首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saposin C (Sap C) is known to stimulate the catalytic activity of the lysosomal enzyme glucosylceramidase (GCase) that facilitates the hydrolysis of glucosylceramide to ceramide and glucose. Both Sap C and acidic phospholipids are required for full activity of GCase. In order to better understand this interaction, mixed bilayer samples prepared from dioleoylphosphatidylglycerol (DOPG) and dioleoylphosphatidylserine (DOPS) (5:3 ratio) and Sap C were investigated using (2)H and (31)P solid-state NMR spectroscopy at temperatures ranging from 25 to 50 degrees C at pH 4.7. The Sap C concentrations used to carry out these experiments were 0 mol%, 1 mol% and 3 mol% with respect to the phospholipids. The molecular order parameters (S(CD)) were calculated from the dePaked (2)H solid-state NMR spectra of Distearoyl-d70-phosphatidylglycerol (DSPG-d70) incorporated with DOPG and DOPS binary mixed bilayers. The S(CD) profiles indicate that the addition of Sap C to the negatively charged phospholipids is concentration dependent. S(CD) profiles of 1 mol% of the Sap C protein show only a very slight decrease in the acyl chain order. However, the S(CD) profiles of the 3 mol% of Sap C protein indicate that the interaction is predominantly increasing the disorder in the first half of the acyl chain near the head group (C1-C8) indicating that the amino and the carboxyl termini of Sap C are not inserting deep into the DOPG and DOPS mixed bilayers. The (31)P solid-state NMR spectra show that the chemical shift anisotropy (CSA) for both phospholipids decrease and the spectral broadening increases upon addition of Sap C to the mixed bilayers. The data indicate that Sap C interacts similarly with the head groups of both acidic phospholipids and that Sap C has no preference to DOPS over DOPG. Moreover, our solid-state NMR spectroscopic data agree with the structural model previously proposed in the literature [X. Qi, G.A. Grabowski, Differential membrane interactions of saposins A and C. Implication for the functional specificity, J. Biol. Chem. 276 (2001) 27010-27017] [1].  相似文献   

2.
The interaction of Saposin C (Sap C) with negatively charged phospholipids such as phosphatidylserine (PS) is essential for its biological function. In this study, Sap C (initially protonated in a weak acid) was inserted into multilamellar vesicles (MLVs) consisting of either 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-L-serine] (negatively charged, POPS) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (neutrally charged, POPC). The MLVs were then investigated using solid-state NMR spectroscopy under neutral pH (7.0) conditions. The (2)H and (31)P solid-state NMR spectroscopic data of Sap C-POPS and Sap C-POPC MLVs (prepared under the same conditions) were compared using the (2)H order parameter profiles of the POPC-d(31) or POPS-d(31) acyl chains as well as the (31)P chemical shift anisotropy width and (31)P T(1) relaxation times of the phospholipids headgroups. All those solid-state NMR spectroscopic approaches indicate that protonated Sap C disturbs the POPS bilayers and not the POPC lipid bilayers. These observations suggest for the first time that protonated Sap C inserts into PS bilayers and forms a stable complex with the lipids even after resuspension under neutral buffer conditions. Additionally, (31)P solid-state NMR spectroscopic studies of mechanically oriented phospholipids on glass plates were conducted and perturbation effect of Sap C on both POPS and POPC bilayers was compared. Unlike POPC bilayers, the data indicates that protonated Sap C (initially protonated in a weak acid) was unable to produce well-oriented POPS bilayers on glass plates at neutral pH. Conversely, unprotonated Sap C (initially dissolved in a neutral buffer) did not interact significantly with POPS phospholipids allowing them to produce well-oriented bilayers at neutral pH.  相似文献   

3.
31P solid-state NMR spectroscopy has been used to investigate the macroscopic phase behavior of phospholipid bilayers in the presence of increasing amounts of magainin antibiotic peptides. Addition of >1 mol% magainin 2 to gel-phase DMPC or liquid crystalline POPC membranes respectively, results in 31P NMR spectra that are characterized by the coexistence of isotropic signals and line shapes typical for phospholipid bilayers. The isotropic signal intensity is a function of temperature and peptide concentration. At peptide concentrations >4 mol% of the resulting phospholipid 31P NMR spectra are characteristic of magnetically oriented POPC bilayers suggesting the formation of small disk-like micelles or perforated sheets. In contrast, addition of magainin to acidic phospholipids results in homogenous bilayer-type 31P NMR spectra with reduced chemical shift anisotropies. The results presented are in good agreement with the interfacial insertion of magainin helices with an alignment parallel to the surface of the phospholipid bilayers. The resulting curvature strain results in detergent-like properties of the amphipathic helical peptides.  相似文献   

