首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lentinan, a cell wall β-glucan from the fruiting bodies of Lentinus edodes, is well known to be a biological defense modifier, but the signal transduction pathway(s) induced by Lentinan have not been elucidated. In this study, we extracted Lentinan (LNT-S) by ultrasonication from Lentinus edodes and report that, in murine RAW 264.7 macrophages, LNT-S glucan activated NF-κB p65 and triggered its nuclear translocation as determined by Western blotting. Moreover, LNT-S enhanced NF-κB-luciferase activity in the Dual-Luciferase gene system assay. Its upstream signaling molecules, MAPKs such as ERK1/2 and JNK1/2, were shown to be activated by assessing the level of phosphorylation in a time- and concentration-dependent manner, but its downstream proinflammatory enzyme, inducible NOS, was not observed. The data evaluated using a TNF-α ELISA kit and Griess reagent further demonstrated that no proinflammatory mediators such as TNF-α and NO were produced by LNT-S stimulation in RAW 264.7 cells. In contrast, LPS significantly induced inducible NOS expression and increased NO and TNF-α production, which are associated with activation of the NF-κB p65/p50 heterodimer complex. It is possible that LNT-S did not activate NF-κB p65/p50, and the activation of NF-κB p65 was not sufficient to stimulate cytokine production. These data demonstrate that LNT-S glucan carries out its immunomodulating activity by activating MAPK signaling pathways without secretion of TNF-α and NO.  相似文献   

2.
Plantago species are used as traditional medicine in Asian and Europe. Polysaccharide isolated from the seeds of Plantago asiatica L. could stimulate maturation transformation of bone-marrow derived dendritic cells (DCs). We found that blocking p38, ERK1/2 and JNK MAPK signal transduction could significantly decreased the PLP-2 induced expression of MHC II, CD86 surface molecules on DCs. Blocking p38 and JNK signal also significantly inhibited the cytokine secretion of TNF-α and IL-12p70 as well, while blocking ERK1/2 signal only decreased the secretion of TNF-α. Meanwhile, DCs in the three MAPK signal-blocking groups showed dramatically attenuated effects on stimulating proliferation of T lymphocytes. Similarly, blocking signal transduction of NF-κB pathway also significantly impaired the phenotypic and functional maturation development of DCs induced by PLP-2. These data suggest that MAPK and NF-κB pathway mediates the PLP-induced maturation on DCs. Especially, among the three MAPK pathways, activation of JNK signal transduction is the most important for DCs development after PLP-2 incubation. And PLP-2 may activate the MAPK and NF-κB pathway by triggering toll-like receptor 4 on DCs.  相似文献   

3.
4.
The microtubule cytoskeleton is known to play a role in cell structure and serve as a scaffold for a variety of active molecules in processes as diverse as motility and cell division. The literature on the role of microtubules in signal transduction, however, is marked by inconsistencies. We have investigated a well-studied signaling pathway, TNF-α-induced NF-κB activation, and found a connection between the stability of microtubules and the regulation of NF-κB signaling in C2C12 myotubes. When microtubules are stabilized by paclitaxel (taxol), there is a strong induction of NF-κB even in the absence of TNF-α . Although there was no additive effect of taxol and TNF-α on NF-κB activity suggesting a shared mechanism of activation, taxol strongly induced the NF-κB reporter in the presence of a TNF receptor (TNFR) blocking antibody while TNF-α did not. Both TNF-α and taxol induce the degradation of endogenous IκBα and either taxol or TNF-α induction of NF-κB activity was blocked by inhibitors of NF-κB acting at different sites in the signaling pathway. Both TNF-α and taxol strongly induce known NF-κB chemokine target genes. On the other hand, if microtubules are destabilized by colchicine, then the induction of NF-κB by TNF-α or taxol is greatly reduced. Taken together, we surmise that the activity of microtubules is at the level of the TNFR intracellular domain. This phenomenon may indicate a new level of signaling organization in cell biology, actively created by the state of the cytoskeleton, and has ramifications for therapies where microtubule regulating drugs are used.  相似文献   

