首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic low-frequency stimulation of rabbit tibialis anterior muscle over a 24-h period induces a conspicuous loss of isometric tension that is unrelated to muscle energy metabolism (J.A. Cadefau, J. Parra, R. Cusso, G. Heine, D. Pette, Responses of fatigable and fatigue-resistant fibres of rabbit muscle to low-frequency stimulation, Pflugers Arch. 424 (1993) 529-537). To assess the involvement of sarcoplasmic reticulum and transverse tubular system in this force impairment, we isolated microsomal fractions from stimulated and control (contralateral, unstimulated) muscles on discontinuous sucrose gradients (27-32-34-38-45%, wt/wt). All the fractions were characterized in terms of calcium content, Ca2+/Mg2+-ATPase activity, and radioligand binding of [3H]-PN 200-110 and [3H]ryanodine, specific to dihydropyridine-sensitive calcium channels and ryanodine receptors, respectively. Gradient fractions of muscles stimulated for 24 h underwent acute changes in the pattern of protein bands. First, light fractions from longitudinal sarcoplasmic reticulum, enriched in Ca2+-ATPase activity, R1 and R2, were greatly reduced (67% and 51%, respectively); this reduction was reflected in protein yield of crude microsomal fractions prior to gradient loading (25%). Second, heavy fractions from the sarcoplasmic reticulum were modified, and part (52%) of the R3 fraction was shifted to the R4 fraction, which appeared as a thick, clotted band. Quantification of [3H]-PN 200-110 and [3H]-ryanodine binding revealed co-migration of terminal cisternae and t-tubules from R3 to R4, indicating the presence of triads. This density change may be associated with calcium overload of the sarcoplasmic reticulum, since total calcium rose three- to fourfold in stimulated muscle homogenates. These changes correlate well with ultrastructural damage to longitudinal sarcoplasmic reticulum and swelling of t-tubules revealed by electron microscopy. The ultrastructural changes observed here reflect exercise-induced damage of membrane systems that might severely compromise muscle function. Since this process is reversible, we suggest that it may be part of a physiological response to fatigue.  相似文献   

2.
Ryanodine at concentrations of 0.01-10 microM increased, while greater concentrations of 10-300 microM decreased the calcium permeability of both rabbit fast twitch skeletal muscle junctional and canine cardiac sarcoplasmic reticulum membranes. Ryanodine did not alter calcium binding by either sarcoplasmic reticulum membranes or the calcium binding protein, calsequestrin. Therefore, the effects by this agent appear to involve only changes in membrane permeability, and the characteristics of the calcium permeability pathway affected by ryanodine were those of the calcium release channel. Consistent with this, the actions by ryanodine were localized to junctional sarcoplasmic reticulum membranes and were not observed with either longitudinal sarcoplasmic reticulum or transverse tubular membranes. In addition, passage of the junctional sarcoplasmic reticulum membranes through a French press did not diminish the effects of ryanodine indicating that intact triads were not required. Under the conditions used for the permeability studies, the binding of [3H]ryanodine to skeletal junctional sarcoplasmic reticulum membranes was specific and saturable, and Scatchard analyses indicated the presence of a single binding site with a Kd of 150-200 nM and a maximum capacity of 10.1-18.9 pmol/mg protein. [3H]ryanodine binding to this site and the increase in membrane calcium permeability caused by low concentrations of ryanodine had similar characteristics suggesting that actions at this site produce this effect. Depending on the assay conditions used, ryanodine (100-300 microM) could either increase or decrease ATP-dependent calcium accumulation by skeletal muscle junctional sarcoplasmic reticulum membranes indicating that the alterations of sarcoplasmic reticulum membrane calcium permeability caused by this agent can be determined in part by the experimental environment.  相似文献   

3.
Ryanodine is a neutral plant alkaloid which functions as a probe for an intracellular Ca2+ release channel (ryanodine receptor) in excitable tissues. Using [3H]ryanodine, a 30 S protein complex comprised of four polypeptides of Mr 565,000 has been isolated and functionally reconstituted into planar lipid bilayers. The effects of salt concentration and divalent cations on skeletal muscle sarcoplasmic reticulum [3H]ryanodine binding and Ca2+ release channel activity have been compared. These studies suggest that ryanodine is a good probe for investigating the function of the release channel.  相似文献   

