首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell membranes are capable of withstanding significant osmotic stress, the exact amount of which varies with the lipid composition. In this paper, we examine the effect that salt concentration has on the lysis pressure of membranes containing anionic lipids. Vesicles containing varying amounts of phosphatidylcholine and phosphatidylglycerol were osmotically stressed using NaCl as the osmolyte. The lysis pressure was observed to vary linearly with the Debye screening length and the extent of the variation was linear with anionic lipid content. The implications these results have for cells that frequently encounter low solute environments are discussed.  相似文献   

2.
The use of naturally occurring lytic bacteriophage proteins as specific antibacterial agents is a promising way to treat bacterial infections caused by antibiotic-resistant pathogens. The opportunity to develop bacterial resistance to these agents is minimized by their broad mechanism of action on bacterial membranes and peptidoglycan integrity. In the present study, we have investigated lipid interactions of the gp144 lytic transglycosylase from the Pseudomonas aeruginosa phage ϕKZ. Interactions with zwitterionic lipids characteristic of eukaryotic cells and with anionic lipids characteristic of bacterial cells were studied using fluorescence, solid-state nuclear magnetic resonance, Fourier transform infrared, circular dichroism, Langmuir monolayers, and Brewster angle microscopy (BAM). Gp144 interacted preferentially with anionic lipids, and the presence of gp144 in anionic model systems induced membrane disruption and lysis. Lipid domain formation in anionic membranes was observed by BAM. Gp144 did not induce disruption of zwitterionic membranes but caused an increase in rigidity of the lipid polar head group. However, gp144 interacted with zwitterionic and anionic lipids in a model membrane system containing both lipids. Finally, the gp144 secondary structure was not significantly modified upon lipid binding.  相似文献   

3.
The effect of lipid headgroup structure upon the stability of lipid asymmetry was investigated. Using methyl-β-cyclodextrin -induced lipid exchange, sphingomyelin (SM) was introduced into the outer leaflets of lipid vesicles composed of phosphatidylglycerol, phosphatidylserine (PS), phosphatidylinositol, or cardiolipin, in mixtures of all of these lipids with phosphatidylethanolamine (PE), and in a phosphatidylcholine/phosphatidic acid mixture. Efficient SM exchange (>85% of that expected for complete replacement of the outer leaflet) was obtained for every lipid composition studied. Vesicles containing PE mixed with anionic lipids showed nearly complete asymmetry which did not decay after 1 day of incubation. However, vesicles containing anionic lipids without PE generally only exhibited partial asymmetry, which further decayed after 1 day of incubation. Vesicles containing the anionic lipid PS were an exception, showing nearly complete and stable asymmetry. It is likely that the combination of multiple charged groups on PE and PS inhibit transverse diffusion of these lipids across membranes relative to those lipids that only have one anionic group. Possible explanations of this behavior are discussed. The asymmetry properties of PE and PS may explain some of their functions in plasma membranes.  相似文献   

4.
The indiscriminate use of conventional antibiotics is leading to an increase in the number of resistant bacterial strains, motivating the search for new compounds to overcome this challenging problem. Antimicrobial peptides, acting only in the lipid phase of membranes without requiring specific membrane receptors as do conventional antibiotics, have shown great potential as possible substituents of these drugs. These peptides are in general rich in basic and hydrophobic residues forming an amphipathic structure when in contact with membranes. The outer leaflet of the prokaryotic cell membrane is rich in anionic lipids, while the surface of the eukaryotic cell is zwitterionic. Due to their positive net charge, many of these peptides are selective to the prokaryotic membrane. Notwithstanding this preference for anionic membranes, some of them can also act on neutral ones, hampering their therapeutic use. In addition to the electrostatic interaction driving peptide adsorption by the membrane, the ability of the peptide to perturb lipid packing is of paramount importance in their capacity to induce cell lysis, which is strongly dependent on electrostatic and hydrophobic interactions. In the present research, we revised the adsorption of antimicrobial peptides by model membranes as well as the perturbation that they induce in lipid packing. In particular, we focused on some peptides that have simultaneously acidic and basic residues. The net charges of these peptides are modulated by pH changes and the lipid composition of model membranes. We discuss the experimental approaches used to explore these aspects of lipid membranes using lipid vesicles and lipid monolayer as model membranes.  相似文献   

