subunit BchX2 of the COR enzymes delivers electrons to subunit (BchYZ)2. Various chimeric DPOR enzymes formed between recombinant subunits (BchNB)2 and BchL2 from Chlorobaculum tepidum or (ChlNB)2 and ChlL2 from Prochlorococcus marinus and Thermosynechococcus elongatus were found to be enzymatically active, indicating a conserved docking surface for the interaction of both DPOR protein subunits. Biotin label transfer experiments revealed the interaction of P. marinus ChlL2 with both subunits, ChlN and ChlB, of the (ChlNB)2 tetramer. Based on these findings and on structural information from the homologous nitrogenase system, a site-directed mutagenesis approach yielded 10 DPOR mutants for the characterization of amino acid residues involved in protein-protein interaction. Surface-exposed residues Tyr127 of subunit ChlL, Leu70 and Val107 of subunit ChlN, and Gly66 of subunit ChlB were found essential for P. marinus DPOR activity. Next, the BchL2 or ChlL2 part of DPOR was exchanged with electron-transferring BchX2 subunits of COR and NifH2 of nitrogenase. Active chimeric DPOR was generated via a combination of BchX2 from C. tepidum or Roseobacter denitrificans with (BchNB)2 from C. tepidum. No DPOR activity was observed for the chimeric enzyme consisting of NifH2 from Azotobacter vinelandii in combination with (BchNB)2 from C. tepidum or (ChlNB)2 from P. marinus and T. elongatus, respectively.Chlorophyll and bacteriochlorophyll biosynthesis, as well as nitrogen fixation, are essential biochemical processes developed early in the evolution of life (1). During biological fixation of nitrogen, nitrogenase catalyzes the reduction of atmospheric dinitrogen to ammonia (2). Enzyme systems homologous to nitrogenase play a crucial role in the formation of the chlorin and bacteriochlorin ring system of chlorophylls (Chl)2 and bacteriochlorophylls (Bchl) (3, 4) (Fig. 1a). For the synthesis of both Chl and Bchl, the stereospecific reduction of the C-17-C-18 double bond of ring D of protochlorophyllide (Pchlide) catalyzed by the nitrogenase-like enzyme light-independent (dark-operative) protochlorophyllide oxidoreductase (DPOR) results in the formation of chlorophyllide (Chlide) (Fig. 1a, left) (5, 6). DPOR enzymes consist of three protein subunits which are designated BchN, BchB and BchL in Bchl-synthesizing organisms and ChlN, ChlB and ChlL in Chl-synthesizing organisms. A second reduction step at ring B (C-7-C-8) unique to the synthesis of Bchl converts the chlorin Chlide into a bacteriochlorin ring structure to form bacteriochlorophyllide (Bchlide) (Fig. 1a, right, Bchlide). This reaction is catalyzed by another nitrogenase-like enzyme, termed chlorophyllide oxidoreductase (COR) (7). COR enzymes are composed of subunits BchY, BchZ, and BchX.Open in a separate windowFIGURE 1.Comparison of the three subunit enzymes DPOR, COR, and nitrogenase. a, during Chl and Bchl biosynthesis, ring D is stereospecifically reduced by the nitrogenase-like enzyme DPOR (subunit composition BchL2/(BchNB)2 or ChlL2/(ChlNB)2) leading to the chlorin Chlide. Subunits N, B, and L are named ChlN, ChlB, and ChlL in Chl-synthesizing organisms and BchN, BchB, and BchL in Bchl-synthesizing organisms. The synthesis of Bchl additionally requires the stereospecific B ring reduction by a second nitrogenase-like enzyme called COR, with the subunit composition BchX2/(BchYZ)2. COR catalyzes the formation of the bacteriochlorin Bchlide. Subunits Y, Z, and X of the COR enzyme are named BchY, BchZ, and BchX. b, the homologous nitrogenase complex has the subunit composition NifH2/(NifD/NifK)2. Rings A–E and the carbon atoms are designated according to IUPAC nomenclature (41). R is either a vinyl or an ethyl moiety. The position marked by an asterisk indicates either a vinyl or a hydroxyethyl moiety (42).All subunits share significant amino acid sequence homology to the corresponding subunits of nitrogenase, which are designated NifD, NifK, and NifH, respectively (1) (compare Fig. 1, a and b). Whereas subunits BchL or ChlL, BchX and NifH exhibit a sequence identity at the amino acid level of ∼33%, subunits BchN or ChlN, BchY, NifD, and BchB or ChlB, BchZ, and NifK, respectively, show lower sequence identities of ∼15% (1). For all enzymes a common oligomeric protein architecture has been proposed consisting of the heterotetrameric