4.
The high affinity ryanodine receptor of the Ca2+ release channel from junctional sarcoplasmic reticulum of rabbit skeletal muscle has been identified and characterized using monoclonal antibodies. Anti-ryanodine receptor monoclonal antibody XA7 specifically immunoprecipitated [3H]ryanodine-labeled receptor from digitonin-solubilized triads in a dose-dependent manner. [3H]Ryanodine binding to the immunoprecipitated receptor from unlabeled digitonin-solubilized triads was specific, Ca2+-dependent, stimulated by millimolar ATP, and inhibited by micromolar ruthenium red. Indirect immunoperoxidase staining of nitrocellulose blots of various skeletal muscle membrane fractions has demonstrated that anti-ryanodine receptor monoclonal antibody XA7 recognizes a high molecular weight protein (approximately 350,000 Da) which is enriched in isolated triads but absent from light sarcoplasmic reticulum vesicles and transverse tubular membrane vesicles. Thus, our results demonstrate that monoclonal antibodies to the approximately 350,000-Da junctional sarcoplasmic reticulum protein immunoprecipitated the ryanodine receptor with properties identical to those expected for the ryanodine receptor of the Ca2+ release channel.  相似文献   

5.
1. Caffeine at 0.3–10 mM enhanced the binding of [3H]ryanodine to calcium-release channels of rabbit muscle sarcoplasmic reticulum. A variety of other xanthines were as efficacious as caffeine or nearly so, but none appeared markedly more potent.2. Caffeine at 1 mM markedly inhibited binding of [3H]diazepam to GABAA receptors in rat cerebral cortical membranes.3. Other xanthines also inhibited binding with certain dimethylpropargylxanthines being nearly fivefold more potent than caffeine.4. Caffeine at 1 mM stimulated binding of [35S]TBPS to GABAA receptors as did certain other xanthines.5. The dimethylpropargylxanthines had little effect. 1,3-Dipropy1-8-cyclopentylxan- thine at 100 M had no effect on [3H]diazepam binding, but markedly inhibited [35S]TBPS binding.6. Structure–activity relationships for xanthines do differ for calcium-release channels and and for different sites on GABAA receptors, but no highly selective lead compounds were identified.  相似文献   

6.
Abstract

Specific binding sites for the alkaloid ryanodine were characterized in membrane preparations from sarcoplasmatic reticulum of Periplaneta americana skeletal muscle. Binding of [3H]ryanodine was optimal at pH 8 and at CaCl2 concentration of about 300 μmol l-1. The Ca-chelating agents EGTA (100 μmol l-1) and EDTA (100 μmol l-1) abolished 95 % and 90 % of the [3H]ryanodine binding respectively. Preincubation with Ca2+ (100 μmol l-1) restored the ryanodine binding in presence of up to 300 μmol l-1 EGTA. Radioligand binding experiments showed one class of high affinity binding sites for ryanodine. Determination of rate constants revealed 7.05 × 106 l mol-1 min-1 for associating and 3.77 × 10-3 min-1 for the dissociating [3H]ryandine ryanodine receptor complex. Solubility of the ryanodine receptor was examined with different anionic, non-ionic and zwitterionic detergents. Best solubilization results of “calcium release channel” of cockroach muscle membrane preparations were obtained with the detergent CHAPS in a concentration of 5 mg ml-1.  相似文献   