5.
The synapsins (I, II, and III) comprise a family of peripheral membrane proteins that are involved in both regulation of neurotransmitter release and synaptogenesis. Synapsins are concentrated at presynaptic nerve terminals and are associated with the cytoplasmic surface of synaptic vesicles. Membrane-binding of synapsins involves interaction with both protein and lipid components of synaptic vesicles. Synapsin I binds rapidly and with high affinity to liposomes containing anionic lipids. The binding of bovine synapsin I to liposomes was studied using fluoresceinphosphatidyl-ethanolamine (FPE) to measure membrane electrostatic potential. Synapsin binding to liposomes caused a rapid increase in FPE fluorescence, indicating an increase in positive charge at the membrane surface. Synapsin I binding to monolayers resulted in a substantial increase in monolayer surface pressure. At higher initial surface pressures, the synapsin-induced increase in monolayer surface pressure is dependent on the presence of anionic lipids in the monolayer. Synapsin I also induced rapid aggregation of liposomes, but did not induce leakage of entrapped carboxyfluorescein, while other aggregation-inducing agents promoted extensive leakage. These results are in agreement with the presence of amphipathic stretches of amino acids in synapsin I that exhibit both electrostatic and hydrophobic interactions with membranes, and offer a molecular explanation for the high affinity binding of synapsin I to liposomes and for stabilization of membranes by synapsin I.  相似文献   

6.
《Biophysical journal》2020,118(11):2694-2702
Calcium ions bind to lipid membranes containing anionic lipids; however, characterizing the specific ion-lipid interactions in multicomponent membranes has remained challenging because it requires nonperturbative lipid-specific probes. Here, using a combination of isotope-edited infrared spectroscopy and molecular dynamics simulations, we characterize the effects of a physiologically relevant (2 mM) Ca2+ concentration on zwitterionic phosphatidylcholine and anionic phosphatidylserine lipids in mixed lipid membranes. We show that Ca2+ alters hydrogen bonding between water and lipid headgroups by forming a coordination complex involving the lipid headgroups and water. These interactions distort interfacial water orientations and prevent hydrogen bonding with lipid ester carbonyls. We demonstrate, experimentally, that these effects are more pronounced for the anionic phosphatidylserine lipids than for zwitterionic phosphatidylcholine lipids in the same membrane.  相似文献   

7.
A pronounced membrane selectivity is demonstrated for short, hydrophilic, and highly charged antimicrobial peptides, end-tagged with aromatic amino acid stretches. The mechanisms underlying this were investigated by a method combination of fluorescence and CD spectroscopy, ellipsometry, and Langmuir balance measurements, as well as with functional assays on cell toxicity and antimicrobial effects. End-tagging with oligotryptophan promotes peptide-induced lysis of phospholipid liposomes, as well as membrane rupture and killing of bacteria and fungi. This antimicrobial potency is accompanied by limited toxicity for human epithelial cells and low hemolysis. The functional selectivity displayed correlates to a pronounced selectivity of such peptides for anionic lipid membranes, combined with a markedly reduced membrane activity in the presence of cholesterol. As exemplified for GRR10W4N (GRRPRPRPRPWWWW-NH(2)), potent liposome rupture occurs for anionic lipid systems (dioleoylphosphatidylethanolamine (DOPE)/dioleoylphosphatidylglycerol (DOPG) and Escherichia coli lipid extract) while that of zwitterionic dioleoylphosphatidylcholine (DOPC)/cholesterol is largely absent under the conditions investigated. This pronounced membrane selectivity is due to both a lower peptide binding to the zwitterionic membranes (z≈-8-10mV) than to the anionic ones (z≈-35-40mV), and a lower degree of membrane incorporation in the zwitterionic membranes, particularly in the presence of cholesterol. Replacing cholesterol with ergosterol, thus mimicking fungal membranes, results in an increased sensitivity for peptide-induced lysis, in analogy to the antifungal properties of such peptides. Finally, the generality of the high membrane selectivity for other peptides of this type is demonstrated.  相似文献   