complexes (BchNB)2 or (ChlNB)2, (BchYZ)2, and (NifD/NifK)2, which are completed by a homodimeric protein subunit BchL2 or ChlL2, BchX2, and NifH2, respectively (compare Fig. 1, a and b) (3, 7, 8).Nitrogenase is a well characterized protein complex that catalyzes the reduction of nitrogen to ammonia in a reaction that requires at least 16 molecules of MgATP (2, 9, 10). During nitrogenase catalysis, subunit NifH2 (Fe protein) associates with and dissociates from the (NifD/NifK)2 complex (MoFe protein). Binding, hydrolysis of MgATP and structural rearrangements are coupled to sequential intersubunit electron transfer. For this purpose, NifH2 contains an ATP-binding motif and an intersubunit [4Fe-4S] cluster coordinated by two cysteine residues from each NifH monomer (1, 11). Electrons from this [4Fe-4S] cluster are transferred via a [8Fe-7S] cluster (P-cluster) onto the [1Mo-7Fe-9S-X-homocitrate] cluster (MoFe cofactor). Both of the latter clusters are located on (NifD/NifK)2, where dinitrogen is reduced to ammonia (10). Three-dimensional structures of NifH2 in complex with (NifD/NifK)2 revealed a detailed picture of the dynamic interaction of both subcomplexes (8, 12).Based on biochemical and bioinformatic approaches, it has been proposed that the initial steps of DPOR reaction strongly resemble nitrogenase catalysis. Key amino acid residues essential for DPOR function have been identified by mutagenesis of the enzyme from Chlorobaculum tepidum (formerly denoted as Chlorobium tepidum) (3). The catalytic mechanism of DPOR includes the electron transfer from a “plant-type” [2Fe-2S] ferredoxin onto the dimeric DPOR subunit, BchL2, carrying an intersubunit [4Fe-4S] redox center coordinated by Cys97 and Cys131 in C. tepidum. Analogous to nitrogenase, Lys10 in the phosphate-binding loop (P-loop) and Leu126 in the switch II region of DPOR were found essential for DPOR catalysis. Moreover, it was shown that the BchL2 protein from C. tepidum does not form a stable complex with the catalytic (BchNB)2 subcomplex. Therefore, a transient interaction responsible for the electron transfer onto protein subunit (BchNB)2 has been proposed (3).The subsequent [Fe-S] cluster-dependent catalysis and the specific substrate recognition at the active site located on subunit (BchNB)2 are unrelated to nitrogenase. The (BchNB)2 subcomplex was shown to carry a second [4Fe-4S] cluster, which was proposed to be ligated by Cys21, Cys46, and Cys103 of the BchN subunit and Cys94 of subunit BchB (C. tepidum numbering) (3). No evidence for any type of additional cofactor was obtained from biochemical and EPR spectroscopic analyses (5, 13). Thus, despite the same common oligomeric architecture, the catalytic subunits (BchNB)2 and (ChlNB)2 clearly differ from the corresponding nitrogenase complex, as no molybdenum-containing cofactor or P-cluster equivalent is employed (5, 14). From these results it was concluded that electrons from the [4Fe-4S] cluster of (BchNB)2 or (ChlNB)2 are transferred directly onto the Pchlide substrate at the active site of DPOR.The second nitrogenase-like enzyme, COR, catalyzes the reduction of ring B of Chlide during the biosynthesis of Bchl (7). Therefore, an accurate discrimination of the ring systems of the individual substrates is required. COR subunits share an overall amino acid sequence identity of 15–22% for BchY and BchZ and 31–35% for subunit BchX when compared with the corresponding DPOR subunits (supplemental Figures S2–S4). In amino acid sequence alignments of BchX proteins with the closely related BchL or ChlL subunits of DPOR, both cysteinyl ligands responsible for [4Fe-4S] cluster formation and residues for ATP binding are conserved (1). Furthermore, all cysteinyl residues characterized as ligands for a catalytic [4Fe-4S] cluster in (BchNB)2 or (ChlNB)2 are conserved in the sequences of subunits BchY and BchZ of COR (7). These findings correspond to a recent EPR study in which a characteristic signal for a [4Fe-4S] cluster was obtained for the COR subunit BchX2 as well as for subunit (BchYZ)2 (15). These results indicate that the catalytic mechanism of COR strongly resembles DPOR catalysis. In vitro assays for nitrogenase as well as for DPOR and COR make use of the artificial electron donor dithionite in the presence of high concentrations of ATP (7, 16, 17).

