首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
Changes in chloroplast structure and rearrangement of chlorophyll-protein (CP) complexes were investigated in detached leaves of bean (Phaseolus vulgaris L. cv. Eureka), a chilling-sensitive plant, during 5-day dark-chilling at 1 degrees C and subsequent 3-h photoactivation under white light (200 mumol photons m(-2) s(-1)) at 22 degrees C. Although, no change in chlorophyll (Chl) content and Chl a/b ratio in all samples was observed, overall fluorescence intensity of fluorescence emission and excitation spectra of thylakoid membranes isolated from dark-chilled leaves decreased to about 50%, and remained after photoactivation at 70% of that of the control sample. Concomitantly, the ratio between fluorescence intensities of PSI and PSII (F736/F681) at 120 K increased 1.5-fold upon chilling, and was fully reversed after photoactivation. Moreover, chilling stress seems to induce a decrease of the relative contribution of LHCII fluorescence to the thylakoid emission spectra at 120 K, and an increase of that from LHCI and PSI, correlated with a decrease of stability of LHCI-PSI and LHCII trimers, shown by mild-denaturing electrophoresis. These effects were reversed to a large extent after photoactivation, with the exception of LHCII, which remained partly in the aggregated form. In view of these data, it is likely that dark-chilling stress induces partial disassembly of CP complexes, not completely restorable upon photoactivation. These data are further supported by confocal laser scanning fluorescence microscopy, which showed that regular grana arrangement observed in chloroplasts isolated from control leaves was destroyed by dark-chilling stress, and was partially reconstructed after photoactivation. In line with this, Chl a fluorescence spectra of leaf discs demonstrated that dark-chilling caused a decrease of the quantum yield PSII photochemistry (F(v)/F(m)) by almost 40% in 5 days. Complete restoration of the photochemical activity of PSII required 9 h post-chilling photoactivation, while only 3 h were needed to reconstruct thylakoid membrane organization and chloroplast structure. The latter demonstrated that the long-term dark-chilled bean leaves started to suffer from photoinhibition after transfer to moderate irradiance and temperature conditions, delaying the recovery of PSII photochemistry, independently of photo-induced reconstruction of PSII complexes.  相似文献   

2.
We performed for the first time three-dimensional (3D) modelling of the entire chloroplast structure. Stacks of optical slices obtained by confocal laser scanning microscope (CLSM) provided a basis for construction of 3D images of individual chloroplasts. We selected pea (Pisum sativum) and bean (Phaseolus vulgaris) chloroplasts since we found that they differ in thylakoid organization. Pea chloroplasts contain large distinctly separated appressed domains while less distinguished appressed regions are present in bean chloroplasts. Different magnesium ion treatments were used to study thylakoid membrane stacking and arrangement. In pea chloroplasts, as demonstrated by 3D modelling, the increase of magnesium ion concentration changed the degree of membrane appression from wrinkled continuous surface to many distinguished stacked areas and significant increase of the inter-grana area. On the other hand 3D models of bean chloroplasts exhibited similar but less pronounced tendencies towards formation of appressed regions. Additionally, we studied arrangements of thylakoid membranes and chlorophyll-protein complexes by various spectroscopic methods, Fourier-transform infrared spectroscopy (FTIR) among others. Based on microscopic and spectroscopic data we suggested that the range of chloroplast structure alterations under magnesium ions treatment is a consequence of the arrangement of supercomplexes. Moreover, we showed that stacking processes always affect the structural changes of chloroplast as a whole.  相似文献   

