首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
YOL027c in yeast and LETM1 in humans encode integral proteins of the inner mitochondrial membrane. They have been implicated in mitochondrial K+ homeostasis and volume control. To further characterize their role, we made use of submitochondrial particles (SMPs) with entrapped K+- and H+-sensitive fluorescent dyes PBFI and BCECF, respectively, to study the kinetics of K+ and H+ transport across the yeast inner mitochondrial membrane. Wild-type SMPs exhibited rapid, reciprocal translocations of K+ and H+ driven by concentration gradients of either of them. K+ and H+ translocations have stoichiometries similar to those mediated by the exogenous K+/H+ exchanger nigericin, and they are shown to be essentially electroneutral and obligatorily coupled. Moreover, [K+] gradients move H+ against its concentration gradient, and vice-versa. These features, as well as the sensitivity of K+ and H+ fluxes to quinine and Mg2+, qualify these activities as K+/H+ exchange reactions. Both activities are abolished when the yeast Yol027p protein is absent (yol027Delta mutant SMPs), indicating that it has an essential role in this reaction. The replacement of the yeast Yol027p by the human Letm1 protein restores K+/H+ exchange activity confirming functional homology of the yeast and human proteins. Considering their newly identified function, we propose to refer to the yeast YOL027c gene and the human LETM1 gene as yMKH1 and hMKH1, respectively.  相似文献   

2.
The yeast open reading frames YOL027 and YPR125 and their orthologs in various eukaryotes encode proteins with a single predicted trans-membrane domain ranging in molecular mass from 45 to 85 kDa. Hemizygous deletion of their human homolog LETM1 is likely to contribute to the Wolf-Hirschhorn syndrome phenotype. We show here that in yeast and human cells, these genes encode integral proteins of the inner mitochondrial membrane. Deletion of the yeast YOL027 gene (yol027Delta mutation) results in mitochondrial dysfunction. This mutant phenotype is complemented by the expression of the human LETM1 gene in yeast, indicating a functional conservation of LetM1/Yol027 proteins from yeast to man. Mutant yol027Delta mitochondria have increased cation contents, particularly K+ and low-membrane-potential Deltapsi. They are massively swollen in situ and refractory to potassium acetate-induced swelling in vitro, which is indicative of a defect in K+/H+ exchange activity. Thus, YOL027/LETM1 are the first genes shown to encode factors involved in both K+ homeostasis and organelle volume control.  相似文献   

3.
The proton ejection coupled to electron flow from succinate and/or endogenous substrate(s) to cytochrome c using the impermeable electron acceptor ferricyanide is studied in tightly coupled mitochondria isolated from two strains of the yeast Saccharomyces cerevisiae. (1) The observed H+ ejection/2e? ratio approaches an average value of 3 when K+ (in the presence of valinomycin) is used as charge-compensating cation. (2) In the presence of the proton-conducting agent carbonyl cyanide m-chlorophenylhydrazone, an H+ ejection/2e? ratio of 2 is observed. (3) The low stoichiometry of 3H+ ejected (instead of 4) per 2e? and the high rate of H+ back-decay (0.1615 lnδ-(ngatom)H+s and a half-time of 4.6 s for 10 mg protein) into the mitochondrial matrix are related to the presence of an electroneutral K+/H+ antiporter which is demonstrated by passive swelling experiments in isotonic potassium acetate medium.  相似文献   

4.
Plant vacuolar Na+/H+ antiporters play important roles in maintaining cellular ion homeostasis and mediating the transport of Na+ out of the cytosol and into the vacuole. Vacuolar antiporters have been shown to play significant roles in salt tolerance; however the relatively low Vmax of the Na+/H+ exchange of the Na+/H+ antiporters identified could limit its application in the molecular breeding of salt tolerant crops. In this study, we applied DNA shuffling methodology to generate and recombine the mutations of Arabidopsis thaliana vacuolar Na+/H+ antiporter gene AtNHX1. Screening using a large scale yeast complementation system identified AtNHXS1, a novel Na+/H+ antiporter. Expression of AtNHXS1 in yeast showed that the antiporter localized to the vacuolar membrane and that its expression improved the tolerance of yeast to NaCl, KCl, LiCl, and hygromycin B. Measurements of the ion transport activity across the intact yeast vacuole demonstrated that the AtNHXS1 protein showed higher Na+/H+ exchange activity and a slightly improved K+/H+ exchange activity.  相似文献   