TABLE 1

Amino acid sequence identities of the individual subunits of DPOR, COR, and nitrogenaseAmino acid sequences of the individual subunits of DPOR, COR, and nitrogenase employed in the present study (compareFig. 3A) were aligned by using the ClustalW method in MegAlign (DNASTAR), and sequence identities were calculated.
DPOR
COR
Nitrogenase
NBLYZXNifDNifKNifH
DPOR
    N37–5815–1812–20
    B34–6215–2214–18
    L51–6931–3531–38

COR
    Y35–7813–15
    Z39–8111–16
    X42–8329–36

Nitrogenase
    NifD17–70
    NifK37–58
    NifH67–75
Open in a separate windowIn this study, we investigated the transient interaction of the dimeric subunit BchL2 or ChlL2 with the heterotetrameric (BchNB)2 or (ChlNB)2 complex, which is essential for DPOR catalysis. We make use of the individually purified DPOR subunits BchL2 and (BchNB)2 from the green sulfur bacterium C. tepidum and ChlL2 and (ChlNB)2 from the prochlorophyte Prochlorococcus marinus and from the cyanobacterium Thermosynechococcus elongatus. The individual combination of (BchNB)2 or (ChlNB)2 complexes and BchL2 or ChlL2 proteins from these organisms resulted in catalytically active chimeras of DPOR. These results enabled us to propose conserved regions of the postulated docking surface, which were subsequently verified in a mutagenesis study. To elucidate the potential evolution of the electron-transferring subunit of nitrogenase and nitrogenase-like enzymes, we also analyzed chimeric enzymes consisting of DPOR subunits (BchNB)2 or (ChlNB)2 in combination with subunits BchX2 from C. tepidum and R. denitrificans of the COR enzyme and with subunit NifH2 of nitrogenase from Azotobacter vinelandii, respectively.  相似文献   

15.
Chlorophyll and bacteriochlorophyll biosynthesis requires the two-electron reduction of protochlorophyllide a ringDbya protochlorophyllide oxidoreductase to form chlorophyllide a. A light-dependent (light-dependent Pchlide oxidoreductase (LPOR)) and an unrelated dark operative enzyme (dark operative Pchlide oxidoreductase (DPOR)) are known. DPOR plays an important role in chlorophyll biosynthesis of gymnosperms, mosses, ferns, algae, and photosynthetic bacteria in the absence of light. Although DPOR shares significant amino acid sequence homologies with nitrogenase, only the initial catalytic steps resemble nitrogenase catalysis. Substrate coordination and subsequent [Fe-S] cluster-dependent catalysis were proposed to be unrelated. Here we characterized the first cyanobacterial DPOR consisting of the homodimeric protein complex ChlL(2) and a heterotetrameric protein complex (ChlNB)(2). The ChlL(2) dimer contains one EPR active [4Fe-4S] cluster, whereas the (ChlNB)(2) complex exhibited EPR signals for two [4Fe-4S] clusters with differences in their g values and temperature-dependent relaxation behavior. These findings indicate variations in the geometry of the individual [4Fe-4S] clusters found in (ChlNB)(2). For the analysis of DPOR substrate recognition, 11 synthetic derivatives with altered substituents on the four pyrrole rings and the isocyclic ring plus eight chlorophyll biosynthetic intermediates were tested as DPOR substrates. Although DPOR tolerated minor modifications of the ring substituents on rings A-C, the catalytic target ring D was apparently found to be coordinated with high specificity. Furthermore, protochlorophyllide a, the corresponding [8-vinyl]-derivative and protochlorophyllide b were equally utilized as substrates. Distinct differences from substrate binding by LPOR were observed. Alternative biosynthetic routes for cyanobacterial chlorophyll biosynthesis with regard to the reduction of the C8-vinyl group and the interconversion of a chlorophyll a/b type C7 methyl/formyl group were deduced.  相似文献   

