首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Internalisation of cell-penetrating peptides into tobacco protoplasts   总被引:1,自引:0,他引:1  
Cells are protected from the surrounding environment by plasma membrane which is impenetrable for most hydrophilic molecules. In the last 10 years cell-penetrating peptides (CPPs) have been discovered and developed. CPPs enter mammalian cells and carry cargo molecules over the plasma membrane with a molecular weight several times their own. Known transformation methods for plant cells have relatively low efficiency and require improvement. The possibility to use CPPs as potential delivery vectors for internalisation in plant cells has been studied in the present work. We analyse and compare the uptake of the fluorescein-labeled CPPs, transportan, TP10, penetratin and pVEC in Bowes human melanoma cells and Nicotiana tabacum cultivar (cv.) SR-1 protoplasts (plant cells without cell wall). We study the internalisation efficiency of CPPs with fluorescence microscopy, spectrofluorometry and fluorescence-activated cell sorter (FACS). All methods indicate, for the first time, that these CPPs can internalise into N. tabacum cv. SR-1 protoplasts. Transportan has the highest uptake efficacy among the studied peptides, both in mammalian cells and plant protoplast. The internalisation of CPPs by plant protoplasts may open up a new effective method for transfection in plants.  相似文献   

2.
The identification of cell-penetrating peptides (CPPs) as vectors for the intracellular delivery of conjugated molecules such as peptides, proteins, and oligonucleotides has emerged as a significant tool to modulate biological activities inside cells. The mechanism of CPP uptake by the cells is still unclear, and appears to be both endocytotic and non-endocytotic, depending on the CPP and cell type. Moreover, it is also unknown whether cargo sequences have an effect on the uptake and cellular distribution properties of CPP sequences. Here, we combine results from quantitative fluorescence microscopy and binding to lipid membrane models to determine the effect of cargo peptide molecules on the cellular uptake and distribution of the arginine-rich CPPs, R7, and R7W, in live cells. Image analysis algorithms that quantify fluorescence were used to measure the relative amount of peptide taken up by the cell, as well as the extent to which the uptake was endocytotic in nature. The results presented here indicate that fusion of arginine-rich CPPs to peptide sequences reduces the efficiency of uptake, and dramatically changes the cellular distribution of the CPP from a diffuse pattern to one in which the peptides are mostly retained in endosomal compartments.  相似文献   

3.
Chen YJ  Liu BR  Dai YH  Lee CY  Chan MH  Chen HH  Chiang HJ  Lee HJ 《Gene》2012,493(2):201-210
Most bioactive macromolecules, such as protein, DNA and RNA, basically cannot permeate into cells freely from outside the plasma membrane. Cell-penetrating peptides (CPPs) are a group of short peptides that possess the ability to traverse the cell membrane and have been considered as candidates for mediating gene and drug delivery into living cells. In this study, we demonstrate that three arginine-rich CPPs (SR9, HR9 and PR9) are able to form stable complexes with plasmid DNA and deliver DNA into insect Sf9 cells in a noncovalent manner. The transferred plasmid DNA containing enhanced green fluorescent protein (EGFP) and red fluorescent protein (RFP) coding regions could be expressed in cells functionally assayed at both the protein and RNA levels. Furthermore, treatment of cells with CPPs and CPP/DNA complexes resulted in a viability of 84-93% indicating these CPPs are not cytotoxic. These results suggest that arginine-rich CPPs appear to be a promising tool for insect transgenesis.  相似文献   

4.
Dai YH  Liu BR  Chiang HJ  Lee HJ 《Gene》2011,489(2):89-97
Owing to the cell membrane barriers, most macromolecules and hydrophilic molecules could not freely enter into living cells. However, cell-penetrating peptides (CPPs) have been discovered that can translocate themselves and associate cargoes into the cytoplasm. In this study, we demonstrate that three arginine-rich CPPs (SR9, HR9 and PR9) can form stable complexes with plasmid DNA at the optimized nitrogen/phosphate ratio of 3 and deliver plasmid DNA into Paramecium caudatum in a noncovalent manner. Accordingly, the transported plasmid encoding the green fluorescent protein (GFP) gene could be expressed in cells functionally assayed at both the protein and DNA levels. The efficiency of gene delivery varied among these CPPs in the order of HR9 > PR9 > SR9. In addition, these CPPs and CPP/DNA complexes were not cytotoxic in Paramecium detected by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diohenyltetrazolium bromide (MTT) assay. Thus, these results suggest that the functionality of arginine-rich CPPs offers an efficient and safe tool for transgenesis in eukaryotic protozoans.  相似文献   