7.
The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified by immunoaffinity chromatography as a single approximately 450,000-Da polypeptide and it was shown to mediate single channel activity identical to that of the ryanodine-treated Ca2+ release channel of the sarcoplasmic reticulum. The purified receptor had a [3H]ryanodine binding capacity (Bmax) of 280 pmol/mg and a binding affinity (Kd) of 9.0 nM. [3H]Ryanodine binding to the purified receptor was stimulated by ATP and Ca2+ with a half-maximal stimulation at 1 mM and 8-9 microM, respectively. [3H]Ryanodine binding to the purified receptor was inhibited by ruthenium red and high concentrations of Ca2+ with an IC50 of 2.5 microM and greater than 1 mM, respectively. Reconstitution of the purified receptor in planar lipid bilayers revealed the Ca2+ channel activity of the purified receptor. Like the native sarcoplasmic reticulum Ca2+ channels treated with ryanodine, the purified receptor channels were characterized by (i) the predominance of long open states insensitive to Mg2+ and ruthenium red, (ii) a main slope conductance of approximately 35 pS and a less frequent 22 pS substate in 54 mM trans-Ca2+ or Ba2+, and (iii) a permeability ratio PBa or PCa/PTris = 8.7. The approximately 450,000-Da ryanodine receptor channel thus represents the long-term open "ryanodine-altered" state of the Ca2+ release channel from sarcoplasmic reticulum. We propose that the ryanodine receptor constitutes the physical pore that mediates Ca2+ release from the sarcoplasmic reticulum of skeletal muscle.  相似文献   

8.
The effect of clinical concentrations of volatile anesthetics on ryanodine receptors of cardiac and skeletal muscle sarcoplasmic reticulum was evaluated using [3H]ryanodine binding. At 2 volume percent, halothane and enflurane stimulated binding to cardiac SR by 238% and 204%, respectively, while isoflurane had no effect. In contrast, halothane and enflurane had no effect on [3H]ryanodine binding to skeletal ryanodine receptors, while isoflurane produced a significant stimulation. These results suggest that volatile anesthetics interact in a site-specific manner with ryanodine receptors of cardiac or skeletal muscle to effect Ca2+ release-channel gating.  相似文献   

9.
We have investigated the links between electrical excitation and contraction in mammalian heart muscle. Using isolated single cells from adult rat ventricle, a whole-cell voltage-clamp technique and quantitative fluorescence microscopy, we have measured simultaneously calcium current (Ica) and [Ca2+]i (with fura-2). We find that the voltage-dependence of Ica and the [Ca 2+]i-transient and the dependence of [Ca2+]i-transient on depolarization-duration cannot both be readily explained by a simple calcium-induced Ca-release (CICR) mechanism. Additionally, we find that when [Ca2+]i and [Na+]i are at their diastolic levels, activation of the Na-Ca exchange mechanism by depolarization does not measurably trigger the release of Ca2+i. Finally, measuring Ica in adult and neonatal rat heart cells and using the alkaloid ryanodine, we have carried out complementary experiments. These experiments show that there may be an action of ryanodine on Ica that is independent of [Ca2+]i and independent of a direct action of the alkaloid on the calcium channel itself. Along with experiments of others showing that ryanodine binds to the sarcoplasmic reticulum calcium-release channel/spanning protein complex, our data suggests a model to explain our findings. The model links the calcium channels responsible for Ica to the sarcoplasmic reticulum by means of one or more of the spanning protein(s). Information from the calcium channel can be communitated to the sarcoplasmic reticulum by this route and, presumably, information can move in the opposite direction from the sarcoplasmic reticulum to the calcium channel.  相似文献   

10.
At micromolar concentrations, ryanodine interacts with the dihydropyridine receptor of rabbit skeletal muscle transverse tubules. Ryanodine displaces specifically bound [3H]PN200-110 with an apparent inhibition constant of approx. 95 microM and inhibits dihydropyridine-sensitive calcium channels in the same preparation with an IC50 of approx. 45 microM. These concentrations of ryanodine are approximately three orders of magnitude higher than those required to saturate binding of the alkaloid to the ryanodine receptor of sarcoplasmic reticulum and to open the calcium release channel of sarcoplasmic reticulum (i.e. 20 nM (1988) J. Gen. Physiol. 92, 1-26). Thus at sufficiently high dose, ryanodine may affect SR as well as plasma membrane Ca permeabilities.  相似文献   