5.
Differential centrifugation of oxyntic cell homogenates yielded microsomal fractions which contained large amounts of mitochondrial membrane. The presence of marker enzymes (succinate dehydrogenase and cytochrome c oxidase) indicated that mitochondrial contamination of crude microsomes ranged from 20 to 60% in different preparations. A discontinuous sucrose density gradient procedure was developed for the routine preparation of purified oxyntic cell microsomes. A K+-stimulated, Mg2+-requiring ATPase was localized in these purified membranes and coincided with the presence of a K+-stimulated p-nitrophenylphosphatase. Na+ and ouabain had no effect on the K+ stimulation of the microsomal ATPase. The apparent activation constant for K+ was approximately 1 mM at pH 7.5, the optimal pH for stimulation.An anion-sensitive ATPase has been widely studied in gastric microsomal preparations. We found that the basal microsomal ATPase (i.e. without K+) and the mitochondrial ATPase were inhibited by SCN? and enhanced by HCO3?, however, the K+-stimulated component of the microsomal ATPase was virtually unaffected by these anions.  相似文献   

6.
We previously demonstrated that Saccharomyces cerevisiae vnx1Δ mutant strains displayed an almost total loss of Na+ and K+/H+ antiporter activity in a vacuole-enriched fraction. However, using different in vitro transport conditions, we were able to reveal additional K+/H+ antiporter activity. By disrupting genes encoding transporters potentially involved in the vnx1 mutant strain, we determined that Vcx1p is responsible for this activity. This result was further confirmed by complementation of the vnx1Δvcx1Δ nhx1Δ triple mutant with Vcx1p and its inactivated mutant Vcx1p-H303A. Like the Ca2+/H+ antiporter activity catalyzed by Vcx1p, the K+/H+ antiporter activity was strongly inhibited by Cd2+ and to a lesser extend by Zn2+. Unlike as previously observed for NHX1 or VNX1, VCX1 overexpression only marginally improved the growth of yeast strain AXT3 in the presence of high concentrations of K+ and had no effect on hygromycin sensitivity. Subcellular localization showed that Vcx1p and Vnx1p are targeted to the vacuolar membrane, whereas Nhx1p is targeted to prevacuoles. The relative importance of Nhx1p, Vnx1p, and Vcx1p in the vacuolar accumulation of monovalent cations will be discussed.  相似文献   

7.

Background

Leucine zipper/EF hand-containing transmembrane-1 (LETM1) encodes for the human homologue of yeast Mdm38p, which is a mitochondria-shaping protein of unclear function. However, a previous study demonstrated that LETM1 served as an anchor protein for complex formation between mitochondria and ribosome, and regulated mitochondrial biogenesis.

Methodology/Principal Findings

Therefore, we examine the possibility that LETM1 may function to regulate mitochondria and lung tumor growth. In this study, we addressed this question by studying in the effect of adenovirus-mediated LETM1 in the lung cancer cell and lung cancer model mice. To investigate the effects of adenovirus-LETM1 in vitro, we infected with adenovirus-LETM1 in A549 cells. Additionally, in vivo effects of LETM1 were evaluated on K-ras LA1 mice, human non-small cell lung cancer model mice, by delivering the LETM1 via aerosol through nose-only inhalation system. The effects of LETM1 on lung cancer growth and AMPK related signals were evaluated. Adenovirus-mediated overexpression of LETM1 could induce destruction of mitochondria of lung cancer cells through depleting ATP and AMPK activation. Furthermore, adenoviral-LETM1 also altered Akt signaling and inhibited the cell cycle while facilitating apoptosis. Theses results demonstrated that adenovirus-LETM1 suppressed lung cancer cell growth in vitro and in vivo.

Conclusions/Significance

Adenovirus-mediated LETM1 may provide a useful target for designing lung tumor prevention and treatment.  相似文献   