5.
6.
Summary The uptake of ascorbate into protoplasts isolated from aNicotiana tabacum Bright Yellow-2 (BY-2) cell suspension culture was investigated. Addition of14C-labelled ascorbate to freshly isolated protoplasts resulted in a time- and substrate-dependent association of radioactive molecules with the protoplasts. The kinetic characterisation of this presumptive uptake revealed kinetics of Michaelis-Menten type with an apparent maximal uptake activity of 24 pmol/min·106 protoplasts and an apparent affinity constant of 139 M. The amount of ascorbate molecules transported intoN. tabacum protoplasts decreased when nonlabelled dehydroascorbate or iso-ascorbate were added but was not affected by addition of 5,6-o-cyclohexylidene ascorbate or ascorbate-2-sulfate. These data indicate a carrier-mediated uptake of ascorbate into the protoplasts that shows a high structural specificity. To investigate which redox status of ascorbate is preferentially taken up by theN. tabacum protoplasts, transport was tested in the presence of various compounds that can affect the redox status of ascorbate. Testing uptake in the presence of a reductant, dithiothreitol, resulted in a significant and concentration-dependent inhibition of the amount of ascorbate molecules transported into the protoplasts. On the other hand, ascorbate uptake was significantly stimulated in the presence of the enzyme ascorbate oxidase. Ferricyanide did not affect ascorbate transport. Inhibition studies revealed that ascorbate uptake in the protoplasts is sensitive to addition of sulfhydryl reagents N-ethyl maleimide andp-chloro-mercuribenzenesulfonic acid and to a disruption of the proton gradient by the protonophore carbonylcyanide-3-chlorophenylhydrazone. The uptake of ascorbate was also inhibited by addition of cytochalasin B but not sensitive to addition of phloretin or sulfinpyrazone. Taken together these data indicate the presence of an ascorbate transport system in the plasma membrane ofN. tabacum protoplasts and suggest dehydroascorbate as the preferentially transported redox species. The putative presence of different carriers for reduced and oxidised ascorbate in the plasma membrane is discussed.Abbreviations Asc ascorbate - BY-2 Bright Yellow 2 - CCCP carbonylcyanide-3-chlorophenylhydrazone - DHA dehydroascorbate - DTT dithiothreitol - MS medium Murashige and Skoog medium - NEM N-ethylmaleimide - pCMBS p-chloromercuribenzenesulfonic acid  相似文献   

7.
Plant defensins are small cysteine-rich peptides and exhibit antimicrobial activity against a variety of both plant and human pathogens. Despite the broad inhibitory activity that plant defensins exhibit against different micro-organisms, little is known about their activity against protozoa. In a previous study, we isolated a plant defensin named PvD1 from Phaseolus vulgaris (cv. Pérola) seeds, which was seen to be deleterious against different yeast cells and filamentous fungi. It exerted its effects by causing an increase in the endogenous production of ROS (reactive oxygen species) and NO (nitric oxide), plasma membrane permeabilization and the inhibition of medium acidification. In the present study, we investigated whether PvD1 could act against the protozoan Leishmania amazonensis. Our results show that, besides inhibiting the proliferation of L. amazonensis promastigotes, the PvD1 defensin was able to cause cytoplasmic fragmentation, formation of multiple cytoplasmic vacuoles and membrane permeabilization in the cells of this organism. Furthermore, we show, for the first time, that PvD1 defensin was located within the L. amazonensis cells, suggesting the existence of a possible intracellular target.  相似文献   

