首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
Coenzyme Q (Q) is an essential factor in the mitochondrial electron chain but also exerts important antioxidant functions in the rest of cell membranes of aerobic organisms. However, the mechanisms of distribution of Q among cell membranes are largely unclear. The aim of the present work is to study the mechanisms of distribution of endogenous Q(10) and exogenous Q(9) among cell membranes in human HL-60 cells. Endogenous Q(10) synthesized using the radiolabelled precursor [(14)C]-pHB was first detected in mitochondria, and it was later incorporated into mitochondria-associated membranes and endoplasmic reticulum (ER). Plasma membrane was the last location to incorporate [(14)C]-Q(10). Brefeldin A prevented Q(10) incorporation in plasma membrane. Exogenous Q(9) was preferably accumulated into the endo-lysosomal fraction but a significant amount was distributed among other cell membranes also depending on the brefeldin-A-sensitive endomembrane system. Our results indicate that mitochondria are the first location for new synthesized Q. Exogenous Q is mainly incorporated into an endo-lysosomal fraction, which is then rapidly incorporated to cell membranes mainly to MAM and mitochondria. We also demonstrate that both endogenous and dietary Q is distributed among endomembranes and plasma membrane by the brefeldin A-sensitive endo-exocytic pathway.  相似文献   

2.
Coenzyme Q (CoQ), an electron transfer molecule in the respiratory chain and a lipid-soluble antioxidant, is present in almost all organisms. Most cereal crops produce CoQ9, which has nine isoprene units. CoQ10, with 10 isoprene units, is a very popular food supplement. Here, we report the genetic engineering of rice to produce CoQ10 using the gene for decaprenyl diphosphate synthase (DdsA). The production of CoQ9 was almost completely replaced with that of CoQ10, despite the presence of endogenous CoQ9 synthesis. DdsA designed to express at the mitochondria increased accumulation of total CoQ amount in seeds.  相似文献   

3.
Serotonin and histamine H1, H2 receptor agonists or antagonists inhibited [3H]histamine uptake by HL-60 cells, according to the following order of potency: impromidine >4-MH>histamine>AET>PEA and: cimetidine, histamine>diphenhydramine, serotonin. It is concluded that histamine uptake by HL-60 cells was specifically controlled by the H2 type histamine receptor and that this active process might be involved in pathophysiological regulations in leukemic and normal granulocytic precursors and in the control of histamine levels in peripheral blood and tissues in man.  相似文献   

4.
Gomez F  Saiki R  Chin R  Srinivasan C  Clarke CF 《Gene》2012,506(1):106-116
Coenzyme Q (ubiquinone or Q) is an essential lipid component of the mitochondrial electron transport chain. In Caenorhabditis elegans Q biosynthesis involves at least nine steps, including the hydroxylation of the hydroquinone ring by CLK-1 and two O-methylation steps mediated by COQ-3. We characterize two C. elegans coq-3 deletion mutants, and show that while each has defects in Q synthesis, their phenotypes are distinct. First generation homozygous coq-3(ok506) mutants are fertile when fed the standard lab diet of Q-replete OP50 Escherichia coli, but their second generation homozygous progeny does not reproduce. In contrast, the coq-3(qm188) deletion mutant remains sterile when fed Q-replete OP50. Quantitative PCR analyses suggest that the longer qm188 deletion may alter expression of the flanking nuo-3 and gdi-1 genes, located 5' and 3', respectively of coq-3 within an operon. We surmise that variable expression of nuo-3, a subunit of complex I, or of gdi-1, a guanine nucleotide dissociation inhibitor, may act in combination with defects in Q biosynthesis to produce a more severe phenotype. The phenotypes of both coq-3 mutants are more drastic as compared to the C. elegans clk-1 mutants. When fed OP50, clk-1 mutants reproduce for many generations, but show reduced fertility, slow behaviors, and enhanced life span. The coq-3 and clk-1 mutants all show arrested development and are sterile when fed the Q-deficient E. coli strain GD1 (harboring a mutation in the ubiG gene). However, unlike clk-1 mutant worms, neither coq-3 mutant strain responded to dietary supplementation with purified exogenous Q(10). Here we show that the Q(9) content can be determined in lipid extracts from just 200 individual worms, enabling the determination of Q content in the coq-3 mutants unable to reproduce. An extra-chromosomal array expressing wild-type C. elegans coq-3 rescued fertility of both coq-3 mutants and partially restored steady-state levels of COQ-3 polypeptide and Q(9) content, indicating that primary defect in both is limited to coq-3. The limited response of the coq-3 mutants to dietary supplementation with Q provides a powerful model to probe the effectiveness of exogenous Q supplementation as compared to restoration of de novo Q biosynthesis.  相似文献   

5.

