首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examine how a variety of cationic channels discriminate between ions of differing charge. We construct models of the KcsA potassium channel, voltage gated sodium channel and L-type calcium channel, and show that they all conduct monovalent cations, but that only the calcium channel conducts divalent cations. In the KcsA and sodium channels divalent ions block the channel and prevent any further conduction. We demonstrate that in each case, this discrimination and some of the more complex conductance properties of the channels is a consequence of the electrostatic interaction of the ions with the charges in the channel protein. The KcsA and sodium channels bind divalent ions strongly enough that they cannot be displaced by other ions and thereby block the channel. On the other hand, the calcium channel binds them less strongly such that they can be destabilized by the repulsion of another incoming divalent ion, but not by the lesser repulsion from monovalent ions.  相似文献   

2.
We have explored the permeation and blockage of ions in sodium channels, relating the channel structure to function using electrostatic profiles and Brownian dynamics simulations. The model used resembles the KcsA potassium channel with an added external vestibule and a shorter selectivity filter. The electrostatic energy landscape seen by permeating ions is determined by solving Poisson's equation. The two charged amino acid rings of Glu-Glu-Asp-Asp (EEDD) and Asp-Glu-Lys-Ala (DEKA) around the selectivity filter region are seen to play a crucial role in making the channel sodium selective, and strongly binding calcium ions such that they block the channel. Our model closely reproduces a range of experimental data including the current-voltage curves, current-concentration curves and blockage of monovalent ions by divalent ions.  相似文献   

3.
We have explored the permeation and blockage of ions in sodium channels, relating the channel structure to function using electrostatic profiles and Brownian dynamics simulations. The model used resembles the KcsA potassium channel with an added external vestibule and a shorter selectivity filter. The electrostatic energy landscape seen by permeating ions is determined by solving Poisson's equation. The two charged amino acid rings of Glu-Glu-Asp-Asp (EEDD) and Asp-Glu-Lys-Ala (DEKA) around the selectivity filter region are seen to play a crucial role in making the channel sodium selective, and strongly binding calcium ions such that they block the channel. Our model closely reproduces a range of experimental data including the current-voltage curves, current-concentration curves and blockage of monovalent ions by divalent ions.  相似文献   

4.
Here we present functional evidence for involvement of poly-(R)-3-hydroxybutyrate (PHB) and inorganic polyphosphate (polyP) in ion conduction and selection at the intracellular side of the Streptomyces lividans potassium channel, KcsA. At < or = 25 degrees C, KcsA forms channels in planar bilayers that display signal characteristics of PHB/polyP channels at the intracellular side; i.e., a preference for divalent Mg(2+) cations at pH 7.2, and a preference for monovalent K+ cations at pH 6.8. Between 25 and 26 degrees C, KcsA undergoes a transition to a new conformation in which the channel exhibits high selectivity for K+, regardless of solution pH. This suggests that basic residues of the C-terminal polypeptides have moved closer to the polyP end unit, reducing its negative charge. The data support a supramolecular structure for KcsA in which influx of ions is prevented by the selectivity pore, whereas efflux of K+ is governed by a conductive core of PHB/polyP in partnership with the C-terminal polypeptide strands.  相似文献   

5.
The mechanisms underlying ion transport and selectivity in calcium channels are examined using electrostatic calculations and Brownian dynamics simulations. We model the channel as a rigid structure with fixed charges in the walls, representing glutamate residues thought to be responsible for ion selectivity. Potential energy profiles obtained from multi-ion electrostatic calculations provide insights into ion permeation and many other observed features of L-type calcium channels. These qualitative explanations are confirmed by the results of Brownian dynamics simulations, which closely reproduce several experimental observations. These include the current-voltage curves, current-concentration relationship, block of monovalent currents by divalent ions, the anomalous mole fraction effect between sodium and calcium ions, attenuation of calcium current by external sodium ions, and the effects of mutating glutamate residues in the amino acid sequence.  相似文献   