4.
Cannabinoids are compounds that can modulate neuronal functions and immune responses via their activity at the CB1 receptor. We used 2H NMR order parameters and relaxation rate determination to delineate the behavior of magnetically aligned phospholipid bilayers in the presence of several structurally distinct cannabinoid ligands. THC (Δ9-Tetrahydrocannabinol) and WIN-55,212-2 were found to lower the phase transition temperature of the DMPC and to destabilize their acyl chains leading to a lower average SCD (≈ 0.13), while methanandamide and CP-55,940 exhibited unusual properties within the lipid bilayer resulting in a greater average SCD (≈ 0.14) at the top of the phospholipid upper chain. The CB1 antagonist AM281 had average SCD values that were higher than the pure DMPC lipids, indicating a stabilization of the lipid bilayer. R1Z versus |SCD|2 plots indicated that the membrane fluidity is increased in the presence of THC and WIN-55,212-2. The interaction of CP-55,940 with a variety of zwitterionic and charged membranes was also assessed. The unusual effect of CP-55,940 was present only in bicelles composed of DMPC. These studies strongly suggest that cannabinoid action on the membrane depends upon membrane composition as well as the structure of the cannabinoid ligands.  相似文献   

5.
Lipopeptide MSI-843 consisting of the nonstandard amino acid ornithine (Oct-OOLLOOLOOL-NH2) was designed with an objective towards generating non-lytic short antimicrobial peptides, which can have significant pharmaceutical applications. Octanoic acid was coupled to the N-terminus of the peptide to increase the overall hydrophobicity of the peptide. MSI-843 shows activity against bacteria and fungi at micromolar concentrations. It permeabilizes the outer membrane of Gram-negative bacterium and a model membrane mimicking bacterial inner membrane. Circular dichroism investigations demonstrate that the peptide adopts α-helical conformation upon binding to lipid membranes. Isothermal titration calorimetry studies suggest that the peptide binding to membranes results in exothermic heat of reaction, which arises from helix formation and membrane insertion of the peptide. 2H NMR of deuterated-POPC multilamellar vesicles shows the peptide-induced disorder in the hydrophobic core of bilayers. 31P NMR data indicate changes in the lipid head group orientation of POPC, POPG and Escherichia colitotal lipid bilayers upon peptide binding. Results from 31P NMR and dye leakage experiments suggest that the peptide selectively interacts with anionic bilayers at low concentrations (up to 5 mol%). Differential scanning calorimetry experiments on DiPOPE bilayers and 31P NMR data from E.coli total lipid multilamellar vesicles indicate that MSI-843 increases the fluid lamellar to inverted hexagonal phase transition temperature of bilayers by inducing positive curvature strain. Combination of all these data suggests the formation of a lipid-peptide complex resulting in a transient pore as a plausible mechanism for the membrane permeabilization and antimicrobial activity of the lipopeptide MSI-843.  相似文献   

6.
Bis(monoacylglycero)phosphate (BMP) is an endosomal lipid with a unique structure that is implicated in the formation of intraendosomal vesicular bodies. Here we have characterized the effects of dioleoyl-BMP (BMP18:1) at concentrations of 5, 10, 15 and 20 mol% on the thermotropic behavior of dipalmitoyl phosphatidylcholine (DPPC) vesicles, and compared them to those of equimolar concentrations of dioleoyl phosphatidylglycerol (DOPG), a structural isoform of BMP18:1. Because BMP is found in the acidic environments of the late endosome and intralysosomal vesicles, samples were prepared at pH 4.2 to mimic the pH of the lysosome. Both 2H NMR of perdeuterated DPPC and spin-labeled EPR with 16-doxyl phosphatidylcholine were utilized in these investigations. NMR and EPR results show that BMP18:1 induces a lowering in the main phase transition temperature of DPPC similar to that of DOPG. The EPR studies reveal that BMP18:1 induced more disorder in the Lβ phase when compared to equimolar concentrations of DOPG. Analysis from dePaked 2H NMR spectra in the Lα phase reveals that BMP18:1 induces less disorder than equal concentrations of DOPG. Additionally, the results demonstrate that BMP mixes with other phospholipids as a phospholipid and not as a detergent molecule as once speculated.  相似文献   