Background

Zanthoxylum heitzii is a spice used to prepare several dishes and to treat tumors, syphilis, malaria, cardiac palpitations, urogenital infections in the west region of Cameroon, but the antitumor mechanisms and chemical composition are not yet investigated.This study was aimed to determine the antiproliferative effects of four extracts from the fruits and barks of Zanthoxyllum heitzii (Rutaceae) on apoptosis in human promyelocytic cells, their mechanisms and the chemical composition. The 3-(4, 5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the fifty percent inhibition (IC50) concentration of the cell lines after treatment. The effect on morphology was observed using a light or fluorescence microscopy. The rate of apoptosis and the cell cycle were measured using flow cytometry (FCM). The phytochemical analysis of the extract was carried with HPLC/MS methods.

Results

The phytochemical analysis of the extracts indicated the presence of four known polyphenols (Syringic acid, Juglon, Luteolin and Myricetin) in both fruits and barks of Z. heitzii but in different quantities. Syringic acid and Myricetin concentrations were between 17-21 fold higher in the fruits than the stem bark. Rhamnetin (393.35 μg/mL) and Oleuropein (63.10 μg/mL) were identified only in the stem barks of Z. heitzii. Among the four extracts tested for cytotoxicity properties, only the methanol extract of fruits and barks significantly inhibited cell proliferation of HL-60 cells with IC50 value of 20 μg/mL and 12 μg/mL respectively. HL-60 cells treated with Z. heitzii extracts significantly produced reactive oxygen species (ROS) with concurrent loss of mitochondrial membrane potential (MMP). Modifications in the DNA distribution and enhanced of G1/G0 phase cell cycle arrest were observed in a concentration dependent manner.

Conclusions

Polyphenols from Z. heitzii plant exert inhibitory effect on HL-60 cells through the reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential and cell cycle destabilization.  相似文献   

6.
Gokoh M  Kishimoto S  Oka S  Metani Y  Sugiura T 《FEBS letters》2005,579(28):6473-6478
2-Arachidonoylglycerol (2-AG), an endogenous cannabionoid receptor (CB1 and CB2) ligand, enhanced the adhesion of HL-60 cells differentiated into macrophage-like cells to fibronectin and the vascular cell adhesion molecule-1. The CB2 receptor, Gi/Go, intracellular free Ca(2+) and phosphatidylinositol 3-kinase were shown to be involved in 2-AG-induced augmented cell adhesion. 2-AG also enhanced the adhesion of human monocytic leukemia U937 cells and peripheral blood monocytes. These results strongly suggest that 2-AG plays some essential role in inflammatory reactions and immune responses by inducing robust adhesion to extracellular matrix proteins and adhesion molecules in several types of inflammatory cells and immune-competent cells.  相似文献   

7.
Coenzyme Q biosynthesis in yeast requires a multi-subunit Coq polypeptide complex. Deletion of any one of the COQ genes leads to respiratory deficiency and decreased levels of the Coq4, Coq6, Coq7, and Coq9 polypeptides, suggesting that their association in a high molecular mass complex is required for stability. Over-expression of the putative Coq8 kinase in certain coq null mutants restores steady-state levels of the sensitive Coq polypeptides and promotes the synthesis of late-stage Q-intermediates. Here we show that over-expression of Coq8 in yeast coq null mutants profoundly affects the association of several of the Coq polypeptides in high molecular mass complexes, as assayed by separation of digitonin extracts of mitochondria by two-dimensional blue-native/SDS PAGE. The Coq4 polypeptide persists at high molecular mass with over-expression of Coq8 in coq3, coq5, coq6, coq7, coq9, and coq10 mutants, indicating that Coq4 is a central organizer of the Coq complex. Supplementation with exogenous Q6 increased the steady-state levels of Coq4, Coq7, and Coq9, and several other mitochondrial polypeptides in select coq null mutants, and also promoted the formation of late-stage Q-intermediates. Q supplementation may stabilize this complex by interacting with one or more of the Coq polypeptides. The stabilizing effects of exogenously added Q6 or over-expression of Coq8 depend on Coq1 and Coq2 production of a polyisoprenyl intermediate. Based on the observed interdependence of the Coq polypeptides, the effect of exogenous Q6, and the requirement for an endogenously produced polyisoprenyl intermediate, we propose a new model for the Q-biosynthetic complex, termed the CoQ-synthome.  相似文献   