8.
Exocytosis molecular mechanisms in plant cells are not fully understood. The full characterization of molecular determinants, such as SNAREs, for the specificity in vesicles delivery to the plasma membrane should shed some light on these mechanisms. Nicotiana tabacum Syntaxin 1 (NtSyr1 or SYP121) is a SNARE protein required for ABA control of ion channels and appears involved in the exocytosis of exogenous markers.NtSyr1 is mainly localized on the plasma membrane, but when over expressed the protein also appears on endomembranes. Since NtSyr1 is a tail-anchored protein inserted into the target membrane post-translationally, it is not clear whether its initial anchoring site is the ER or the plasma membrane.In this study, we investigated the sorting events of NtSyr1 in vivo using its full-length cDNA or its C-terminal domain, fused to a GFP tag and transiently expressed in protoplasts or in the leaves of Nicotiana tabacum cv. SR1. Five chimeras were produced of which two were useful to investigate the protein sorting within the endomembrane system. One (GFP-H3M) had a dominant negative effect on exocytosis; the other one (SP1-GFP) resulted in a slow targeting to the same localization of the full-length chimera (GFP-SP1). The insertion of signal peptides on SP1-GFP further characterized the insertion site for this protein. Our data indicates that NtSyr1 is firstly anchored on ER membrane and then sorted to plasma membrane.Key Words: syntaxins, SNAREs, GFP tagging, exocytosis, secretion, protoplasts, dominant negative mutant  相似文献   

9.
Cell-penetrating peptides (CPPs) are able to translocate problematic therapeutic cargoes across cellular membranes. The exact mechanisms of translocation are still under investigation. However, evidence for endocytic uptake is increasing. We investigated the interactions of CPPs with phospholipid bilayers as first step of translocation. To this purpose, we employed four independent techniques, comprising (i) liposome buffer equilibrium dialysis, (ii) Trp fluorescence quenching, (iii) fluorescence polarization, and (iv) determination of ζ-potentials. Using unilamellar vesicles (LUVs) of different phospholipid composition, we compared weakly cationic human calcitonin (hCT)-derived peptides with the oligocationic CPPs pVEC and penetratin (pAntp). Apparent partition coefficients of hCT-derived peptides in neutral POPC LUVs were dependent on amino acid composition and secondary structure; partitioning in negatively charged POPC/POPG (80:20) LUVs was increased and mainly governed by electrostatic interactions. For hCT(9-32) and its derivatives, D values raised from about 100-200 in POPC to about 1000 to 1500 when negatively charged lipids were present. Localization profiles of CPPs obtained by Trp fluorescence quenching were dependent on the charge density of LUVs. In POPC/POPG, hCT-derived CPPs were located on the bilayer surface, whereas pVEC and pAntp resided deeper in the membrane. In POPG LUVs, an increase of fluorescence polarization was observed for pVEC and pAntp but not for hCT-derived peptides. Generally, we found strong peptide-phospholipid interactions, especially when negatively charged lipids were present.  相似文献   

10.
Cell-penetrating peptides (CPPs) are used to internalize different cargoes, including DNA, into live mammalian and plant cells. Despite many cells being easily transfected with this approach, other cells are rather “difficult” or “hard to transfect,” including protist cells of the genus Leishmania. Based on our previous results in successfully internalizing proteins into Leishmania tarentolae cells, we used single CPPs and three different DNA-binding proteins to form protein-like complexes with plasmids covered with CPPs. We attempted magnetofection, electroporation, and transfection using a number of commercially available detergents. While complex formation with negatively charged DNA required substantially higher amounts of CPPs than those necessary for mostly neutral proteins, the cytotoxicity of the required amounts of CPPs and auxiliaries was thoroughly studied. We found that Leishmania cells were indeed susceptible to high concentrations of some CPPs and auxiliaries, although in a different manner compared with that for mammalian cells. The lack of successful transfections implies the necessity to accept certain general limitations regarding DNA internalization into difficult-to-transfect cells. Only electroporation allowed reproducible internalization of large and rigid plasmid DNA molecules through electrically disturbed extended membrane areas, known as permeable membrane macrodomains.  相似文献   