8.
The cationic amphipathic alpha-helical antibiotic peptide, pleurocidin, from the winter flounder Pleuronectes americanus associates strongly with anionic membranes where it is able to translocate across the membrane, cause dye leakage from vesicles and induce pore like channel conductance. To investigate the mechanism of pleurocidin antibiotic activity in more detail we have applied a variety of spectroscopic techniques to study the interaction of pleurocidin with model membranes. At neutral pH the peptide inserts into membranes containing anionic lipids and, as shown by proton-decoupled 15N solid-state NMR spectroscopy of macroscopically oriented samples, is aligned parallel to the membrane surface. 2H solid-state NMR spectroscopy of chain deuterated phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) lipids in mixed membranes shows that pleurocidin interacts with both the zwitterionic PE and anionic PG but disrupts the lipid acyl chain order of the anionic PG lipids more effectively. At acidic pH the three histidine residues of pleurocidin become protonated and positively charged which does not alter the membrane disrupting effect nor the location of the peptide in the membrane. The results are interpreted in terms of a structural model for pleurocidin inserted into anionic lipid membranes and the implications of our data are discussed in terms of a general mechanism for the antibiotic activity.  相似文献   

9.
Mani R  Buffy JJ  Waring AJ  Lehrer RI  Hong M 《Biochemistry》2004,43(43):13839-13848
The interaction of a beta-hairpin antimicrobial peptide, protegrin-1 (PG-1), with various lipid membranes is investigated by (31)P, (2)H, and (13)C solid-state NMR. Mixed lipid bilayers containing anionic lipids and cholesterol are used to mimic the bacterial and mammalian cell membranes, respectively. (31)P and (2)H spectra of macroscopically oriented samples show that PG-1 induces the formation of an isotropic phase in anionic bilayers containing phosphatidylglycerol. Two-dimensional (31)P exchange experiments indicate that these isotropic lipids are significantly separate from the residual oriented lamellar bilayers, ruling out toroidal pores as the cause for the isotropic signal. (1)H spin diffusion experiments show that PG-1 is not exclusively bound to the isotropic phase but is also present in the residual oriented lamellar bilayers. This dynamic and morphological heterogeneity of the anionic membranes induced by PG-1 is supported by the fact that (13)C T(2) relaxation times measured under cross polarization and direct polarization conditions differ significantly. In contrast to the anionic membrane, the zwitterionic phosphatidylcholine (PC) membrane does not form an isotropic phase in the presence of PG-1 but shows significant orientational disorder. The addition of cholesterol to the PC bilayer significantly reduces this orientational disorder. The (13)C T(2) relaxation times of the PC lipids in the presence of both cholesterol and PG-1 suggest that the peptide may decrease the dynamic heterogeneity of the cholesterol-containing membrane. The observed selective interaction of PG-1 with different lipid membranes is consistent with its biological function and may be caused by its strong cationic and amphipathic structure.  相似文献   

10.
The osmotic stability of M. gallisepticum was found to be a consequence of the synthesis of disaturated phosphatidylcholine incorporated into the cell membrane. The disaturated lipid induces the formation of segregated lipid domains, thus providing the sites for increased permeation of ions. Such permeation reduces the internal pressure so as to minimize cell swelling and subsequent lysis in a hypotonic medium. Purified membranes of M. gallisepticum can be prepared from cells suspended in an iso-osmotic NaCl solution containing either dicyclohexylcarbodiimide (DCCD), which blocks ATPase activity, or a mild alkaline buffer. Both conditions seem to interfere with cell volume regulation. These procedures can be used also to isolate membranes of other osmotically stable mycoplasmas.  相似文献   