7.
Pulmonary surfactant protein B (SP-B) is an essential protein for lowering surface tension in the alveoli. SP-B1-25, a peptide comprised of the N-terminal 25 amino-acid residues of SP-B, is known to retain much of the biological activity of SP-B. Circular dichroism has shown that when SP-B1-25 interacts with negatively charged lipid vesicles, it contains significant helical structure for the lipid compositions and peptide/lipid ratios studied here. The effect of SP-B1-25 on lipid organization and polymorphisms was investigated via DSC, dynamic light scattering, transmission electron microscopy, and solid-state NMR spectroscopy. At 1-3 mol% peptide and physiologic temperature, SP-B1-25 partitions at the interface of negatively charged PC/PG lipid bilayers. In lipid mixtures containing 1-5 mol% peptide, the structure of SP-B1-25 remains constant, but 2H and 31P NMR spectra show the presence of an isotropic lipid phase in exchange with the lamellar phase below the Tm of the lipids. This behavior is observed for both DPPC/POPG and POPC/POPG lipid mixtures as well as for both the PC and PG components of the mixtures. For 1-3 mol% SP-B1-25, a return to a single lamellar phase above the lipid mixture Tm is observed, but for 5 mol% SP-B1-25 a significant isotropic component is observed at physiologic temperatures for DPPC and exchange broadening is observed in 2H and 31P NMR spectra of the other lipid components in the two mixtures. DLS and TEM rule out the formation of micellar structures and suggest that SP-B1-25 promotes the formation of a fluid isotropic phase. The ability of SP-B1-25 to fuse lipid lamellae via this mechanism, particularly those enriched in DPPC, suggests a specific role for the highly conserved N-terminus of SP-B in the packing of lipid lamellae into surfactant lamellar bodies or in stabilizing multilayer structures at the air-liquid interface. Importantly, this behavior has not been seen for the other SP-B fragments of SP-B8-25 and SP-B59-80, indicating a critical role for the proline rich first seven amino acids in this protein.  相似文献   

8.
The influence of addition of NaCl or CaCl2 (0.3 and 0.1 M, respectively) on the lateral diffusion coefficient (DL) of dioleoylphosphatidylcholine (DOPC) or dioleoylphosphatidylglycerol (DOPG) was measured by the pulsed field gradient NMR technique. DL of DOPC was unaffected, whereas the DOPG diffusion decreased with salt concentration. 23Na NMR quadrupole splittings of DOPG between 20 and 60 °C and added NaCl between 0 and 15 wt% decreased only slightly with salt content, but increased with increasing temperature. Similar results were obtained for palmitoyloleoylphosphatidylglycerol, in which the palmitoyl chain order parameter increased slightly with salt. A model with free and “bound” ions was used to interpret the splitting data.With increasing salt content a decrease in the water permeability for DOPG was observed, but not for DOPC, as measured by water diffusion perpendicular to the oriented lipid bilayers.It was concluded that calcium and sodium ions interacted with the DOPG head-groups resulting in a decrease in the “free area” per lipid molecule due to a screening of the charged lipid head-groups. Thus, there was a closer packing of DOPG, leading to a decrease in DL and water permeability. DOPC did not show any changes in the bilayer properties upon the addition of ions.  相似文献   