8.
The mitochondria-associated membrane (MAM) is a sub-region of the endoplasmic reticulum (ER) that facilitates crosstalk between the ER and mitochondria. The MAM actively influences vital cellular processes including Ca2+ signaling and protein folding. Detergent-resistant microdomains (DRMs) may localize proteins to the mitochondria/MAM interface to coordinate these events. However, the protein composition of DRMs isolated from this region is not known. Lipid-raft enriched DRMs were isolated from a combined mitochondria/MAM sample and analyzed using two-dimensional reversed-phased tandem mass spectrometry. Strict post-acquisition filtering of the acquired data led to the confident identification 250 DRM proteins. The majority (58%) of the identified proteins are bona fide mitochondrial or ER proteins according to Gene Ontology annotation. Additionally, 74% of the proteins have previously been noted as MAM-resident or -associated proteins. Furthermore, ∼20% of the identified proteins have a documented association with lipid rafts. Most importantly, known internal LR marker proteins (inositol 1,4,5-trisphosphate receptor type 3, erlin-2, and voltage-dependent anion channel 1) were detected as well as most of the components of the mitochondrial/MAM-localized Ca2+ signaling complex. Our study provides the basis for future work probing how the protein activities at the mitochondrion/MAM interface are dependent upon the integrity of these internal lipid-raft-like domains.  相似文献   

9.
Effects of T8993G mutation in mitochondrial DNA (mtDNA), associated with neurogenical muscle weakness, ataxia and retinitis pigmentosa (NARP), on the cytoskeleton, mitochondrial network and calcium homeostasis in human osteosarcoma cells were investigated. In 98% NARP and rho(0) (lacking mtDNA) cells, the organization of the mitochondrial network and actin cytoskeleton was disturbed. Capacitative calcium entry (CCE) was practically independent of mitochondrial energy status in osteosarcoma cell lines. The significantly slower Ca(2+) influx rates observed in 98% NARP and rho(0), in comparison to parental cells, indicates that proper actin cytoskeletal organization is important for CCE in these cells.  相似文献   

10.
Neuzil J  Wang XF  Dong LF  Low P  Ralph SJ 《FEBS letters》2006,580(22):5125-5129
Mitochondria have emerged recently as effective targets for novel anti-cancer drugs referred to as 'mitocans'. We propose that the molecular mechanism of induction of apoptosis by mitocans, as exemplified by the drug alpha-tocopheryl succinate, involves generation of reactive oxygen species (ROS). ROS then mediate the formation of disufide bridges between cytosolic Bax monomers, resulting in the formation of mitochondrial outer membrane channels. ROS also cause oxidation of cardiolipin, triggering the release of cytochrome c and its translocation via the activated Bax channels. This model may provide a general mechanism for the action of inducers of apoptosis and anticancer drugs, mitocans, targeting mitochondria via ROS production.  相似文献   

11.
Coenzyme Qn (ubiquinone or Qn) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail of n isoprene units. Saccharomyces cerevisiae coq1coq9 mutants have defects in Q biosynthesis, lack Q6, are respiratory defective, and sensitive to stress imposed by polyunsaturated fatty acids. The hallmark phenotype of the Q-less yeast coq mutants is that respiration in isolated mitochondria can be rescued by the addition of Q2, a soluble Q analog. Yeast coq10 mutants share each of these phenotypes, with the surprising exception that they continue to produce Q6. Structure determination of the Caulobacter crescentus Coq10 homolog (CC1736) revealed a steroidogenic acute regulatory protein-related lipid transfer (START) domain, a hydrophobic tunnel known to bind specific lipids in other START domain family members. Here we show that purified CC1736 binds Q2, Q3, Q10, or demethoxy-Q3 in an equimolar ratio, but fails to bind 3-farnesyl-4-hydroxybenzoic acid, a farnesylated analog of an early Q-intermediate. Over-expression of C. crescentus CC1736 or COQ8 restores respiratory electron transport and antioxidant function of Q6 in the yeast coq10 null mutant. Studies with stable isotope ring precursors of Q reveal that early Q-biosynthetic intermediates accumulate in the coq10 mutant and de novo Q-biosynthesis is less efficient than in the wild-type yeast or rescued coq10 mutant. The results suggest that the Coq10 polypeptide:Q (protein:ligand) complex may serve essential functions in facilitating de novo Q biosynthesis and in delivering newly synthesized Q to one or more complexes of the respiratory electron transport chain.  相似文献   