11.
We have investigated the effect of the interaction of the antimicrobial peptide gramicidin S (GS) on the thermotropic phase behavior of model lipid bilayer membranes generated from the total membrane lipids of Acholeplasma laidlawii B and Escherichia coli. The A. laidlawii B membrane lipids consist primarily of neutral glycolipids and anionic phospholipids, while the E. coli inner membrane lipids consist exclusively of zwitterionic and anionic phospholipids. We show that the addition of GS at a lipid-to-peptide molar ratio of 25 strongly promotes the formation of bicontinuous inverted cubic phases in both of these lipid model membranes, predominantly of space group Pn3m. In addition, the presence of GS causes a thinning of the liquid-crystalline bilayer and a reduction in the lattice spacing of the inverted cubic phase which can form in the GS-free membrane lipid extracts at sufficiently high temperatures. This latter finding implies that GS potentiates the formation of an inverted cubic phase by increasing the negative curvature stress in the host lipid bilayer. This effect may be an important aspect of the permeabilization and eventual disruption of the lipid bilayer phase of biological membranes, which appears to be the mechanism by which GS kills bacterial cells and lysis erythrocytes.  相似文献   

12.
Here, the interactions of aurein 1.2, a defence peptide, with T98G glioblastoma cell membranes are studied. The peptide induced maximal surface pressure changes of circa 9 mN m(-1) in monolayers of endogenous T98G membrane lipid. Reducing monolayer anionic lipid showed a positive correlation (R(2)>0.91) with decreases in maximal surface pressure changes induced by aurein 1.2 (circa 3 mN m(-1) in the absence of this lipid). Cancer cell membrane invasion by the peptide therefore appears not to be mediated by lipid receptors or specific lipid requirements but rather a general requirement for anionic lipid and/or other negatively charged membrane components.  相似文献   

13.
Pike LJ  Han X  Chung KN  Gross RW 《Biochemistry》2002,41(6):2075-2088
Lipid rafts are specialized cholesterol-enriched membrane domains that participate in cellular signaling processes. Caveolae are related domains that become invaginated due to the presence of the structural protein, caveolin-1. In this paper, we use electrospray ionization mass spectrometry (ESI/MS) to quantitatively compare the phospholipids present in plasma membranes and nondetergent lipid rafts from caveolin-1-expressing and nonexpressing cells. Lipid rafts are enriched in cholesterol and sphingomyelin as compared to the plasma membrane fraction. Expression of caveolin-1 increases the amount of cholesterol recovered in the lipid raft fraction but does not affect the relative proportions of the various phospholipid classes. Surprisingly, ESI/MS demonstrated that lipid rafts are enriched in plasmenylethanolamines, particularly those containing arachidonic acid. While the total content of anionic phospholipids was similar in plasma membranes and nondetergent lipid rafts, the latter were highly enriched in phosphatidylserine but relatively depleted in phosphatidylinositol. Detergent-resistant membranes made from the same cells showed a higher cholesterol content than nondetergent lipid rafts but were depleted in anionic phospholipids. In addition, these detergent-resistant membranes were not enriched in arachidonic acid-containing ethanolamine plasmalogens. These data provide insight into the structure of lipid rafts and identify potential new roles for these domains in signal transduction.  相似文献   

14.
The lipid requirements of the Torpedo californica nicotinic acetylcholine receptor (nAChR) were assessed by reconstituting purified receptors into lipid vesicles of defined composition and by using photolabeling with 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine ([125I]TID) to determine functionality. Earlier studies demonstrated that nAChRs reconstituted into membranes containing phosphatidylcholine (PC), the anionic lipid phosphatidic acid (PA), and cholesterol (CH) are particularly effective at stabilizing the nAChR in the resting (closed) state that is capable of undergoing agonist-induced conformational transitions (i.e., functionality). The present studies demonstrate that (1) there is no obligatory requirement for PC, (2) increasing the CH content serves to increase the degree to which nAChRs are stabilized in the resting state, and this effect saturates at approximately 35 mol % (molar lipid percentage), and (3) the effect of increasing levels of PA saturates at approximately 12 mol % and in the absence of PA nAChRs are stabilized in the desensitized state (i.e., nonfunctional). Native Torpedo membranes contain approximately 35 mol % CH but less than 1 mol % PA, suggesting that other anionic lipids may substitute for PA. We report that (1) phosphatidylserine (PS) and phosphatidylinositol (PI), anionic lipids that are abundant in native Torpedo membranes, also stabilize the receptor in the resting state although with reduced efficacy (approximately 50-60%) compared to PA, and (2) for nAChRs reconstituted into PA/CH membranes at different lipid-protein molar ratios, receptor functionality decreases rapidly below approximately 65 lipids per receptor. Collectively, these results are consistent with a functional requirement of a single shell of lipids surrounding the nAChR and specific anionic lipid- and sterol (CH)-protein interactions.  相似文献   