9.
Lung surfactant protein B (SP-B) is a lipophilic protein critical to lung function at ambient pressure. KL4 is a 21-residue peptide which has successfully replaced SP-B in clinical trials of synthetic lung surfactants. CD and FTIR measurements indicate KL4 is helical in a lipid bilayer environment, but its exact secondary structure and orientation within the bilayer remain controversial. To investigate the partitioning and dynamics of KL4 in phospholipid bilayers, we introduced CD3-enriched leucines at four positions along the peptide to serve as probes of side chain dynamics via 2H solid-state NMR. The chosen labels allow distinction between models of helical secondary structure as well as between a transmembrane orientation or partitioning in the plane of the lipid leaflets. Leucine side chains are also sensitive to helix packing interactions in peptides that oligomerize. The partitioning and orientation of KL4 in DPPC/POPG and POPC/POPG phospholipid bilayers, as inferred from the leucine side chain dynamics, is consistent with monomeric KL4 lying in the plane of the bilayers and adopting an unusual helical structure which confers amphipathicity and allows partitioning into the lipid hydrophobic interior. At physiologic temperatures, the partitioning depth and dynamics of the peptide are dependent on the degree of saturation present in the lipids. The deeper partitioning of KL4 relative to antimicrobial amphipathic α-helices leads to negative membrane curvature strain as evidenced by the formation of hexagonal phase structures in a POPE/POPG phospholipid mixture on addition of KL4. The unusual secondary structure of KL4 and its ability to differentially partition into lipid lamellae containing varying levels of saturation suggest a mechanism for its role in restoring lung compliance.  相似文献   

10.
Lipid bilayers represent a fascinating class of biomaterials whose properties are altered by changes in pressure or temperature. Functions of cellular membranes can be affected by nonspecific lipid-protein interactions that depend on bilayer material properties. Here we address the changes in lipid bilayer structure induced by external pressure. Solid-state 2H NMR spectroscopy of phospholipid bilayers under osmotic stress allows structural fluctuations and deformation of membranes to be investigated. We highlight the results from NMR experiments utilizing pressure-based force techniques that control membrane structure and tension. Our 2H NMR results using both dehydration pressure (low water activity) and osmotic pressure (poly(ethylene glycol) as osmolyte) show that the segmental order parameters (SCD) of DMPC approach very large values of ≈0.35 in the liquid-crystalline state. The two stresses are thermodynamically equivalent, because the change in chemical potential when transferring water from the interlamellar space to the bulk water phase corresponds to the induced pressure. This theoretical equivalence is experimentally revealed by considering the solid-state 2H NMR spectrometer as a virtual osmometer. Moreover, we extend this approach to include the correspondence between osmotic pressure and hydrostatic pressure. Our results establish the magnitude of the pressures that lead to significant bilayer deformation including changes in area per lipid and volumetric bilayer thickness. We find that appreciable bilayer structural changes occur with osmotic pressures in the range of 10−100 atm or lower. This research demonstrates the applicability of solid-state 2H NMR spectroscopy together with bilayer stress techniques for investigating the mechanism of pressure sensitivity of membrane proteins.  相似文献   

11.
Oxyopinins (Oxki1 and Oxki2) are antimicrobial peptides isolated from the crude venom of the wolf spider Oxyopes kitabensis. The effect of oxyopinins on lipid bilayers was investigated using high-sensitivity titration calorimetry and 31P solid-state NMR spectroscopy. High-sensitivity titration calorimetry experiments showed that the binding of oxyopinins was exothermic, and the binding enthalpies (ΔH) to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) small unilamellar vesicles (SUVs) were − 18.1 kcal/mol and − 15.0 kcal/mol for Oxki1 and Oxki2, respectively, and peptide partition coefficient (Kp) was found to be 3.9 × 103 M− 1. 31P NMR spectra of 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE) membranes in the presence of oxyopinins indicated that they induced a positive curvature in lipid bilayers. The induced positive curvature was stronger in the presence of Oxki2 than in the presence of Oxki1. 31P NMR spectra of phosphaditylcholine (PC) membranes in the presence of Oxki2 showed that Oxki2 produced micellization of membranes at low peptide concentrations, but unsaturated PC membranes or acidic phospholipids prevented micellization from occurring. Furthermore, 31P NMR spectra using membrane lipids from E. coli suggested that Oxki1 was more disruptive to bacterial membranes than Oxki2. These results strongly correlate to the known biological activity of the oxyopinins.  相似文献   