8.
We report here on an experimental system that utilizes ion-selective microelectrodes to measure the electrochemical potential gradients for H+ and K+ ions within the unstirred layer near the root surface of both intact 4-day-old corn seedlings and corn root segments. Analysis of the steady state H+ and K+ electrochemical potential gradients provided a simultaneous measure of the fluxes crossing a localized region of the root surface. Net K+ influx values obtained by this method were compared with unidirectional K+ (86Rb+) influx kinetic data; at any particular K+ concentration, similar values were obtained by either technique. The ionspecific microelectrode system was then used to investigate the association between net H+ efflux and net K+ influx. Although the computed H+:K+ stoichiometry is dependent upon the choice of diffusion coefficients, the values obtained were extremely variable, and net K+ influx rarely appeared to be charge-balanced by H+ efflux. In contrast to earlier studies, we found the cortical membrane potential to be highly K+ sensitive within the micromolar K+ concentration range. Simultaneous measurements of membrane potential and K+ influx, as a function of K+ concentration, revealed similar Km values for the depolarization of the potential (Km 6-9 micromolar K+) and net K+ influx (Km 4-7 micromolar K+). These data suggest that K+ may enter corn roots via a K+-H+ cotransport system rather than a K+/H+ antiporter.  相似文献   

9.
Tsyregma Li  Bruno Antonsson 《BBA》2010,1797(1):52-62
In the present study, we compared alkali-resistant BAX insertion into the outer mitochondrial membrane, mitochondrial remodeling, mitochondrial membrane potential changes, and cytochrome c (Cyt c) release from isolated brain mitochondria triggered by recombinant BAX oligomerized with 1% octyl glucoside (BAXoligo) and by a combination of monomeric BAX (BAXmono) and caspase 8-cleaved C-terminal fragment of recombinant BID (truncated BID, tcBID). We also examined whether the effects induced by BAXoligo or by BAXmono activated with tcBID depended on induction of the mitochondrial permeability transition. The results obtained in this study revealed that tcBID plus BAXmono produced BAX insertion and Cyt c release without overt changes in mitochondrial morphology. On the contrary, treatment of mitochondria with BAXoligo resulted in BAX insertion and Cyt c release, which were accompanied by gross distortion of mitochondrial morphology. The effects of BAXoligo could be at least partially suppressed by mitochondrial depolarization. The effects of tcBID plus BAXmono were insensitive to depolarization. BAXoligo produced similar BAX insertion, mitochondrial remodeling, and Cyt c release in KCl- and in N-methyl-d-glucamine-based incubation media indicating a non-essential role for K+ influx into mitochondria in these processes. A combination of cyclosporin A and ADP, inhibitors of the mitochondrial permeability transition, attenuated Cyt c release, mitochondrial remodeling, and depolarization induced by BAXoligo, but failed to influence the effects produced by tcBID plus BAXmono. Thus, our results suggest a significant difference in the mechanisms of the outer mitochondrial membrane permeabilization and Cyt c release induced by detergent-oligomerized BAXoligo and by BAX activated with tcBID.  相似文献   

10.
A series of 1H-pyrrolo[2,3-c]pyridines as acid pump antagonists (APAs) was synthesized and the inhibitory activities against H+/K+ ATPase isolated from hog gastric mucosa were determined. After elaborating on substituents at N1, C5, and C7 position of 1H-pyrrolo[2,3-c]pyridine scaffold, we have observed that compounds 14f and 14g are potent APAs with H+/K+ ATPase IC50 = 28 and 29 nM, respectively.  相似文献   

11.
Changes in the fluorescence of 1-anilino-8-naphthalenesulfonate (ANS) accompanying non-enzymatic generation of the membrane potential in mitochondria and sonicated submitochondrial particles have been demonstrated. Generation of the membrane potential was induced by addition of an ionophore (valinomycin for K+, or tetrachlorotri-fluoromethylbenzimidazole for H+) under conditions where there existed K+ (or H+) gradients across the mitochondrial membrane. The ANS fluorescence decreased when the mitochondrial (or particle) interior became more negative, and increased when it became more positive. Collapse of the membrane potential reversed the ANS responses. A hypothesis is put forward to explain the energy-dependent ANS responses in mitochondria and particles by the membrane potential-induced redistribution of ANS between the membrane and water phases.  相似文献   

12.
13.
H+-transporting F1Fo ATP synthase catalyzes the synthesis of ATP via coupled rotary motors within Fo and F1. H+ transport at the subunit a–c interface in trans-membranous Fo drives rotation of the c-ring within the membrane, with subunit c being bound in a complex with the γ and ε subunits extending from the membrane. Finally, the rotation of subunit γ within the α3β3 sector of F1 mechanically drives ATP synthesis within the catalytic sites. In this review, we propose and provide evidence supporting the route of proton transfer via half channels from one side of the membrane to the other, and the mechanism of gating H+ binding to and release from Asp61 of subunit c, via conformational movements of Arg210 in subunit a. We propose that protons are gated from the inside of a four-helix bundle at the periplasmic side of subunit a to drive protonation of cAsp61, and that this gating movement is facilitated by the swiveling of trans-membrane helices (TMHs) 4 and 5 at the site of interaction with cAsp61 on the periphery of the c-ring. Proton release to the cytoplasmic half channel is facilitated by the movement of aArg210 as a consequence of this proposed helical swiveling. Finally, release from the cytoplasmic half channel is mediated by residues in a complex of interacting extra-membraneous loops formed between TMHs of both subunits a and c. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