11.
The results of the present work demonstrate that core histones are able to penetrate the plasma membrane of plant cells. Confocal microscopy has revealed that incubation of petunia protoplasts with fluorescently labeled core histones resulted in cell penetration and nuclear import of the externally added histones. Intracellular accumulation was also confirmed by an ELISA-based quantitative method using biotin-labeled histones. Penetration into petunia protoplasts and cultured cells was found to be non-saturable, occurred at room temperature and at 4 °C and was not inhibited by Nocodazole. Furthermore, penetration of the biotinylated histone was neither blocked by the addition of an excess of free biotin molecules, nor by non-biotinylated histone molecules. All these results clearly indicate that the observed uptake is due to direct translocation through the cell plasma membrane and does not occur via endocytosis. Our results also show that the histones H2A and H4 were able to mediate penetration of covalently attached BSA molecules demonstrating the potential of the histones as carriers for the delivery of macromolecules into plant cells. To the best of our knowledge, the findings of the present paper demonstrate, for the first time, the activity of cell penetrating proteins (CPPs) in plant cells.  相似文献   

12.
Many promising therapeutics are currently awaiting their clinical application. Due to their low capability of cell membrane crossing, these compounds do not reach their site of action. One way to overcome this problem might be the fusion of these agents to cell-penetrating peptides (CPP), which are able to shuttle various cargoes across cellular membranes. One disadvantage in using CPP in drug delivery is their low metabolic stability. The aim of our work was to increase the proteolytic resistance of the CPP hCT(9-32), a truncated C-terminal fragment of human calcitonin. Thus, we synthesised six modified N-terminally carboxyfluorescein labelled hCT(9-32) derivatives by replacing positions 12 and/or 16 of hCT(9-32) with either N-methylphenylalanine or d-phenylalanine, respectively. By using confocal laser scanning microscopy we showed that the modifications did neither affect the peptide internalisation efficiency in HeLa nor HEK 293T cells. The metabolic stability of the peptides was investigated in human blood plasma and HEK 293T cell culture supernatant. To analyse the degradation patterns, we used RP-HPLC and MALDI-TOF mass spectrometry. However, we found for all of the new derivatives high metabolic stabilities. In blood plasma, the half-lives for five of the six peptides increased compared to unmodified hCT(9-32). The degradation patterns showed a distinct stabilisation in the N-terminal part of the modified peptides, in the C-terminal part, we found some cleavage to a minor extent. Furthermore, we studied the conformation of the peptides by CD spectroscopy and demonstrated that they possess no cell toxicity. Since our metabolically more stable compounds are still able to pass the cell membrane they provide powerful tools as drug delivery vectors.  相似文献   

13.
Giant protoplasts of Saccharomyces cerevisiae of 10-35 µm in diameter were generated by multi-cell electrofusion. Thereby two different preparation strategies were evaluated with a focus on size distribution and “patchability” of electrofused protoplasts. In general, parental protoplasts were suitable for electrofusion 1-12 h after isolation. The electrophysiological properties of electrofused giant protoplasts could be analyzed by the whole-cell patch clamp technique. The area-specific membrane capacitance (0.66 ± 0.07 µF/cm2) and conductance (23-44 µS/cm2) of giant protoplasts were consistent with the corresponding data for parental protoplasts. Measurements with fluorescein-filled patch pipettes allowed to exclude any internal compartmentalisation of giant protoplasts by plasma membranes, since uniform (diffusion-controlled) dye uptake was only observed in the whole-cell configuration, but not in the cell-attached formation. The homogeneous structure of giant protoplasts was further confirmed by the observation that no plasma membrane associated fluorescence was seen in the interior of giant cells after electrofusion of protoplasts expressing the light-activated cation channel Channelrhodopsin-2 (ChR2) linked to yellow fluorescent protein (YFP). Patch clamp analysis of the heterologously expressed ChR2-YFP showed typical blue light dependent, inwardly-directed currents for both electrofused giant and parental protoplasts. Most importantly, neither channel characteristics nor channel expression density was altered by electric field treatment. Summarising, multi-cell electrofusion increases considerably the absolute number of membrane proteins accessible in patch clamp experiments, thus presumably providing a convenient tool for the biophysical investigation of low-signal transporters and channels.  相似文献   