3.
The effect of dark-chilling and subsequent photoactivation on chloroplast structure and arrangements of chlorophyll–protein complexes in thylakoid membranes was studied in chilling-tolerant (CT) pea and in chilling-sensitive (CS) tomato. Dark-chilling did not influence chlorophyll content and Chl a/b ratio in thylakoids of both species. A decline of Chl a fluorescence intensity and an increase of the ratio of fluorescence intensities of PSI and PSII at 120 K was observed after dark-chilling in thylakoids isolated from tomato, but not from pea leaves. Chilling of pea leaves induced an increase of the relative contribution of LHCII and PSII fluorescence. A substantial decrease of the LHCII/PSII fluorescence accompanied by an increase of that from LHCI/PSI was observed in thylakoids from chilled tomato leaves; both were attenuated by photoactivation. Chlorophyll fluorescence of bright grana discs in chloroplasts from dark-chilled leaves, detected by confocal laser scanning microscopy, was more condensed in pea but significantly dispersed in tomato, compared with control samples. The chloroplast images from transmission-electron microscopy revealed that dark-chilling induced an increase of the degree of grana stacking only in pea chloroplasts. Analyses of O-J-D-I-P fluorescence induction curves in leaves of CS tomato before and after recovery from chilling indicate changes in electron transport rates at acceptor- and donor side of PS II and an increase in antenna size. In CT pea leaves these effects were absent, except for a small but irreversible effect on PSII activity and antenna size. Thus, the differences in chloroplast structure between CS and CT plants, induced by dark-chilling are a consequence of different thylakoid supercomplexes rearrangements. Dedicated to Prof. Zbigniew Kaniuga on the 25th anniversary of his initiation of studies on chilling-induced stress in plants.  相似文献   

4.
Filamentous, heterocystous cyanobacteria are capable of nitrogen fixation and photoautotrophic growth. Nitrogen fixation takes place in heterocysts that differentiate as a result of nitrogen starvation. Heterocysts uphold a microoxic environment to avoid inactivation of nitrogenase, e.g. by downregulation of oxygenic photosynthesis. The ATP and reductant requirement for the nitrogenase reaction is considered to depend on Photosystem I, but little is known about the organization of energy converting membrane proteins in heterocysts. We have investigated the membrane proteome of heterocysts from nitrogen fixing filaments of Nostoc punctiforme sp. PCC 73102, by 2D gel electrophoresis and mass spectrometry. The membrane proteome was found to be dominated by the Photosystem I and ATP-synthase complexes. We could identify a significant amount of assembled Photosystem II complexes containing the D1, D2, CP43, CP47 and PsbO proteins from these complexes. We could also measure light-driven in vitro electron transfer from Photosystem II in heterocyst thylakoid membranes. We did not find any partially disassembled Photosystem II complexes lacking the CP43 protein. Several subunits of the NDH-1 complex were also identified. The relative amount of NDH-1M complexes was found to be higher than NDH-1L complexes, which might suggest a role for this complex in cyclic electron transfer in the heterocysts of Nostoc punctiforme.  相似文献   

5.
HvLhcb1 a major light-harvesting chlorophyll a/b-binding protein in barley, is a critical player in sustainable growth under Fe deficiency. Here, we demonstrate that Fe deficiency induces phosphorylation of HvLhcb1 proteins leading to their migration from grana stacks to stroma thylakoid membranes. HvLhcb1 remained phosphorylated even in the dark and apparently independently of state transition, which represents a mechanism for short-term acclimation. Our data suggest that the constitutive phosphorylation-triggered translocation of HvLhcb1 under Fe deficiency contributes to optimization of the excitation balance between photosystem II and photosystem I, the latter of which is a main target of Fe deficiency.  相似文献   

6.
An optode device for net-photosynthesis measurements, based on oxygen-depending quenching of fluorescence from O2-specific sensors, and PAM fluorometry have been used to study diurnal courses of net-photosynthesis and the Fv/Fm ratio of the submerged plant Lagarosiphon major. Plants were pre-cultivated and studied in large mesocosm flow-through outdoor tanks under 50% and 80% shade cloth, respectively. Growth under the different shade cloths resulted in similar light compensation points (∼20 μmol photons m−2 s−1), but strongly different light saturation levels, with about 150 μmol m−2 s−1 for plants grown under 80% shade cloth and about 350 μmol m−2 s−1 for plants grown under 50% shade cloth. Plants under both growth conditions showed a transient reduction of the maximum Fv/Fm value in the afternoon (down to 70% of the morning control values under 80% shade cloth and down to 85% under 50% shade cloth), which was not accompanied by a reduction of the net photosynthetic rate. This indicated that the fluorescence parameter Fv/Fm must not be a reliable indicator of the rate of photosynthesis under all conditions. The new photo-optical device became evidenced as a valuable tool not only for laboratory experiments, but also for field studies of gas exchange of submerged plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号