12.
The activation of mitogen-activated protein/extracellular signal-regulated kinase (MEK) is well known to be associated with tumor invasion and metastasis. We previously reported that a polymethoxyflavonoid, nobiletin (5,6,7,8,3′,4′-hexamethoxyflavone), derived from Citrus depressa (Hayata), inhibits the phosphorylation of MEK and thereby suppresses matrix metalloproteinase (MMP) expression in a tumor-metastasis stimulator, 12-O-tetradecanoyl phorbol 13-acetate (TPA)-stimulated human fibrosarcoma HT-1080 cells [Mol. Cancer Ther. 3 (2004) 839-847]. In the present study, we investigated whether or not nobiletin might directly influence MEK activity to exhibit the antitumor metastatic activity in vitro. MEK kinase assay using myelin basic protein (MBP) revealed that TPA-augmented MEK activity in HT-1080 cells and that the augmented MEK activity was diminished by nobiletin treatment. In addition, the decrease in MEK activity caused by nobiletin was found to inhibit the phosphorylation of extracellular regulated kinases (ERK), a downstream signaling factor for MEK. Furthermore, when an immunoprecipitated active MEK was incubated with nobiletin under cell-free conditions, nobiletin was found to inhibit the MEK-mediated MBP phosphorylation. In contrast, other citrus polymethoxyflavonoids such as 3-hydroxy-5,6,7,8,3′,4′-hexamethoxyflavone (natsudaidain) and 3,5,6,7,8,3′,4′-heptamethoxyflavone, did not directly inhibit MEK activity. Moreover, natsudaidain and 3,5,6,7,8,3′,4′-heptamethoxyflavone exhibited no or less inhibitory effect than nobiletin on the proMMP-9/progelatinase B production in HT-1080 cells. Therefore, these results provide novel evidence that nobiletin directly inhibits MEK activity and decreases the sequential phosphorylation of ERK, exhibiting the antitumor metastatic activity by suppressing MMP expression in HT-1080 cells.  相似文献   

13.
Alternative oxidase (AOX) plays a pivotal role in cyanide-resistance respiration in the mitochondria of plants, fungi and some protists. Here we show that AOX from thermogenic skunk cabbage successfully conferred cyanide resistance to human cells. In galactose medium, HeLa cells with mitochondria-targeted AOX proteins were found to have significantly less reactive oxygen species production in response to antimycin-A exposure, a specific inhibitor of respiratory complex III. These results suggest that skunk cabbage AOX can be used to create an alternative respiration pathway, which might be important for therapy against various mitochondrial diseases.  相似文献   

14.
Mechanisms of MAVS Regulation at the Mitochondrial Membrane   总被引:1,自引:0,他引:1  
Mitochondria have emerged as critical platforms for antiviral innate immune signaling. This is due in large part to the mitochondrial localization of the innate immune signaling adaptor MAVS (mitochondrial antiviral signaling protein), which coordinates signals received from two independent cytosolic pathogen recognition receptors (PRRs) to induce antiviral genes. The existence of a shared adaptor for two central PRRs presents an ideal target by which the host cell can prevent cellular damage induced by uncontrolled inflammation through alteration of MAVS expression and/or signaling. In this review, we focus on the MAVS regulome and review the cellular factors that regulate MAVS by (1) protein–protein interactions, (2) alterations in mitochondrial dynamics, and/or (3) post-translational modifications.  相似文献   

15.
The mitochondrial oxidative phosphorylation (OXPHOS) system consists of four electron transport chain (ETC) complexes (CI–CIV) and the FoF1-ATP synthase (CV), which sustain ATP generation via chemiosmotic coupling. The latter requires an inward-directed proton-motive force (PMF) across the mitochondrial inner membrane (MIM) consisting of a proton (ΔpH) and electrical charge (Δψ) gradient. CI actively participates in sustaining these gradients via trans-MIM proton pumping. Enigmatically, at the cellular level genetic or inhibitor-induced CI dysfunction has been associated with Δψ depolarization or hyperpolarization. The cellular mechanism of the latter is still incompletely understood. Here we demonstrate that chronic (24 h) CI inhibition in HEK293 cells induces a proton-based Δψ hyperpolarization in HEK293 cells without triggering reverse-mode action of CV or the adenine nucleotide translocase (ANT). Hyperpolarization was associated with low levels of CII-driven O2 consumption and prevented by co-inhibition of CII, CIII or CIV activity. In contrast, chronic CIII inhibition triggered CV reverse-mode action and induced Δψ depolarization. CI- and CIII-inhibition similarly reduced free matrix ATP levels and increased the cell's dependence on extracellular glucose to maintain cytosolic free ATP. Our findings support a model in which Δψ hyperpolarization in CI-inhibited cells results from low activity of CII, CIII and CIV, combined with reduced forward action of CV and ANT.  相似文献   