14.
Cell-penetrating peptides (CPPs) promote the uptake of different cargo molecules, e.g. therapeutic compounds, making the harnessing of CPPs a promising strategy for drug design and delivery. However, the internalization mechanisms of CPPs are still under discussion, and it is not clear how cells compensate the disturbances induced by peptides in the plasma membrane. In this study, we demonstrate that the uptake of various CPPs enhances the intracellular Ca(2+) levels in Jurkat and HeLa cells. The elevated Ca(2+) concentration in turn triggers plasma membrane blebbing, lysosomal exocytosis, and membrane repair response. Our results indicate that CPPs split into two major classes: (i) amphipathic CPPs that modulate the plasma membrane integrity inducing influx of Ca(2+) and activating downstream responses starting from low concentrations; (ii) non-amphipathic CPPs that do not evoke changes at relevant concentrations. Triggering of the membrane repair response may help cells to replace distorted plasma membrane regions and cells can recover from the influx of Ca(2+) if its level is not drastically elevated.  相似文献   

15.
Water homeostasis is crucial to the growth and survival of plants. Plasma membrane intrinsic proteins (PIPs) have been shown to be primary channels mediating water uptake in plant cells. We characterized a novel PIP2 gene, HvPIP2;8 in barley (Hordeum vulgare). HvPIP2;8 shared 72–76% identity with other HvPIP2s and 74% identity with rice OsPIP2;8. The gene was expressed in all organs including the shoots, roots and pistil at a similar level. When HvPIP2;8 was transiently expressed in onion epidermal cells, it was localized to the plasma membrane. HvPIP2;8 showed transport activity for water in Xenopus oocytes, however its interaction with HvPIP1;2 was not observed. These results suggest that HvPIP2;8 plays a role in water homeostasis although further functional analysis is required in future.  相似文献   

16.
The plasma membrane is an effective barrier to most macromolecules and hydrophilic molecules. Remarkably, a class of positively charged cell-penetrating peptides (CPPs) has been discovered that can translocate themselves and associated cargoes into the cytoplasm. These have been used to carry oligopeptide- and oligonucleotide-based inhibitors into mammalian cells. A recent report indicates that the same CPPs are internalized by plant protoplasts, suggesting that this may be a universal phenomenon. We report here that the prototypical CPP, penetratin, enters cells of the free-living amoebae Dictyostelium discoideum. To investigate the functionality of this technology, we fused the penetratin sequence to PKI, a peptide inhibitor of the cAMP-dependent protein kinase (PKA). Consistent with its PKA inhibitory action, Penetratin-PKI blocked aggregation in wild-type cells and, at appropriate concentrations, rescued the phenotype of a Dictyostelium mutant that has constitutively high PKA activity. This technology offers an effective method for delivery of oligopeptides and oligonucleotides into Dictyostelium.  相似文献   

17.
Cellular internalization of cell-penetrating peptide HIV-1 Tat basic domain (RKKRRQRRR) was studied in Triticale cv AC Alta mesophyll protoplasts. Fluorescently labeled monomer (Tat) and dimer (Tat2) of Tat basic domain efficiently translocated through the plasma membrane of mesophyll protoplast and showed distinct nuclear accumulation within 10 min of incubation. Substitution of first arginine residue with alanine in Tat basic domain (M-Tat) severely reduced cellular uptake of the peptide (3.8 times less than Tat). Tat2 showed greater cellular internalization than Tat (1.6 times higher). However, characteristics of cellular uptake remained same for Tat and Tat2. Cellular internalization of Tat and Tat2 was concentration dependent and non-saturable whereas no significant change in cellular uptake was observed even at higher concentrations of M-Tat. Low temperature (4 °C) remarkably increased cellular internalization of Tat as well as Tat2 but M-Tat showed no enhanced uptake. Viability test showed that peptide treatment had no cytotoxic effect on protoplasts further indicating involvement of a common mechanism of peptide uptake at all the temperatures. Endocytic inhibitors nocodazole (10 μM), chloroquine (100 μM) and sodium azide (5 mM) did not show any significant inhibitory effect on cellular internalization of either Tat or Tat2. These results along with stimulated cellular uptake at low temperature indicate that Tat peptide is internalized in the plant protoplasts in a non-endocytic and energy-independent manner. Competition experiments showed that non-labeled peptide did not inhibit or alter nuclear accumulation of fluorescent Tat or Tat2 suggesting active transport to the nucleus was not involved. Studies in mesophyll protoplasts show that internalization pattern of Tat peptide is apparently similar to that observed in mammalian cell lines.  相似文献   