11.
In this paper, we describe a simple and reproducible method for purifying large quantities of ryanodine receptor from skeletal muscle membranes. The procedure involves the use of ion exchange chromatography and sucrose gradient centrifugation to purify the protein which has been identified as the calcium release protein of the sarcoplasmic reticulum (Imagawa, T., Smith, J., Coronado, R. and Campbell, K. (1987) J. Biol. Chem. 262:16,636–16,643). Addition of micromolar quantities of unlabeled ryanodine prior to solubilization and throughout the isolation procedure appears to stabilize the tetrameric structure of the ryanodine receptor. The purified receptor, consisting predominantly of a 400K polypeptide on SDS-PAGE, binds [3H]ryanodine with a binding affinity similar to that in membranes. Overall recovery of ryanodine binding activity was 21% of the initial activity with a 30-fold purification of the receptor.  相似文献   

12.
Abnormal sarcoplasmic reticulum ryanodine receptor in malignant hyperthermia   总被引:17,自引:0,他引:17  
Previous studies have demonstrated that skeletal muscle from individuals susceptible to malignant hyperthermia (MH) has a defect associated with the mechanism of calcium release from its intracellular storage sites in the sarcoplasmic reticulum (SR). In this report we demonstrate that the [3H]ryanodine receptor of isolated MH-susceptible (MHS) porcine heavy SR exhibits an altered Ca2+ dependence of [3H]ryanodine binding at the low affinity Ca2+ site as well as a lower Kd for ryanodine (92 versus 265 nM) when compared to normal porcine SR. The Bmax of the normal and MHS [3H] ryanodine receptor (9.3-12.6 pmol/mg) was not significantly different, and analysis of MHS and normal SR proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis did not reveal a significant difference in the intensity of Coomassie Blue staining of the spanning protein/ryanodine receptor region of the gels (Mr greater than 300,000). We also find that MHS porcine muscle intact fiber bundles exhibit a 5-10-fold lower ryanodine threshold for twitch and tetanus inhibition, and contracture onset when compared to normal muscle. Since the SR ryanodine receptor is a calcium release channel as well as a component intimately involved in transverse tubule-SR communication, abnormalities in the skeletal muscle ryanodine receptor may be responsible for the abnormal SR calcium release and contractile properties demonstrated by MHS muscle.  相似文献   

13.
The scorpion toxin maurocalcine acts as a high affinity agonist of the type-1 ryanodine receptor expressed in skeletal muscle. Here, we investigated the effects of the reducing agent dithiothreitol or the oxidizing reagent thimerosal on type-1 ryanodine receptor stimulation by maurocalcine. Maurocalcine addition to sarcoplasmic reticulum vesicles actively loaded with calcium elicited Ca2+ release from native vesicles and from vesicles pre-incubated with dithiothreitol; thimerosal addition to native vesicles after Ca2+ uptake completion prevented this response. Maurocalcine enhanced equilibrium [3H]-ryanodine binding to native and to dithiothreitol-treated reticulum vesicles, and increased 5-fold the apparent Ki for Mg2+ inhibition of [3H]-ryanodine binding to native vesicles. Single calcium release channels incorporated in planar lipid bilayers displayed a long-lived open sub-conductance state after maurocalcine addition. The fractional time spent in this sub-conductance state decreased when lowering cytoplasmic [Ca2+] from 10 μM to 0.1 μM or at cytoplasmic [Mg2+]  30 μM. At 0.1 μM [Ca2+], only channels that displayed poor activation by Ca2+ were readily activated by 5 nM maurocalcine; subsequent incubation with thimerosal abolished the sub-conductance state induced by maurocalcine. We interpret these results as an indication that maurocalcine acts as a more effective type-1 ryanodine receptor channel agonist under reducing conditions.  相似文献   

14.
Oxidized low density lipoprotein (oxLDL) has been identified as a potentially important atherogenic factor. Atherosclerosis is characterized by the accumulation of lipid and calcium in the vascular wall. OxLDL plays a significant role in altering calcium homeostasis within different cell types. In our previous study, chronic treatment of vascular smooth muscle cells (VSMC) with oxLDL depressed Ca2+ i homeostasis and altered two Ca2+ release mechanisms in these cells (IP3 and ryanodine sensitive channels). The purpose of the present study was to further define the effects of chronic treatment with oxLDL on the smooth muscle sarcoplasmic reticulum (SR) Ca2+ pump. One of the primary Ca2+ uptake mechanisms in VSMC is through the SERCA2 ATPase calcium pump in the sarcoplasmic reticulum. VSMC were chronically treated with 0.005-0.1 mg/ml oxLDL for up to 6 days in culture. Cells treated with oxLDL showed a significant increase in the total SERCA2 ATPase content. These changes were observed on both Western blot and immunocytochemical analysis. This increase in SERCA2 ATPase is in striking contrast to a significant decrease in the density of IP3 and ryanodine receptors in VSMC as the result of chronic treatment with oxLDL. This response may suggest a specific adaptive mechanism that the pump undergoes to attempt to maintain Ca2+ homeostasis in VSMC chronically exposed to atherogenic oxLDL.  相似文献   