6.
Summary A nonselective cation channel activated by patch excision was characterized in inside-out patches from spiny lobster olfactory receptor neurons. The channel, which was permeable to Na+, K+ and Cs+, had a conductance of 320 pS and was weakly voltage dependent in the presence of micromolar divalent cations. Millimolar internal divalent cations caused a voltage-and concentration-dependent block of Na+ permeation. Analysis of the voltage dependence indicated that the proportion of the membrane's electric field sensed by Mg2+ was >1, suggesting that the channel contains a multi-ion pore. Internal divalent cations also reduced the frequency of channel opening in a concentration-dependent, but not voltage-dependent, manner, indicating that different cation binding sites affect gating and conductance. While block of gating prevented determining if internal divalent cations permeate the channel, a channel highly permeable to external divalent cations was observed upon patch excision to the inside-out configuration. The monovalent and divalent cation conductances shared activation by patch excision, weak voltage dependence, and steady-state activity, suggesting that they are the same channel. These data extend our understanding of this type of channel by demonstrating permeation by monovalent cations, detailing Mg2+ block of Na permeation, and demonstrating the channel's presence in arthropods.  相似文献   

7.
Measurement of unitary conductance is a fundamental step in the characterization of a protein ion channel permeabilizing a membrane. We study here the effect of salts of divalent cations on the OmpF channel conductance with a particular emphasis in dissecting the role of the electrolyte itself, the role of the counterion accumulation induced by the protein channel charges and other effects not found in salts of monovalent cations. We show that current saturation and blocking are not exclusive properties of narrow (single-file) ion channels but may be observed in large, multiionic channels like bacterial porins. Single-channel conductance measurements performed over a wide range of salt concentrations (up to 3 M) combined with continuum electrodiffusion calculations demonstrate that current saturation cannot be simply ascribed to ion interaction with protein channel residues.  相似文献   

8.
Permeation, gating, and their interrelationship in an inwardly rectifying potassium (K+) channel, ROMK2, were studied using heterologous expression in Xenopus oocytes. Patch-clamp recordings of single channels were obtained in the cell-attached mode. The gating kinetics of ROMK2 were well described by a model having one open and two closed states. One closed state was short lived (∼1 ms) and the other was longer lived (∼40 ms) and less frequent (∼1%). The long closed state was abolished by EDTA, suggesting that it was due to block by divalent cations. These closures exhibit a biphasic voltage dependence, implying that the divalent blockers can permeate the channel. The short closures had a similar biphasic voltage dependence, suggesting that they could be due to block by monovalent, permeating cations. The rate of entering the short closed state varied with the K+ concentration and was proportional to current amplitude, suggesting that permeating K+ ions may be related to the short closures. To explain the results, we propose a variable intrapore energy well model in which a shallow well may change into a deep one, resulting in a normally permeant K+ ion becoming a blocker of its own channel.  相似文献   

9.
The ability of the divalent cations calcium, magnesium, and barium to permeate through the cGMP-gated channel of catfish cone outer segments was examined by measuring permeability and conductance ratios under biionic conditions and by measuring their ability to block current carried by sodium when presented on the cytoplasmic or extracellular side of the channel. Current carried by divalent cations in the absence of monovalent cations showed the typical rectification pattern observed from these channels under physiological conditions (an exponential increase in current at both positive and negative voltages). With calcium as the reference ion, the relative permeabilities were Ca > Ba > Mg, and the chord conductance ratios at +50 mV were in the order of Ca approximately Mg > Ba. With external sodium as the reference ion, the relative permeabilities were Ca > Mg > Ba > Na with chord conductance ratios at +30 mV in the order of Na >> Ca = Mg > Ba. The ability of divalent cations presented on the intracellular side to block the sodium current was in the order Ca > Mg > Ba at +30 mV and Ca > Ba > Mg at -30 mV. Block by external divalent cations was also investigated. The current-voltage relations showed block by internal divalent cations reveal no anomalous mole fraction behavior, suggesting little ion-ion interaction within the pore. An Eyring rate theory model with two barriers and a single binding site is sufficient to explain both these observations and those for monovalent cations, predicting a single-channel conductance under physiological conditions of 2 pS and an inward current at -30 mV carried by 82% Na, 5% Mg, and 13% Ca.  相似文献   