16.
Ginkgo biloba L. is a large tree native in China with evolutionary affinities to the conifers and cycads. However unlike conifers, the gymnosperm G. biloba is not able to synthesize chlorophyll (Chl) in the dark, in spite of the presence of genes encoding subunits of light-independent protochlorophyllide oxidoreductase (DPOR) in the plastid genome. The principal aims of the present study were to investigate the presence of DPOR protein subunits (ChlL, ChlN, ChlB) as well as the key regulatory step in Chl formation: aminolevulinic acid (ALA) synthesis and abundance of the key regulatory enzyme in its synthesis: glutamyl-tRNA reductase (GluTR). In addition, functional stage of photosynthetic apparatus and assembly of pigment-protein complexes were investigated. Dark-grown, illuminated and circadian-grown G. biloba seedlings were used in our experiments. Our results clearly showed that no protein subunits of DPOR were detected irrespective of light conditions, what is consistent with the absence of Chl and Chl-binding proteins (D1, LHCI, LHCIIb) in the dark. This correlates with low ALA-synthesizing capacity and low amount of GluTR. The concentration of protochlorophyllide (Pchlide) in the dark is low and non-photoactive form (Pchlide633) was predominant. Plastids were developed as typical etioplasts with prollamelar body and few prothylakoid membranes. Continual illumination (24 h) only slightly stimulated ALA and Chl synthesis, although Pchlide content was reduced. Prollamelar bodies disappeared, but no grana were formed, what was consistent with the absence of D1, LHCI, LHCIIb proteins. Lightinduced development of photosynthetic apparatus is extremely slow, as indicated by Chl fluorescence and gas exchange measurements. Even after 72 h of continuous illumination, the values of maximum (Fv/Fm) and effective quantum yield (ΦPSII) and rate of net photosynthesis (P N) did not reach the values comparable with circadian-grown plants.  相似文献   

17.
Etiolated excised cucumber cotyledons (Cucumis sativus L. cv. Alpha Green), while greening in distilled water, synthesized and accumulated several metalloporphyrins in the absence of added substrates or inhibitors. The metalloporphyrins, undetectable by conventional spectrophotometry, exhibited distinct fluorescence emission and excitation properties in situ and in organic solvents. The metalloporphyrins were partially segregated on thin layers of silica gel H into three Chromatographic bands and the bands were eluted in methyl alcohol:acetone (4:1 vv). The metalloporphyrins in the eluted bands were characterized by their soret excitation and short-wavelength emission maxima. One of the metalloporphyrins of band 3 (Rf, 0.4?0.56) was identified as Mg-protoporphyrin monoester. It was accompanied by traces of two other metalloporphyrins. Band 2 (Rf, 0.32?0.48) was made up of three metalloporphyrins and had the Chromatographic mobility of endogenous protochlorophyllide. Band 1 (Rf, 0.22?0.43) was made up of two metalloporphyrins; it moved with endogenous chlorophyllide. The metalloporphyrins of band 2 and 1 exhibited fluorescence emission and excitation maxima similar to Mg-protoporphyrin monoester but slightly shifted to longer wavelengths. The Chromatographic and spectral properties of these compounds suggested that they represent intermediates between Mg-protoporphyrin IX monomethyl ester and protochlorophyllide. The analytical techniques described in this work may prove useful in the elucidation of the enzymology between protoporphyrin IX and protochlorophyllide.  相似文献   