16.
ApoB-crescent, an endoplasmic reticulum (ER)-lipid droplet amalgamation structure, is a useful marker to indicate aberrant lipidated apolipoprotein B accumulation in the hepatocyte ER. Blockade of the ER-to-Golgi transport by either vesicle transport inhibitors or dominant-negative Arf1 caused a significant increase in ApoB-crescents. However, a low concentration of Brefeldin A induced the same result without affecting protein secretion, suggesting ADP-ribosylation as an additional mechanism. ADP-ribosylation inhibitors not only suppressed the increase of ApoB-crescents, but also rapidly dissolved existing ApoB-crescents. These results implicate the involvement of ADP-ribosylation in the ApoB-crescent formation and maintenance process at the ER.  相似文献   

17.
Staurosporine (Stp) is an inhibitor of protein kinase C (PKC) that has been used to address the role of this enzyme in a variety of cells. However, Stp can also inhibit protein tyrosine kinases (PTK). We have investigated the effects of Stp on the InsP3- (using mAb C305 directed against the β chain of the T cell receptor (TcR)/CD3 complex) and the thapsigargin (Tg)-dependent release and influx of Ca2+ in human (Jurkat) T cells. The addition of Stp (200 nM) during the sustained phase of the TcR-dependent Ca2+ response resulted in a rapid inhibition of the influx of Ca2+ that was not seen when Ca2+ mobilization was triggered by Tg (1 μM). When the cells were preincubated with Stp (200 nM), there was an inhibition of the mAb C305- but not the Tg-dependent Ca2+ response. The effect of Stp was not the result of the inhibition of PKC as shown by down-regulation of PKC and with the use of the specific PKC inhibitor bis-indolyl maleimide GF 109203X. The effect of Stp on the entry of Ca2+ in activated (mAb C305) Jurkat lymphocytes was dose-related and was not the result of a direct inhibition of plasma membrane Ca2+ channels based on an absence of effect on the Tg-dependent entry of Ca2+ and the use of Ca2+ channel blockers (econazole and Ni2+). These blockers terminated the influx of Ca2+ but the Tg-sensitive Ca2+ reserves were not refilled in marked contrast to the effect of Stp. Quantification of InsP3 revealed that the addition of Stp resulted in an approximate 40% reduction in mAb C305-activated Jurkat cells. The effects of Stp can be explained as follows. Stp decreases the mAb C305-induced production of InsP3 by inhibiting the TcR/CD3-dependent activation of PTK associated with the stimulation of phospholipase C-γ1. A decrease in [InsP3] without a return to baseline is sufficient to close the InsP3 Ca2+ channel, endoplasmic Ca2+ ATPases use the incoming Ca2+ to refill the Ca2+ pools and that terminates the capacitative entry of Ca2+. A simple kinetic model reproduced the experimental data.  相似文献   

18.
The interface between mitochondria and the endoplasmic reticulum is emerging as a crucial hub for calcium signalling, apoptosis, autophagy and lipid biosynthesis, with far reaching implications in cell life and death and in the regulation of mitochondrial and endoplasmic reticulum function. Here we review our current knowledge on the structural and functional aspects of this interorganellar juxtaposition. This article is part of a Special Issue entitled: Calcium Signaling In Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

19.
Shinkarev VP  Wraight CA 《FEBS letters》2007,581(8):1535-1541
The cytochrome bc(1) complex (commonly called Complex III) is the central enzyme of respiratory and photosynthetic electron transfer chains. X-ray structures have revealed the bc(1) complex to be a dimer, and show that the distance between low potential (b(L)) and high potential (b(H)) hemes, is similar to the distance between low potential hemes in different monomers. This suggests that electron transfer between monomers should occur at the level of the b(L) hemes. Here, we show that although the rate constant for b(L)-->b(L) electron transfer is substantial, it is slow compared to the forward rate from b(L) to b(H), and the intermonomer transfer only occurs after equilibration within the first monomer. The effective rate of intermonomer transfer is about 2-orders of magnitude slower than the direct intermonomer electron transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号