12.
The designed antimicrobial peptide KIGAKIKIGAKIKIGAKI possesses enhanced membrane selectivity for bacterial lipids, such as phosphatidylethanolamine and phosphatidylglycerol. The perturbation of the bilayer by the peptide was first monitored using oriented bilayer samples on glass plates. The alignment of POPE/POPG model membranes with respect to the bilayer normal was severely altered at 4 mol% KIGAKI while the alignment of POPC bilayers was retained. The interaction mechanism between the peptide and POPE/POPG bilayers was investigated by carefully comparing three bilayer MLV samples (POPE bilayers, POPG bilayers, and POPE/POPG 4/1 bilayers). KIGAKI induces the formation of an isotropic phase for POPE/POPG bilayers, but only a slight change in the 31P NMR CSA line shape for both POPE and POPG bilayers, indicating the synergistic roles of POPE and POPG lipids in the disruption of the membrane structure by KIGAKI. 2H NMR powder spectra show no reduction of the lipid chain order for both POPG and POPE/POPG bilayers upon peptide incorporation, supporting the evidence that the peptide acts as a surface peptide. 31P longitudinal relaxation studies confirmed that different dynamic changes occurred upon interaction of the peptide with the three different lipid bilayers, indicating that the strong electrostatic interaction between the cationic peptide KIGAKI and anionic POPG lipids is not the only factor in determining the antimicrobial activity. Furthermore, 31P and 2H NMR powder spectra demonstrated a change in membrane characteristics upon mixing of POPE and POPG lipids. The interaction between different lipids, such as POPE and POPG, in the mixed bilayers may provide the molecular basis for the KIGAKI carpet mechanism in the permeation of the membrane.  相似文献   

13.
To investigate the effect of lipid structure upon the membrane topography of hydrophobic helices, the behavior of hydrophobic peptides was studied in model membrane vesicles. To define topography, fluorescence and fluorescence quenching methods were used to determine the location of a Trp at the center of the hydrophobic sequence. For peptides with cationic residues flanking the hydrophobic sequence, the stability of the transmembrane (TM) configuration (relative to a membrane-bound non-TM state) increased as a function of lipid composition on the order: 1:1 (mol:mol) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC):1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine ∼ 6:4 POPC:cholesterol < POPC ∼ dioleoylphosphatidylcholine (DOPC) < 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] sodium salt (DOPG) ≤ 1,2-dioleoyl-sn-glycero-3-[phospho-l-serine] sodium salt (DOPS), indicating that the anionic lipids DOPG and DOPS most strongly stabilized the TM configuration. TM stabilization was near maximal at 20-30 mol% anionic lipid, which are physiologically relevant values. TM stabilization by anionic lipid was observed for hydrophobic sequences with a diverse set of sequences (including polyAla), diverse lengths (from 12 to 22 residues), and various cationic flanking residues (H, R, or K), but not when the flanking residues were uncharged. TM stabilization by anionic lipid was also dependent on the number of cationic residues flanking the hydrophobic sequence, but was still significant with only one cationic residue flanking each end of the peptide. These observations are consistent with TM-stabilizing effects being electrostatic in origin. However, Trp located more deeply in DOPS vesicles relative to DOPG vesicles, and peptides in DOPS vesicles showed increased helix formation relative to DOPG and all other lipid compositions. These observations fit a model in which DOPS anchors flanking residues near the membrane surface more strongly than does DOPG and/or increases the stability of the TM state to a greater degree than DOPG. We conclude that anionic lipids can have significant and headgroup structure-specific effects upon membrane protein topography.  相似文献   

14.
Niemann-Pick disease type C (NPC) is characterized by the accumulation of cholesterol and sphingolipids in the late endosomal/lysosomal compartment. The mechanism by which the concentration of sphingolipids such as glucosylceramide is increased in this disease is poorly understood. We have found that, in NPC fibroblasts, the cholesterol storage affects the stability of glucosylceramidase (GCase), decreasing its mass and activity; a reduction of cholesterol raises the level of GCase to nearly normal values. GCase is activated and stabilized by saposin C (Sap C) and anionic phospholipids. Here we show by immunofluorescence microscopy that in normal fibroblasts, GCase, Sap C, and lysobisphosphatidic acid (LBPA), the most abundant anionic phospholipid in the endolysosomal system, reside in the same intracellular vesicular structures. In contrast, the colocalization of GCase, Sap C, and LBPA is markedly impaired in NPC fibroblasts but can be re-established by cholesterol depletion. These data show for the first time that the level of cholesterol modulates the interaction of GCase with its protein and lipid activators, namely Sap C and LBPA, regulating the GCase activity and stability.  相似文献   