5.
6.
Proteinuria is an important risk factor for chronic kidney diseases (CKD). Several studies have suggested that proteinuria initiates tubulointerstitial inflammation, while the mechanisms have not been fully understood. In this study, we hypothesized whether the activation of the TLR2–MyD88–NF-κB pathway is involved in tubulointerstitial inflammation induced by proteinuria. We observed expression of TLR2, MyD88, NF-κB, as well as TNF-α and IL-6 detected by immunohistostaining, Western blotting and real-time PCR in albumin-overloaded (AO) nephropathy rats. In vitro, we observed these markers in HK-2 cells stimulated by albumin. We used TLR2 siRNA or the NF-κB inhibitor BAY 11-7082 to observe the influence of TNF-α and IL-6 expression caused by albumin overload. Finally, we studied these markers in non-IgA mesangioproliferative glomerulonephritis (MsPGN) patients with different levels of proteinuria. It was demonstrated that expression of TLR2, MyD88 and NF-κB were significantly increased in AO rats and in non-IgA MsPGN patients with high levels of proteinuria, and TNF-α and IL-6 expressions were increased after NF-κB activation. Furthermore, TNF-α and IL-6 expression was positively correlated with the level of proteinuria. Albumin-overload induced TNF-α and IL-6 secretions by the TLR2–MyD88–NF-κB pathway activation, which could be attenuated by the TLR2 siRNA or BAY 11-7082 in HK-2 cells. In summary, we demonstrated that proteinuria may exhibit an endogenous danger-associated molecular pattern (DAMP) that induces tubulointerstitial inflammation via the TLR2–MyD88–NF-κB pathway activation.  相似文献   

7.
PurposeIL-13, TNF-α and IL-1β have various effects on lung cancer growth and death, but the signaling pathways mediating these effects have not been extensively analyzed. Therefore, the effects of IL-13, TNF-α and IL-1β alone, and in combination with Fas, on cell viability and death as well as major signaling pathways involved in these effects were investigated in A549 lung carcinoma cells.ResultsUsing MTT and flow cytometry, IL-13, TNF-α and IL-1β pretreatment decreased Fas-induced cell death. These anti-cell death effects were attenuated by pretreatment with inhibitors of Nuclear factor-κB [NF-κB], Phoshatidylinositole-3 kinase [PI3-K], JNK, p38 and ERK1/2 pathways.Using Western blot, IL-13, TNF-α and IL-1β treated cells showed time-dependent expression of p-ERK1/2, p-p38, p-JNK, p-Akt and p-IκBα proteins, decreased IκBα protein expression, no cleavage of Caspase-3 and PARP1 proteins and no notable alterations of Fas protein. IL-13 and TNF-α treated cells showed time-dependent increase of FLIPL expression.ConclusionIL-13, TNF-α and IL-1β attenuate the pro-cell death effects of Fas on A549 cells, at least partially, by pathways involving the NF-κB, PI3-K and MAP kinases, but not by alterations of Fas protein expression. The IL-13 and TNF-α cell survival effects may also be due to increased expression of FLIPL protein.  相似文献   