14.
The Saccharomyces cerevisiae Nha1p, a plasma membrane protein belonging to the monovalent cation/proton antiporter family, plays a key role in the salt tolerance and pH regulation of cells. We examined the molecular function of Nha1p by using secretory vesicles isolated from a temperature sensitive secretory mutant, sec4-2, in vitro. The isolated secretory vesicles contained newly synthesized Nha1p en route to the plasma membrane and showed antiporter activity exchanging H+ for monovalent alkali metal cations. An amino acid substitution in Nha1p (D266N, Asp-266 to Asn) almost completely abolished the Na+/H+ but not K+/H+ antiport activity, confirming the validity of this assay system as well as the functional importance of Asp-266, especially for selectivity of substrate cations. Nha1p catalyzes transport of Na+ and K+ with similar affinity (12.7 mM and 12.4 mM), and with lower affinity for Rb+ and Li+. Nha1p activity is associated with a net charge movement across the membrane, transporting more protons per single sodium ion (i.e., electrogenic). This feature is similar to the bacterial Na+/H+ antiporters, whereas other known eukaryotic Na+/H+ antiporters are electroneutral. The ion selectivity and the stoichiometry suggest a unique physiological role of Nha1p which is distinct from that of other known Na+/H+ antiporters.  相似文献   

15.

Background

Glucose induces H+-ATPase activation in Saccharomyces cerevisiae. Our previous study showed that (i) S. cerevisiae plasma membrane H+-ATPase forms a complex with acetylated tubulin (AcTub), resulting in inhibition of the enzyme activity; (ii) exogenous glucose addition results in the dissociation of the complex and recovery of the enzyme activity.

Methods

We used classic biochemical and molecular biology tools in order to identify the key components in the mechanism that leads to H+-ATPase activation after glucose treatment.

Results

We demonstrate that glucose-induced dissociation of the complex is due to pH-dependent activation of a protease that hydrolyzes membrane tubulin. Biochemical analysis identified a serine protease with a kDa of 35–40 and an isoelectric point between 8 and 9. Analysis of several knockout yeast strains led to the detection of Lpx1p as the serine protease responsible of tubulin proteolysis. When lpx1Δ cells were treated with glucose, tubulin was not degraded, the AcTub/H+-ATPase complex did not undergo dissociation, and H+-ATPase activation was significantly delayed.

Conclusion

Our findings indicate that the mechanism of H+-ATPase activation by glucose involves a decrease in the cytosolic pH and consequent activation of a serine protease that hydrolyzes AcTub, accelerating the process of the AcTub/H+-ATPase complex dissociation and the activation of the enzyme.

General significance

Our data sheds light into the mechanism by which acetylated tubulin dissociates from the yeast H+-ATPase, identifying a degradative step that remained unknown. This finding also proposes an indirect way to pharmacologically regulate yeast H+-ATPase activity and open the question about mechanistic similarities with other higher eukaryotes.  相似文献   

16.
Oxidation of ferrocytochrome c by molecular oxygen catalysed by cytochrome c oxidase (cytochrome aa3) is coupled to translocation of H+ ions across the mitochondrial membrane. The proton pump is an intrinsic property of the cytochrome c oxidase complex as revealed by studies with phospholipid vesicles inlayed with the purified enzyme. As the conformation of cytochrome aa3 is specifically sensitive to the electrochemical proton gradient across the mitochondrial membrane, it is likely that redox energy is primarily conserved as a conformational “strain” in the cytochrome aa3 complex, followed by relaxation linked to proton translocation. Similar principles of energy conservation and transduction may apply on other respiratory chain complexes and on mitochondrial ATP synthase.  相似文献   