15.
The same isoform of ryanodine receptor (RYR1) is expressed in both fast and slow mammalian skeletal muscles. However, differences in contractile activation and calcium release kinetics in intact and skinned fibers have been reported. In this work, intracellular Ca2+ transients were measured in soleus and extensor digitorum longus (EDL) single muscle fibers using mag-fura-2 (K D for Ca2+= 49 μm) as Ca2+ fluorescent indicator. Fibers were voltage-clamped at V h =−90 mV and sarcoplasmic reticulum calcium release was measured at the peak (a) and at the end (b) of 200 msec pulses at +10 mV. Values of a-b and b were assumed to correspond to Ca2+-gated and voltage-gated Ca2+ release, respectively. Ratios (b/a-b) in soleus and EDL fibers were 0.41 ± 0.05 and 1.01 ± 0.13 (n= 12), respectively. This result suggested that the proportion of dihydropyridine receptor (DHPR)-linked and unlinked RYRs is different in soleus and EDL muscle. The number of DHPR and RYR were determined by measuring high-affinity [3H]PN200-110 and [3H]ryanodine binding in soleus and EDL rat muscle homogenates. The B max values corresponded to a PN200-110/ryanodine binding ratio of 0.34 ± 0.05 and 0.92 ± 0.11 for soleus and EDL muscles (n= 4–8), respectively. These data suggest that soleus muscle has a larger calcium-gated calcium release component and a larger proportion of DHPR-unlinked RYRs. Received: 31 August 1995/Revised: 25 January 1996  相似文献   

16.
We have already reported that A3 adenosine receptor stimulation reduces [3H]-ryanodine binding and sarcoplasmic reticulum Ca2+ release in rat heart. In the present work we have investigated the transduction pathway responsible for this effect. Isolated rat hearts were perfused for 20 min in the presence of the following substances: 100 nM N6-(iodobenzyl)-adenosine-5′-N-methyluronamide (IB-MECA), an A3 adenosine agonist; 10 μM U-73122, a phospholipase C inhibitor; 2 μM chelerythrine, a protein kinase C inhibitor. At the end of perfusion, the hearts were homogenized and [3H]-ryanodine binding was assayed. IB-MECA produced a significant decrease in ryanodine binding, which was abolished in the presence of chelerythrine but not in the presence of U-73122. RT-PCR experiments showed that ryanodine receptor gene expression was not affected by IB-MECA. In Western blot experiments, ryanodine receptor phosphorylation on serine 2809 was not modified after perfusion with IB-MECA. We conclude that modulation of SR Ca2+ release channel by IB-MECA is dependent on protein kinase C activation. However, in this model protein kinase C activation is not due to phospholipase C activation. In addition, changes in ryanodine receptor gene expression or direct phosphorylation of the ryanodine receptor on serine 2809 residue do not appear to occur.  相似文献   

17.
S-Adenosyl-l-methionine (SAM) is the biological methyl-group donor for the enzymatic methylation of numerous substrates including proteins. SAM has been reported to activate smooth muscle derived ryanodine receptor calcium release channels. Therefore, we examined the effects of SAM on the cardiac isoform of the ryanodine receptor (RyR2). SAM increased cardiac sarcoplasmic reticulum [3H]ryanodine binding in a concentration-dependent manner by increasing the affinity of RyR2 for ryanodine. Activation occurred at physiologically relevant concentrations. SAM, which contains an adenosine moiety, enhanced ryanodine binding in the absence but not in the presence of an ATP analogue. S-Adenosyl-l-homocysteine (SAH) is the product of the loss of the methyl-group from SAM and inhibits methylation reactions. SAH did not activate RyR2 but did inhibit SAM-induced RyR2 activation. SAH did not alter adenine nucleotide activation of RyR2. These data suggest SAM activates RyR2 via a site that interacts with, but is distinct from, the adenine nucleotide binding site.  相似文献   