15.
Nonstructural 2B viroporin is an intracellularly produced pore-forming protein required for effective enteroviral and rhinoviral replication. The sequence of 2B displays two putative interconnected transmembrane domains, which are predicted to insert into the negatively charged membranes of target organelles forming an integral hairpin. The use of an overlapping peptide library that spanned the complete 2B sequence has recently allowed the mapping of the cell plasma membrane porating activity to the partially amphipathic, amino-terminal transmembrane domain (TM1, residues 35-55). We describe here that although the TM1 peptide was effective in permeabilizing uncharged membranes, it induced marginal lysis of anionic bilayers. In fact, only the peptide representing the highly conserved carboxy-terminal transmembrane domain (TM2, residues 59-82) reproduced the capacity of the full 2B protein to efficiently permeabilize bilayers made of anionic phospholipids. Insertion into lipid monolayers and circular dichroism determinations were, however, consistent with penetration of the TM1 helix into both anionic and zwitterionic membranes, while TM2 interacting with membranes assumed a mixture of conformations. Moreover, addition of TM1 strongly stimulated TM2-induced permeabilization of the anionic membranes. In combination, TM1 and TM2 formed a complex that had structural properties, including a high proportion of extended nonhelical secondary structure, that were distinct from those of the individual peptides. Finally, a comparison of antimicrobial and hemolytic activities further underscored the TM1 domain's cytolytic character. Overall, our data support the idea that the cytolytic activity of TM1 in the negatively charged cell endomembranes targeted by 2B viroporin requires the cooperation of both transmembrane domains.  相似文献   

16.
Bacteriorhodopsin (BR) was reconstituted into artificial lipid membrane containing various charged lipid compositions. The proton pumping activity of BR under flash and continuous illumination, proton permeability across membrane, as well as the decay kinetics of the photocycle intermediate M412 were studied. The results showed that lipid charges would significantly affect the orientation of BR inserted into lipid membranes. In liposomes containing anionic lipids, BRs were more likely to take natural orientation as in living cells. In neutral or positively charged liposomes, most BRs were reversely assembled, assuming an inside out orientation. Moreover, the lipids charges also affect BR’s M intermediate kinetics, especially the slow component in M intermediate decay. The half-life M412s increased significantly in BRs in liposomes containing cationic lipids, while decreased in those in anionic liposomes.  相似文献   

17.
We designed an experimental approach to differentiate the kinetics of protein binding to a lipid membrane from the kinetics of the associated conformational change in the protein. We measured the fluorescence intensity of the single Trp6 in chicken liver bile acid-binding protein (L-BABP) as a function of time after mixing the protein with lipid membranes. We mixed the protein with pure lipid membranes, with lipid membranes in the presence of a soluble quencher, and with lipid membranes containing a fluorescence quencher attached to the lipid polar head group. We fitted simultaneously the experimental curves to a three-state kinetic model. We conclude that in a first step, the binding of L-BABP to the interfacial region of the anionic lipid polar head groups occurred simultaneously with a conformational change to the partly unfolded state. In a second slower step, Trp6 buried within the polar head group region, releasing contacts with the aqueous phase.  相似文献   