17.
18.
AIM: Functional characterization of ATP1A2 mutations that are related to familial or sporadic hemiplegic migraine(FHM2, SHM). METHODS: cRNA of human Na+/K+-ATPase α2- and β1-subunits were injected in Xenopus laevis oocytes. FHM2 or SHM mutations of residues located in putative α/β interaction sites or in the α2-subunit's C-terminal region were investigated. Mutants were analyzed by the twoelectrode voltage-clamp(TEVC) technique on Xenopus oocytes. Stationary K+-induced Na+/K+ pump currents were measured, and the voltage dependence of apparent K+ affinity was investigated. Transient currents were recorded as ouabain-sensitive currents in Na+ buffers to analyze kinetics and voltage-dependent presteady state charge translocations. The expression of constructs was verified by preparation of plasma membrane and total membrane fractions of cRNA-injected oocytes. RESULTS: Compared to the wild-type enzyme, the mutants G900R and E902K showed no significant dif-ferences in the voltage dependence of K+-induced currents, and analysis of the transient currents indicated that the extracellular Na+ affinity was not affected. Mutant G855R showed no pump activity detectable by TEVC. Also for L994del and Y1009X, pump currents could not be recorded. Analysis of the plasma and total membrane fractions showed that the expressed proteins were not or only minimally targeted to the plasma membrane. Whereas the mutation K1003E had no impact on K+ interaction, D999H affected the voltage dependence of K+-induced currents. Furthermore, kinetics of the transient currents was altered compared to the wild-type enzyme, and the apparent affinity for extracellular Na+ was reduced. CONCLUSION: The investigated FHM2/SHM mutations influence protein function differently depending on the structural impact of the mutated residue.  相似文献   

19.
We report here on the putative coupling between a high affinity K+ uptake system which operates at low external K+ concentrations (Km = 10-20 micromolar), and H+ efflux in roots of intact, low-salt-grown maize plants. An experimental approach combining electrophysiological measurements, quantification of unidirectional K+(86Rb+) influx, and the simultaneous measurement of net K+ and H+ fluxes associated with individual cells at the root surface with K+- and H+-selective microelectrodes was utilized. A microelectrode system described previously (IA Newman, LV Kochian, MA Grusak, and WJ Lucas [1987] Plant Physiol 84: 1177-1184) was used to quantify net ion fluxes from the measurement of electrochemical potential gradients for K+ and H+ ions within the unstirred layer at the root surface. No evidence for coupling between K+ uptake and H+ efflux could be found based on: (a) extremely variable K+:H+ flux stoichiometries, with K+ uptake often well in excess of H+ efflux; (b) dramatic time-dependent variability in H+ extrusion when both fluxes were measured at a particular location along the root over time; and (c) a lack of pH sensitivity by the high affinity K+ uptake system (to changes in external pH) when net K+ uptake, unidirectional K+(86Rb+) influx, and K+-induced depolarizations of the membrane potential were determined in uptake solutions buffered at pH values from pH 4 to 8. Based on the results presented here, we propose that high affinity active K+ absorption into maize root cells is not mediated by a K+/H+ exchange mechanism. Instead, it is either due to the operation of a K+-H+ cotransport system, as has been hypothesized for Neurospora, or based on the striking lack of sensitivity to changes in extracellular pH, uptake could be mediated by a K+-ATPase as reported for Escherichia coli and Saccharomyces.  相似文献   

20.
Klaas Krab  Mårten Wikström 《BBA》1978,504(1):200-214
The proton translocating properties of cytochrome c oxidase have been studied in artificial phospholipid vesicles into the membranes of which the isolated and purified enzyme was incorporated.Initiation of oxidation of ferrocytochrome c by addition of the cytochrome, or by addition of oxygen to an anaerobic vesicle suspension, leads to ejection of H+ from the vesicles provided that charge compensation is permitted by the presence of valinomycin and K+. Proton ejection is not observed if the membranes have been specifically rendered permeable to protons.The proton ejection is the result of true translocation of H+ across the membrane as indicated by its dependence on the intravesicular buffering power relative to the number of particles (electrons and protons) transferred by the system, and since it can be shown not to be due to a net formation of acid in the system.Comparison of the initial rates of proton ejection and oxidation of cytochrome c yields a H+e? quotient close to 1.0 both in cytochrome c and oxygen pulse experiments. An approach towards the same stoichiometry is found by comparison of the extents of proton ejection and electron transfer under appropriate experimental conditions.It is concluded that cytochrome c oxidase is a proton pump, which conserves redox energy by converting it into an electrochemical proton gradient through electrogenic translocation of H+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号