18.
Nature has provided inspiration for Drug Discovery studies and amphibian secretions have been used as a promising source of effective peptides which could be explored as novel drug prototypes for neglected parasitic diseases as Leishmaniasis and Chagas disease. In this study, we isolated four antimicrobial peptides (AMPs) from Phyllomedusa nordestina secretion, and studied their effectiveness against Leishmania (L.) infantum and Trypanosoma cruzi. The antiparasitic fractions were characterized by mass spectrometry and Edman degradation, leading to the identification of dermaseptins 1 and 4 and phylloseptins 7 and 8. T. cruzi trypomastigotes were susceptible to peptides, showing IC50 values in the range concentration of 0.25–0.68 μM. Leishmania (L.) infantum showed susceptibility to phylloseptin 7, presenting an IC50 value of 10 μM. Except for phylloseptin 7 which moderate showed cytotoxicity (IC50 = 34 μM), the peptides induced no cellular damage to mammalian cells. The lack of mitochondrial oxidative activity of parasites detected by the MTT assay, suggested that peptides were leishmanicidal and trypanocidal. By using the fluorescent probe SYTOX® Green, dermaseptins 1 and 4 and phylloseptins 7 and 8 showed time-dependent plasma membrane permeabilization of T. cruzi; phylloseptin 7 also showed a similar effect in Leishmania parasites. The present study demonstrates for the first time that AMPs target the plasma membrane of Leishmania and T. cruzi, leading to cellular death. Considering the potential of amphibian peptides against protozoan parasites and the reduced mammalian toxicity, they may contribute as scaffolds for drug design studies.  相似文献   

19.
Arginine-rich cell-penetrating peptides (CPPs) are promising carriers for the intracellular delivery of various bioactive molecules. However, many ambiguities remain about the molecular interplays on cell surfaces that ultimately lead to endocytic uptake of CPPs. By treatment of cells with octaarginine (R8), enhanced clustering of syndecan-4 on plasma membranes and binding of protein kinase Cα (PKCα) to the cytoplasmic domain of syndecan-4 were observed; these events potentially lead to the macropinocytic uptake of R8. The cytoplasmic V domain of syndecan-4 made a significant contribution to the cellular uptake of R8, whereas the cytoplasmic C1 and C2 domains were not involved in the process.  相似文献   

20.
About 25 years ago it was demonstrated that certain peptides possess the ability to cross the plasma membrane. This led to the development of cell-penetrating peptides (CPPs) as vectors to mediate the cellular entry of (macro-)molecules that do not show cell entry by themselves. Nonetheless, in spite of an early bloom of promising pre-clinical studies, not a single CPP-based drug has been approved, yet. It is a paradigm in CPP research that the peptides are taken up by virtually all cells. In exploratory research and early preclinical development, this assumption guides the choice of the therapeutic target. However, while this indiscriminatory uptake may be the case for tissue culture experiments, in an organism this is clearly not the case. Biodistribution analyses demonstrate that CPPs only target a very limited number of cells and many tissues are hardly reached at all. Here, we review biodistribution analyses of CPPs and CPP-based drug delivery systems. Based on this analysis we propose a paradigm change towards a more opportunistic approach in CPP research. The application of CPPs should focus on those pathophysiologies for which the relevant target cells have been shown to be reached in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号