10.
The properties of the calcium efflux system in the yeast Saccharomyces cerevisiae were investigated. After growing the cells overnight in medium containing 45Ca, the cells were transferred to medium containing glucose, Hepes buffer (pH 5.2) and monovalent cations. The presence of potassium or sodium in the medium induced efflux of calcium from the cells. The magnitude of the efflux was dependent on the concentration of these cations in the medium. The time course of calcium efflux was analyzed, and two types of exchangeable calcium pools, which turned over at different rates, were detected: ‘Fast turnover’ and ‘slow turnover’. Increase in the concentration of monovalent cations in the medium caused an increase in the fraction of cellular calcium which turned over at a fast rate, and activation of calcium efflux from the ‘slow turnover’ calcium pool. The specific changes in the parameters of calcium efflux induced by monovalent cations were different from those reported previously to be induced by divalent cations. Both processes, i.e. activation of calcium efflux by monovalent and by divalent cations, were found to be additive, indicating that they operate via different mechanisms. Experiments using the respiratory inhibitor Antimycin A, showed that stimulation of calcium efflux by monovalent cations is energy dependent. Lanthanum ions which are known to inhibit calcium influx into yeast cells, inhibitted the activation of calcium efflux by both divalent and monovalent cations. Determination of the cationic composition of the cells indicated that the stimulation of calcium efflux was accompanied by influx of potassium or sodium into the cells.  相似文献   

11.
TRPV6 (CaT1/ECaC2), a highly Ca(2+)-selective member of the TRP superfamily of cation channels, becomes permeable to monovalent cations in the absence of extracellular divalent cations. The monovalent currents display characteristic voltage-dependent gating and almost absolute inward rectification. Here, we show that these two features are dependent on the voltage-dependent block/unblock of the channel by intracellular Mg(2+). Mg(2+) blocks the channel by binding to a site within the transmembrane electrical field where it interacts with permeant cations. The block is relieved at positive potentials, indicating that under these conditions Mg(2+) is able to permeate the selectivity filter of the channel. Although sizeable outward monovalent currents were recorded in the absence of intracellular Mg(2+), outward conductance is still approximately 10 times lower than inward conductance under symmetric, divalent-free ionic conditions. This Mg(2+)-independent rectification was preserved in inside-out patches and not altered by high intracellular concentrations of spermine, indicating that TRPV6 displays intrinsic rectification. Neutralization of a single aspartate residue within the putative pore loop abolished the Mg(2+) sensitivity of the channel, yielding voltage-independent, moderately inwardly rectifying monovalent currents in the presence of intracellular Mg(2+). The effects of intracellular Mg(2+) on TRPV6 are partially reminiscent of the gating mechanism of inwardly rectifying K(+) channels and may represent a novel regulatory mechanism for TRPV6 function in vivo.  相似文献   

12.
Potassium ion channels enable efficient and selective permeation of K+ ions across nonpolar biological membranes. Here we review the results of recent free energy calculations related to the permeation of monovalent cations through K+ channels and to the channel inhibition by blocker compounds. In particular, the progress in computational studies of the bacterial KcsA channel is discussed.  相似文献   

13.
In rat basophilic leukemia (RBL) cells and Jurkat T cells, Ca(2+) release-activated Ca(2+) (CRAC) channels open in response to passive Ca(2+) store depletion. Inwardly rectifying CRAC channels admit monovalent cations when external divalent ions are removed. Removal of internal Mg(2+) exposes an outwardly rectifying current (Mg(2+)-inhibited cation [MIC]) that also admits monovalent cations when external divalent ions are removed. Here we demonstrate that CRAC and MIC currents are separable by ion selectivity and rectification properties: by kinetics of activation and susceptibility to run-down and by pharmacological sensitivity to external Mg(2+), spermine, and SKF-96365. Importantly, selective run-down of MIC current allowed CRAC and MIC current to be characterized under identical ionic conditions with low internal Mg(2+). Removal of internal Mg(2+) induced MIC current despite widely varying Ca(2+) and EGTA levels, suggesting that Ca(2+)-store depletion is not involved in activation of MIC channels. Increasing internal Mg(2+) from submicromolar to millimolar levels decreased MIC currents without affecting rectification but did not alter CRAC current rectification or amplitudes. External Mg(2+) and Cs(+) carried current through MIC but not CRAC channels. SKF-96365 blocked CRAC current reversibly but inhibited MIC current irreversibly. At micromolar concentrations, both spermine and extracellular Mg(2+) blocked monovalent MIC current reversibly but not monovalent CRAC current. The biophysical characteristics of MIC current match well with cloned and expressed TRPM7 channels. Previous results are reevaluated in terms of separate CRAC and MIC channels.  相似文献   