18.
Phosphatidylinositol and phosphatidylcholine are transferred between bilayer membranes in the presence of a specific phosphatidylinositol transfer protein isolated from bovine brain. The effects of pH, ionic strength and lipid composition on the rate of transfer of these phospholipids between small unilamellar vesicles have been investigated. At low ionic strength, phosphatidylinositol transfer between vesicles prepared from phosphatidylcholine and 5 mol% phosphatidylinositol was maximal at about pH 5 and moderately dependent on hydrogen ion concentration in more alkaline regions. A similar dependence on pH was noted for phosphatidylcholine transfer between membranes containing phosphatidylcholine or mixtures of phosphatidylcholine and 5 mol% phosphatidylinositol, phosphatidic acid, phosphatidylglycerol, phosphatidylethanolamine or stearylamine. The rate of transfer between anionic vesicles was somewhat higher than that between neutral or cationic vesicles. At higher ionic strength the transfer reactions in neutral and alkaline regions were less sensitive to pH. Phospholipid transfers between vesicles containing 5 mol% of anionic lipid increased sharply as ionic strength decreased below 0.1. In contrast, phosphatidylcholine transfer between membranes which contained only zwitterionic phospholipids or 5 mol% stearylamine was unaffected by variations of ionic strength. Irrespective of the lipid composition of membranes, pH affected both the apparent Km and Vmax, while ionic strength generally affected the apparent Vmax. These results indicate a significant role of electrostatic interactions in the phospholipid transfer catalyzed by phosphatidylinositol transfer protein.  相似文献   

19.
Amphitropic proteins are regulated by reversible membrane interaction. Anionic phospholipids generally promote membrane binding of such proteins via electrostatics between the negatively charged lipid headgroups and clusters of basic groups on the proteins. In this study of one amphitropic protein, a cytidylyltransferase (CT) that regulates phosphatidylcholine synthesis, we found that substitution of lysines to glutamine along both interfacial strips of the membrane-binding amphipathic helix eliminated electrostatic binding. Unexpectedly, three glutamates also participate in the selectivity for anionic membrane surfaces. These glutamates become protonated in the low pH milieu at the surface of anionic, but not zwitterionic membranes, increasing protein positive charge and hydrophobicity. The binding and insertion into lipid vesicles of a synthetic peptide containing the three glutamates was pH-dependent with an apparent pK(a) that varied with anionic lipid content. Glutamate to glutamine substitution eliminated the pH dependence of the membrane interaction, and reduced anionic membrane selectivity of both the peptide and the whole CT enzyme examined in cells. Thus anionic lipids, working via surface-localized pH effects, can promote membrane binding by modifying protein charge and hydrophobicity, and this novel mechanism contributes to the membrane selectivity of CT in vivo.  相似文献   

20.
Pardaxin is a 33-amino-acid neurotoxin from the Red Sea Moses sole Pardachirus marmoratus, whose mode of action shows remarkable sensitivity to lipid chain length and charge, although the effect of pH is unclear. Here we combine optical spectroscopy and dye release experiments with laser scanning confocal microscopy and natural abundance 13C solid-state nuclear magnetic resonance to provide a more complete picture of how pardaxin interacts with lipids. The kinetics and efficiency of release of entrapped calcein is highly sensitive to pH. In vesicles containing zwitterionic lipids (PC), release occurs most rapidly at low pH, whereas in vesicles containing 20% anionic lipid (PG), release occurs most rapidly at high pH. Pardaxin forms stable or transient pores in PC vesicles that allow release of contents without loss of vesicle integrity, whereas the inclusion of PG promotes total vesicle collapse. In agreement with this, solid-state nuclear magnetic resonance reveals that pardaxin takes up a trans-membrane orientation in 14-O-PC/6-O-PC bicelles, whereas the inclusion of 14-0-PG restricts it to contacts with lipid headgroups, promoting membrane lysis. Pore formation in zwitterionic vesicles is more efficient than lysis of anionic vesicles, suggesting that electrostatic interactions may trap pardaxin in several suboptimal interconverting conformations on the membrane surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号