15.
Saposin C (Sap C) is a small glycoprotein required by glucosylceramidase (GCase) for hydrolysis of glucosylceramide to ceramide and glucose in lysosomes. The molecular mechanism underlying Sap C stimulation of the enzyme activation is not fully understood. Here, atomic force microscopy (AFM) has been used to study Sap C-membrane interactions under physiological conditions. First, to establish how Sap C-membrane interactions affect membrane structure, lipid bilayers containing zwitterionic and anionic phospholipids were used. It was observed that Sap C induced two types of membrane restructuring effects, i.e., the formation of patch-like domains and membrane destabilization. Bilayers underwent extensive structural reorganization. To validate the biological importance of the membrane restructuring effects, interaction of Sap C with lipid bilayers composed of cholesterol, sphingomyelin, and zwitterionic and anionic phospholipids were studied. Although similar membrane restructuring effects were observed, Sap C-membrane interactions, in this case, were remarkably modulated and their effects were restricted to a limited area. As a result, nanometer-sized domains were formed. The establishment of a model membrane system will allow us to further study the dynamics, structure and mechanism of the Sap C-associated membrane domains and to examine the important role that these domains may play in enzyme activation.  相似文献   

16.
We have examined the effects of cholesterol (Chol) on the thermotropic phase behavior and organization of aqueous dispersions of a homologous series of linear disaturated phosphatidylglycerols (PGs) by high-sensitivity differential scanning calorimetry and Fourier transform infrared and 31P NMR spectroscopy. We find that the incorporation of increasing quantities of Chol alters the temperature and progressively reduces the enthalpy and cooperativity of the gel-to-liquid-crystalline phase transition of the host PG bilayer. With dimyristoyl-PG:Chol mixtures, cooperative chain-melting phase transitions are completely or almost completely abolished at Chol concentrations near 50 mol%, whereas with the dipalmitoyl- and distearoyl-PG:Chol mixtures, cooperative hydrocarbon chain-melting phase transitions are still discernable at Chol concentrations near 50 mol%. We are also unable to detect the presence of significant populations of separate domains of the anhydrous or monohydrate forms of Chol in our binary mixtures, in contrast to previous reports. We ascribe the previously reported large scale formation of Chol crystallites to the fractional crystallization of the Chol and phospholipid phases during the removal of organic solvent from the binary mixture before the hydration of the sample. We further show that the direction and magnitude of the change in the phase transition temperature induced by Chol addition is dependent on the hydrocarbon chain length of the PG studied. This finding agrees with our previous results with phosphatidylcholine bilayers, where we found that Chol increases or decreases the phase transition temperature in a hydrophobic mismatch-dependent manner (Biochemistry 1993, 32:516-522), but is in contrast to our previous results for phosphatidylethanolamine (Biochim. Biophys. Acta 1999, 1416:119-234) and phosphatidylserine (Biophys. J. 2000, 79:2056-2065) bilayers, where no such hydrophobic mismatch-dependent effects were observed. We also show that the addition of Chol facilitates the formation of the lamellar crystalline phase in PG bilayers, as it does in phosphatidylethanolamine and phosphatidylserine bilayers, whereas the formation of such phases in phosphatidylcholine bilayers is inhibited by the presence of Chol. Moreover, the formation of the lamellar crystalline phase in PG bilayers at lower temperatures excludes Chol, resulting in an apparent Chol immiscibility in gel-state PG bilayers. We suggest that the magnitude of the effect of Chol on the thermotropic phase behavior of the host phospholipid bilayer, and its miscibility in phospholipids dispersions generally, depend on the strength of the attractive interactions between the polar headgroups and the hydrocarbon chains of the phospholipid molecule, and not on the charge of the polar headgroups per se.  相似文献   