14.
Ion selectivity of voltage-activated sodium channels is determined by amino-acid residues in the pore regions of all four homologous repeats. The major determinants are the residues DEKA (for repeats I-IV) which form a putative ring structure in the pore; the homologous structure in Ca-channels consists of EEEE. By combining site-directed mutagenesis of a non-inactivating form of the rat brain sodium channel II with electrophysiological methods, we attempted to quantify the importance of charge, size, and side-chain position of the amino-acid residues within this ring structure on channel properties such as monovalent cation selectivity, single-channel conductance, permeation and selectivity of divalent cations, and channel block by extracellular Ca2+ and tetrodotoxin (TTX). In all mutant channels tested, even those with the same net charge in the ring structure as the wild type, the selectivity for Na+ and Li+ over K+, Rb+, Cs+, and NH4 + was significantly reduced. The changes in charge did not correlate in a simple fashion with the single-channel conductances. Permeation of divalent ions (Ca2+, Ba2+, Sr2+, Mg2+, Mn2+) was introduced by some of the mutations. The IC50 values for the Ca2+ block of Na+ currents decreased exponentially with increasing net negative charge of the selectivity ring. The sensitivity towards channel block by TTX was reduced in all investigated mutants. Mutations in repeat IV are an exception as they caused smaller effects on all investigated channel properties compared with the other repeats. Received: 24 July 1996 / Accepted: 12 September 1996  相似文献   

15.
Single channel and whole cell recordings were used to study ion permeation through Ca channels in isolated ventricular heart cells of guinea pigs. We evaluated the permeability to various divalent and monovalent cations in two ways, by measuring either unitary current amplitude or reversal potential (Erev). According to whole cell measurements of Erev, the relative permeability sequence is Ca2+ greater than Sr2+ greater than Ba2+ for divalent ions; Mg2+ is not measurably permeant. Monovalent ions follow the sequence Li+ greater than Na+ greater than K+ greater than Cs+, and are much less permeant than the divalents. These whole cell measurements were supported by single channel recordings, which showed clear outward currents through single Ca channels at strong depolarizations, similar values of Erev, and similar inflections in the current-voltage relation near Erev. Information from Erev measurements stands in contrast to estimates of open channel flux or single channel conductance, which give the sequence Na+ (85 pS) greater than Li+ (45 pS) greater than Ba2+ (20 pS) greater than Ca2+ (9 pS) near 0 mV with 110-150 mM charge carrier. Thus, ions with a higher permeability, judged by Erev, have lower ion transfer rates. In another comparison, whole cell Na currents through Ca channels are halved by less than 2 microM [Ca]o, but greater than 10 mM [Ca]o is required to produce half-maximal unitary Ca current. All of these observations seem consistent with a recent hypothesis for the mechanism of Ca channel permeation, which proposes that: ions pass through the pore in single file, interacting with multiple binding sites along the way; selectivity is largely determined by ion affinity to the binding sites rather than by exclusion by a selectivity filter; occupancy by only one Ca ion is sufficient to block the pore's high conductance for monovalent ions like Na+; rapid permeation by Ca ions depends upon double occupancy, which only becomes significant at millimolar [Ca]o, because of electrostatic repulsion or some other interaction between ions; and once double occupancy occurs, the ion-ion interaction helps promote a quick exit of Ca ions from the pore into the cell.  相似文献   

16.
We examine the hypotheses that the Streptomyces lividans potassium channel KcsA is gated at neutral pH by the electrochemical potential, and that its selectivity and conductance are governed at the cytoplasmic face by interactions between the KcsA polypeptides and a core molecule of inorganic polyphosphate (polyP). The four polypeptides of KcsA are postulated to surround the end unit of the polyP molecule with a collar of eight arginines, thereby modulating the negative charge of the polyP end unit and increasing its preference for binding monovalent cations. Here we show that KcsA channels can be activated in planar lipid bilayers at pH 7.4 by the chemical potential alone. Moreover, one or both of the C-terminal arginines are replaced with residues of progressively lower basicity-lysine, histidine, valine, asparagine-and the effects of these mutations on conductance and selectivity for K+ over Mg2+ is tested in planar bilayers as a function of Mg2+ concentration and pH. As the basicity of the C-terminal residues decreases, Mg2+ block increases, and Mg2+ becomes permeant when medium pH is greater than the pI of the C-terminal residues. The results uphold the premise that polyP and the C-terminal arginines are decisive elements in KcsA channel regulation.  相似文献   