8.
The acute-phase proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) demonstrate high-level expression and pleiotropic biological effects, and contribute to the progression and persistence of rheumatoid arthritis (RA). Acid hydrarthrosis is also an important pathological characteristic of RA, and the acid-sensing ion channel 1a (ASIC1a) plays a critical role in acidosis-induced chondrocyte cytotoxicity. However, the roles of IL-1β and TNF-α in acid-induced apoptosis of chondrocytes remain unclear. Rat adjuvant arthritis and primary articular chondrocytes were used as in vivo and in vitro model systems, respectively. ASIC1a expression in articular cartilage was increased and highly colocalized with nuclear factor (NF)-κB expression in vivo. IL-1β and TNF-α could upregulate ASIC1a expression. These cytokines activated mitogen-activated protein kinase and NF-κB pathways in chondrocytes, while the respective inhibitors of these signaling pathways could partially reverse the ASIC1a upregulation induced by IL-1β and TNF-α. Dual luciferase and gel-shift assays and chromatin immunoprecipitation-polymerase chain reaction demonstrated that IL-1β and TNF-α enhanced ASIC1a promoter activity in chondrocytes by increasing NF-κB DNA-binding activities, which was in turn prevented by the NF-κB inhibitor ammonium pyrrolidinedithiocarbamate. IL-1β and TNF-α also decreased cell viability but enhanced LDH release, intracellular Ca2+ concentration elevation, loss of mitochondrial membrane potential, cleaved PARP and cleaved caspase-3/9 expression, and apoptosis in acid-stimulated chondrocytes, which effects could be abrogated by the specific ASIC1a inhibitor psalmotoxin-1 (PcTX-1), ASIC1a-short hairpin RNA or calcium chelating agent BAPTA-AM. These results indicate that IL-1β and TNF-α can augment acidosis-induced cytotoxicity through NF-κB-dependent up-regulation of ASIC1a channel expression in primary articular chondrocytes.  相似文献   

9.
The classical nuclear factor kappa B (NF-κB) signaling pathway is an important regulator of inflammation and innate immunity that is activated by a wide variety of stimuli, including virus infection, tumor necrosis factor alpha (TNF-α), and interleukin 1β (IL-1β). Poxviruses, including vaccinia virus (VV) and ectromelia virus, encode multiple proteins that function in immune evasion. Recently, a growing number of genes encoded by poxviruses have been shown to target and disrupt the NF-κB signaling pathway. To determine if additional gene products that interfere with NF-κB signaling existed, we used a vaccinia virus deletion mutant, VV811, which is missing 55 open reading frames lacking all known inhibitors of TNF-α-induced NF-κB activation. Immunofluorescence analysis of HeLa cells treated with TNF-α and IL-1β revealed that NF-κB translocation to the nucleus was inhibited in VV811-infected cells. This was further confirmed through Western blotting of cytoplasmic and nuclear extracts for NF-κB. Additionally, VV811 infection inhibited TNF-α-induced IκBα degradation. In contrast to vaccinia virus strain Copenhagen (VVCop)-infected cells, VV811 infection resulted in the dramatic accumulation of phosphorylated IκBα. Correspondingly, coimmunoprecipitation assays demonstrated that the NF-κB-inhibitory IκBα-p65-p50 complex was intact in VV811-infected cells. Significantly, cells treated with 1-β-d-arabinofuranosylcytosine, an inhibitor of poxvirus late gene expression, demonstrated that an additional vaccinia virus late gene was involved in the stabilization of IκBα. Overall, this work indicates that unidentified inhibitors of NF-κB exist in vaccinia virus. The complex inhibition of NF-κB by vaccinia virus illustrates the importance of NF-κB activation in the antiviral response.  相似文献   

10.
Yoo HJ  Byun HJ  Kim BR  Lee KH  Park SY  Rho SB 《Cellular signalling》2012,24(7):1471-1477
Recent studies have shown DAPk as a molecular modulator induced by the second messenger, responsible for controlling cell destiny decisions, but the detailed mechanism mediating the role of DAPk1 during cell death is still not fully understood. In this present report, we attempted to characterize the effects of TNF-α and INF-γ on DAPk1 in human ovarian carcinoma cell lines, OVCAR-3. Both TNF-α and INF-γ significantly induce DAPk1 levels in a time-dependent manner. At the same time, they both arrested cell cycle progression in the G(0)-G(1) and G2/M phase, down-regulated cyclin D1, CDK4 and NF-κB expression, while also up-regulating p27 and p16 expression. Subsequently, the efficacy of the combined treatment with DAPk1 was investigated. In the presence of DAPk1, TNF-α or INF-γ-induced apoptosis was additively increased, while TNF-α or INF-γ-induced NF-κB activity was inhibited. Conversely, TNF-α or INF-γ-dependent NF-κB activity was further enhanced by the inhibition of DAPk1 with its specific siRNA. The activity of NF-κB was dependent on the level of DAPk1, indicating the requirement of DAPk1 for the activation of NF-κB. Low levels of DAPk1 expression were frequently observed in different human patient's tissue and cancer cell lines compared to normal samples. In addition, over-expression of DAPk1 from either TNF-α or INF-γ-treatment cells suppressed the anti-apoptosis protein XIAP as well as COX-2 and ICAM-1, more than control. Taken together, our data findings suggest that DAPk1 can mediate the pro-apoptotic activity of TNF-α and INF-γ via the NF-κB signaling pathways.  相似文献   