18.
The chlorophyll repair potential of mature Cucumis chloroplasts incubated in a simple Tris-HCI/sucrose medium is described. The chloroplasts were isolated from green, fully expanded Cucumis cotyledons which were capable of chlorophyll repair. This was evidenced by a functional chlorophyll biosynthetic pathway in the mature tissue. The biosynthesis of protochlorophyllide from exogenous δ-aminolevulinic acid was used as a marker for the operation of the chlorophyll biosynthetic chain between δ-aminolevulinic acid and protochlorophyllide. The conversion of exogenous protochlorophyllide into chlorophyll a was used as a marker for the operation of the chlorophyll pathway beyond protochlorophyllide. It appeared from these studies that contrary to published reports, unfortified fully developed Cucumis chloroplasts incubated in Tris-HCl/sucrose without the addition of cofactors exhibited a partial and limited chlorophyll repair capability. Their net tetrapyrrole biosynthetic competence from δ-aminolevulinic acid was confined to the accumulation of coproporphyrin. No net tetrapyrrole biosynthesis beyond coproporphyrin was observed. However, the plastids were capable of incorporating small amounts of δ-amino-[4-14C]levulinic acid into [14C] protochlorophyllide but were incapable of converting exogenous protochlorophyllide into chlorophyll. After prolonged incubation of the unfortified chloroplasts in the dark, a fluorescent protochlorophyllide-like compound accumulated. This compound [Cp (E430-F631)] exhibited a soret excitation maximum at 430 nm (E430) and a fluorescence emission maximum at 631 nm (F631) in methanol/acetone (4 : 1, v/v). Cp (E430-F631) was shown to be neither protochlorophyllide nor zinc-protochlorophyllide but an enzymatic degradation product of chlorophyll. The exact chemical identity of this compound has not yet been determined.  相似文献   

19.
Many Genista species (Leguminosae), containing isoflavones as biologically active substances, show interesting biological properties such as hypoglycemic, antiinflammatory, antiulcer, spasmolytic, antioxidant, estrogenic and cytotoxic activity against different human cancer cell lines. In this work, we describe the chemical composition of the methanolic extracts from aerial parts of Genista sessilifolia DC. and Genista tinctoria L., and their biological activity testing the effect on pBR322 DNA cleavage induced by hydroxyl radicals (OH), generated from UV-photolysis of hydrogen peroxide (H2O2) and by nitric oxide (NO). In addition, we investigated the growth inhibitory activity of these natural products against human melanoma cell line (M14). The extracts of G. sessilifolia and G. tinctoria, for their isoflavone components, showed a protective effect on UV light and nitric oxide-mediated plasmid DNA damage, and inhibited the growth of melanoma cells. The data of the present study also suggest that these natural products could trigger apoptotic death in M14 cells. In fact, a high DNA fragmentation (COMET assay) and a significant increase of caspase-3 activity, not correlated to LDH release, a marker of membrane breakdown, occurred in melanoma cells exposed to these extracts. The significant production of reactive oxygen species (ROS) evidenced in these experimental conditions could contribute to trigger the apoptosis cascades.  相似文献   

20.
莲胚芽叶绿素合成对光照的依赖性   总被引:3,自引:0,他引:3  
被子植物的叶绿素合成需要光照,但是莲(Nelumbo nucifera Gaertn.)胚芽却一直被猜测具有在黑暗中合成叶绿素的能力,因为莲胚芽变绿是在四重覆盖物(子叶、种皮、果皮和莲蓬)包被下几乎不大可能秀光的环境中发生的,本实验从正反两个方面否定了这种可能性;首先对处于发育早期的莲蓬进行遮光处理。结果发现莲胚芽虽然可以继续发育,但是它的叶绿素合成却受到严重抑制。积累了大量合成叶绿素的前体,并且这些前体主要与依赖光的原叶绿素酸酯氧还酶(LPOR)结合在一起;其次不依赖光的原叶绿素酸酯氧还酶(DPOR)的编码基因在物种间高度保守,但是用PCR的方法在功基因组中却扩增不同源序列,表明莲胚芽不大可能具有在黑暗中合成叶绿素所必需的酶。两方面实验结果表明,莲胚芽的叶绿素合成只能通过依赖光的途径进行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号