17.
The selectivity of ion channels produced by latrotoxin obtained from a black widow spider venom and by venom from the spider Steatoda paykulliana in bilayer phospholipid membrane was studied. Experimental current-voltage curves of these channels were used for the estimation of parameters of a two barrier model of their energy profiles. Selectivities of both types of channels are similar. Alkaline earth cations are permeable, the permeability increasing in the order Mg2+ less than Ca2+ less than Sr2+ less than Ba2+. In contrast transition metal cations block the channel, their efficiency decreases in the order: Cd2+ greater than or equal to Ni2+ greater than Zn2+ greater than Co2+ greater than Mn2+ (Steatoda paykulliana spider venom) and Cd2+ greater than Co2+ greater than Ni2+ greater than Zn2+ greater than Mn2+ (latrotoxin). Amplitudes of current carried by corresponding ions are mainly determined by the depth of the potential well for this ion, i.e., by its affinity to the cation binding site in the channel. The channels are also permeable to monovalent cations but they do not bind them. Selectivity for monovalent cations depends on Ca2+ concentration at the cis-side of membrane in the micromolar range. However, the addition of Ca2+ to the trans-side up to 10 mM does not affect currents carried by monovalent ions. It is suggested that venom-induced calcium channels have two conformational states with different selectivities which interconvert upon binding one calcium ion. Possible general schemes for the organisation of calcium channels in excitable membranes are also discussed. Finally, using a mathematical model of synaptic transmission, possible mechanisms of toxic action of spider venoms are considered.  相似文献   

18.
19.
Voltage-gated Ca(2+) channels (VGCC) play a key role in many physiological functions by their high selectivity for Ca(2+) over other divalent and monovalent cations in physiological situations. Divalent/monovalent selection is shared by all VGCC and is satisfactorily explained by the existence, within the pore, of a set of four conserved glutamate/aspartate residues (EEEE locus) coordinating Ca(2+) ions. This locus however does not explain either the choice of Ca(2+) among other divalent cations or the specific conductances encountered in the different VGCC. Our systematic analysis of high- and low-threshold VGCC currents in the presence of Ca(2+) and Ba(2+) reveals highly specific selectivity profiles. Sequence analysis, molecular modeling, and mutational studies identify a set of nonconserved charged residues responsible for these profiles. In HVA (high voltage activated) channels, mutations of this set modify divalent cation selectivity and channel conductance without change in divalent/monovalent selection, activation, inactivation, and kinetics properties. The Ca(V)2.1 selectivity profile is transferred to Ca(V)2.3 when exchanging their residues at this location. Numerical simulations suggest modification in an external Ca(2+) binding site in the channel pore directly involved in the choice of Ca(2+), among other divalent physiological cations, as the main permeant cation for VGCC. In LVA (low voltage activated) channels, this locus (called DCS for divalent cation selectivity) also influences divalent cation selection, but our results suggest the existence of additional determinants to fully recapitulate all the differences encountered among LVA channels. These data therefore attribute to the DCS a unique role in the specific shaping of the Ca(2+) influx between the different HVA channels.  相似文献   

20.
We have investigated the reduction of steady state sodium channel currents by a monovalent and a divalent guanidinium analogue. The amount of block by the divalent compound at a constant membrane potential was dramatically reduced by an increase in the internal salt concentration. Channel block by the monovalent molecule was a less steep function of salt concentration. These results would be expected if there were negative charges near the sodium pore that produced a local accumulation of the cationic blocking ions. According to this view, the ionic strength dependence of block results from changes in surface potential. The divalent blocker would be expected to be more sensitive to ionic strength owing to its larger valence. Our results can be quantitatively described by a simple ionic double-layer model with an effective surface charge density of about -1 e/250 A2 in the vicinity of the pore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号