11.
目的:探讨热休克蛋白(Hsp)72对类风湿关节炎患者滑膜细胞IL-6、IL-8表达的影响,从NFκ-B信号通路活化的角度阐明其作用机制。方法:原代培养类风湿关节炎患者的滑膜细胞;采用酶联免疫吸附试验(ELISA)法检测细胞培养上清中IL-6和IL-8的含量;采用Western blot检测滑膜细胞NFκ-B和ΙκBα蛋白的表达变化;采用免疫荧光技术检测NFκ-B核移位的变化。结果:Hsp72抑制TNFα-所诱导的IL-6和IL-8的生成;Hsp72抑制TNFα-所诱导NFκ-B在核内的表达和移位;Hsp72抑制TNFα-所诱导ΙκBα蛋白降解。结论:Hsp72可能通过抑制滑膜细胞IL-6、IL-8表达及抑制NF-κB信号通路活化而对类风湿关节炎发挥抗炎作用。  相似文献   

12.
目的探讨内毒素(LPS)刺激大鼠肠黏膜微血管内皮细胞(RIMMVECs)后,乳酸(LA)调控NF-κB信号通路中磷酸化IκBα和NF-κB p65蛋白表达情况,肿瘤坏死因子α(TNF-α)和白细胞介素6(IL-6)mRNA表达情况,阐明乳酸发挥作用的最佳时间及其调控NF-κB信号通路的部位。方法提取RIMMVECs总蛋白和总RNA,用Western blotting检测NF-κB p65、IκBα及p-IκBα蛋白表达水平,用real-time PCR对TNF-α和IL-6 mRNA进行定量检测。结果乳酸能降低LPS诱导RIMMVECs分泌的TNF-α和IL-6 mRNA表达水平,并分别于24 h和3 h下调效果最明显;乳酸能抑制IκBα磷酸化及NF-κB转录活性,并于4~8 h达到最佳效果;乳酸发挥作用部位是抑制信号通路中IκBα磷酸化。结论乳酸通过抑制IκBα磷酸化而阻断NF-κB的激活,抑制下游炎性因子表达,进而发挥出很好的预防炎症效果。  相似文献   

13.
Background: Loss of quadriceps muscle oxidative phenotype (OXPHEN) is an evident and debilitating feature of chronic obstructive pulmonary disease (COPD). We recently demonstrated involvement of the inflammatory classical NF-κB pathway in inflammation-induced impairments in muscle OXPHEN. The exact underlying mechanisms however are unclear. Interestingly, IκB kinase α (IKK-α: a key kinase in the alternative NF-κB pathway) was recently identified as a novel positive regulator of skeletal muscle OXPHEN. We hypothesised that inflammation-induced classical NF-κB activation contributes to loss of muscle OXPHEN in COPD by reducing IKK-α expression.Methods: Classical NF-κB signalling was activated (molecularly or by tumour necrosis factor α: TNF-α) in cultured myotubes and the impact on muscle OXPHEN and IKK-α levels was investigated. Moreover, the alternative NF-κB pathway was modulated to investigate the impact on muscle OXPHEN in absence or presence of an inflammatory stimulus. As a proof of concept, quadriceps muscle biopsies of COPD patients and healthy controls were analysed for expression levels of IKK-α, OXPHEN markers and TNF-α.Results: IKK-α knock-down in cultured myotubes decreased expression of OXPHEN markers and key OXPHEN regulators. Moreover, classical NF-κB activation (both by TNF-α and IKK-β over-expression) reduced IKK-α levels and IKK-α over-expression prevented TNF-α-induced impairments in muscle OXPHEN. Importantly, muscle IKK-α protein abundance and OXPHEN was reduced in COPD patients compared to controls, which was more pronounced in patients with increased muscle TNF-α mRNA levels.Conclusion: Classical NF-κB activation impairs skeletal muscle OXPHEN by reducing IKK-α expression. TNF-α-induced reductions in muscle IKK-α may accelerate muscle OXPHEN deterioration in COPD.  相似文献   