18.
The binding of [3H]ryanodine with cardiac sarcoplasmic reticulum vesicles depends on the calcium concentration. Binding in the absence of calcium appears to be non-specific because it shows no saturation up to 20 microM ryanodine. The apparent Km value for calcium varied between 2 and 0.8 microM when the ryanodine concentration varied between 10 and 265 nM. The Hill coefficient for the calcium dependence of [3H]ryanodine binding was near two. Scatchard analysis of ryanodine binding indicated a high-affinity site with a Bmax of 5.2 +/- 0.4 pmol/mg with a Kd of 6.8 +/- 0.1 nM. Preincubation under conditions in which the high-affinity sites were saturated did not result in stimulation of the calcium uptake rate indicative of closure of the calcium channel. Stimulation of calcium uptake rate occurred only at higher concentrations of ryanodine (apparent Km = 17 microM). This stimulation of the calcium uptake rate also required calcium in the submicromolar range. The data obtained support the hypothesis that ryanodine binding to the low-affinity site (Km about 17 microM) is responsible for closure of the calcium release channel and the subsequent increase in the calcium uptake rate of the sarcoplasmic reticulum. Because the number of ryanodine-binding sites is much less than the number of calcium transport pumps the channel is probably distinct from the pump.  相似文献   

19.
Purified calcium channels have three allosterically coupled drug receptors   总被引:4,自引:0,他引:4  
(-)-[3H]Desmethoxyverapamil and (+)-[3H]PN 200-110 were employed to characterize phenylalkylamine-selective and 1,4-dihydropyridine-selective receptors on purified Ca2+ channels from guinea-pig skeletal muscle t-tubules. In contrast to the membrane-bound Ca2+ channel, d-cis-diltiazem (EC50 = 4.5 +/- 1.7 microM) markedly stimulated the binding of (+)-[3H]PN 200-110 to the purified ionic pore. In the presence of 100 microM d-cis-diltiazem (which binds to the benzothiazepine-selective receptors) the Bmax for (+)-[3H]PN 200-110 increased from 497 +/- 81 to 1557 +/- 43 pmol per mg protein, whereas the Kd decreased from 8.8 +/- 1.7 to 4.7 +/- 1.8 nM at 25 degrees C. P-cis-Diltiazem was inactive. (-)-Desmethoxyverapamil, which is a negative heterotropic allosteric inhibitor of (+)-[3H]IN 200-110 binding to membrane-bound channels, stimulated 1,4-dihydropyridine binding to the isolated channel. (-)-[3H]Desmethoxyverapamil binding was stimulated by antagonistic 1,4-dihydropyridines [(+)-PN 200-110 greater than (-)(R)-202-791 greater than (+)(4R)-Bay K 8644] whereas the agonistic enantiomers (+)(S)-202-791 and (-)(4S)-Bay K 8644 were inhibitory and (-)-PN 200-110 was inactive. The results indicate that three distinct drug-receptor sites exist on the purified Ca2+ channel, two of which are shown by direct labelling to be reciprocally allosterically coupled.  相似文献   

20.
[3H]Nimodipine binding was studied in isolated myocytes from rat heart and in partially purified sarcolemma, sarcoplasmic reticulum and mitochondrial fractions from dog heart. In isolated myocytes, the density of [3H]nimodipine specific sites (106 per cell) was close to the density of [3H]QNB sites (0.8 × 106 per cell) and higher than that of [3H]DHA sites (0.2 × 106 per cell). During subcellular fractionation, [3H]nimodipine binding did not copurify with plasma membrane markers. The highest densities were found in fractions enriched in sarcolemma or in sarcoplasmic reticulum. No specific binding was found in mitochondria. These results indicate that the localization of [3H]nimodipine sites is not restricted to areas of the plasma membrane rich in β-adrenoceptors, muscarinic receptors and sodium pump sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号