17.
Using x-ray diffraction and NMR spectroscopy, we present structural and material properties of phosphatidylserine (PS) bilayers that may account for the well documented implications of PS headgroups in cell activity. At 30 degrees C, the 18-carbon monounsaturated DOPS in the fluid state has a cross-sectional area of 65.3 A(2) which is remarkably smaller than the area 72.5 A(2) of the DOPC analog, despite the extra electrostatic repulsion expected for charged PS headgroups. Similarly, at 20 degrees C, the 14-carbon disaturated DMPS in the gel phase has an area of 40.8 A(2) vs. 48.1 A(2) for DMPC. This condensation of area suggests an extra attractive interaction, perhaps hydrogen bonding, between PS headgroups. Unlike zwitterionic lipids, stacks of PS bilayers swell indefinitely as water is added. Data obtained for osmotic pressure versus interbilayer water spacing for fluid phase DOPS are well fit by electrostatic interactions calculated for the Gouy-Chapman regime. It is shown that the electrostatic interactions completely dominate the fluctuational pressure. Nevertheless, the x-ray data definitively exhibit the effects of fluctuations in fluid phase DOPS. From our measurements of fluctuations, we obtain the product of the bilayer bending modulus K(C) and the smectic compression modulus B. At the same interbilayer separation, the interbilayer fluctuations are smaller in DOPS than for DOPC, showing that B and/or K(C) are larger. Complementing the x-ray data, (31)P-chemical shift anisotropy measured by NMR suggest that the DOPS headgroups are less sensitive to osmotic pressure than DOPC headgroups, which is consistent with a larger K(C) in DOPS. Quadrupolar splittings for D(2)O decay less rapidly with increasing water content for DOPS than for DOPC, indicating greater perturbation of interlamellar water and suggesting a greater interlamellar hydration force in DOPS. Our comparisons between bilayers of PS and PC lipids with the same chains and the same temperature enable us to focus on the effects of these headgroups on bilayer properties.  相似文献   

18.
The amphipathic antimicrobial peptide piscidin 1 was studied in magnetically aligned phospholipid bilayers by oriented-sample solid-state NMR spectroscopy. 31P NMR and double-resonance 1H/15N NMR experiments performed between 25°C and 61°C enabled the lipid headgroups as well as the peptide amide sites to be monitored over a range of temperatures. The α-helical peptide dramatically affects the phase behavior and structure of anionic bilayers but not those of zwitterionic bilayers. Piscidin 1 stabilizes anionic bilayers, which remain well aligned up to 61°C when piscidin 1 is on the membrane surface. Two-dimensional separated-local-field experiments show that the tilt angle of the peptide is 80 ± 5°, in agreement with previous results on mechanically aligned bilayers. The peptide undergoes fast rotational diffusion about the bilayer normal under these conditions, and these studies demonstrate that magnetically aligned bilayers are well suited for structural studies of amphipathic peptides.  相似文献   

19.
Changes in physico-chemical properties of dimyristoyl phosphatidylcholine (DMPC) lipid bilayers caused by the addition of 9.4 mol% nonionic surfactant decaoxyethylene monododecyl ethers (C12E10) have been investigated by molecular dynamics calculations. In spite of addition of single chain C12E10, the lipid bilayers showed an increase of membrane area. Isothermal area compressibility, which is a measure of membrane softness in lateral direction, also increased by 50% for DMPC/C12E10 mixed bilayers. Furthermore, the order parameter of C–H vector for DMPC acyl tails decreased. We found that these changes are caused by the hydrophilic head groups of C12E10 which are located near the glycerol backbone of the DMPC molecules and have bulky random coil conformation without any preferential ordered structures.  相似文献   

20.
Lung surfactant protein B (SP-B) is critical to minimizing surface tension in the alveoli. The C-terminus of SP-B, residues 59-80, has much of the surface activity of the full protein and serves as a template for the development of synthetic surfactant replacements. The molecular mechanisms responsible for its ability to restore lung compliance were investigated with circular dichroism, differential scanning calorimetry, and 31P and 2H solid-state NMR spectroscopy. SP-B59-80 forms an amphipathic helix which alters lipid organization and acyl chain dynamics in fluid lamellar phase 4:1 DPPC:POPG and 3:1 POPC:POPG MLVs. At higher levels of SP-B59-80 in the POPC:POPG lipid system a transition to a nonlamellar phase is observed while DPPC:POPG mixtures remain in a lamellar phase. Deuterium NMR shows an increase in acyl chain order in DPPC:POPG MLVs on addition of SP-B59-80; in POPC:POPG MLVs, acyl chain order parameters decrease. Our results indicate SP-B59-80 penetrates deeply into DPPC:POPG bilayers and binds more peripherally to POPC:POPG bilayers. Similar behavior has been observed for KL4, a peptide mimetic of SP-B which was originally designed using SP-B59-80 as a template and has been clinically demonstrated to be successful in treating respiratory distress syndrome. The ability of these helical peptides to differentially partition into lipid lamellae based on their degree of monounsaturation and subsequent changes in lipid dynamics suggest a mechanism for lipid organization and trafficking within the dynamic lung environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号