14.
Persistently elevated level of TNF-α has been implicated in several inflammatory disorders, however, its autocrine production through TNF-α receptors signaling is poorly understood. Here we report that simultaneous silencing of TNF-receptors, R1 and R2 by DNAzyme or siRNA suppressed TNF-α expression more efficiently than silencing them individually in lipopolysaccharides (LPS) stimulated THP-1 macrophages. Co-silencing of TNF-receptors also inhibited TNF-α induced NF-κB activation to a higher extent. It was further observed that NF-κB inhibitor but not c-Jun N-terminal kinase inhibitor (SP600125) suppressed TNF-α expression. All these results suggest that TNF-α expression is regulated by synergistic signaling of TNF receptors through downstream NF-κB activation.  相似文献   

15.
本研究检测了绝经后骨质疏松症妇女的肿瘤坏死因子-α(TNF-α)和雌激素水平,并探讨了TNF-α对破骨前体细胞RAW264.7中破骨细胞标志物核因子κB受体激活因子(nuclear factor kappa-B, RANK)、组织蛋白酶K (Cathepsin K, CTSK)和凝血酶受体激活肽(thrombin receptor activating peptide, TRAP)以及核因子-κB (NF-κB)亚基(p65)和NF-κB抑制蛋白(IκBα)的影响。研究结果表明,绝经后骨质疏松症患者的TNF-α水平显著升高,而雌二醇水平显著降低。核因子κB受体激活因子配体(receptor activator for NF-κBligand, RANKL)处理1周后,破骨前体细胞RAW264.7中破骨细胞标志物RANK、CTSK和TRAP的mRNA和蛋白高度表达。与RANKL对照组相比,TNF-α处理可上调RANK、CTSK和TRAP m RNA的表达。但是,仅TNF-α不能诱导培养的RAW264.7细胞分化为破骨细胞成。TNF-α以剂量依赖性方式诱导NF-κB亚基p65和IκBα磷酸化,而NF-κB抑制剂处理则有效降低了RANK和TRAP的表达。本研究结论表明,绝经后骨质疏松症中TNF-α通过激活NF-κB来促进RANKL诱导的破骨细胞形成。  相似文献   

16.
17.
18.
In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-α (TNF-α) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-α-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-α-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-α-activated signal pathway of nuclear factor-κB (NF-κB) by preventing NF-κB inhibitory protein (IκBα) degradation and NF-κB/DNA binding activity. Omentin pretreatment significantly inhibited TNF-α-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-α-induced NF-κB activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-α. These results suggest that omentin may inhibit TNF-α-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-κB pathway.  相似文献   

19.
20.
旨在构建缺失N端前36个氨基酸的IκBα突变体真核表达载体,并对其表达及生物学活性进行检测.从人源子宫颈癌细胞HeLa中提取总RNA,利用RT-PCR的方法获得IκBα缺失突变体的cDNA,将其克隆至真核表达载体pcDNA3.1/myc-His A中,构建重组载体pcDNA3.1-IκBαΔN.通过PCR方法、NcoⅠ酶切以及核酸测序分析对其进行鉴定;采用Western Blot检测IκBα缺失突变体蛋白在HeLa细胞中的表达.将pcDNA3.1-IκBαΔN和pNF-κB-Luc共转染 HeLa细胞,经TNF-α诱导后,利用萤光素酶报告系统来检测重组载体对NF-αB的抑制活性.结果表明,经PCR方法、NcoⅠ酶切鉴定及核酸测序分析后,证实成功构建了重组载体pcDNA3.1-IκBαΔN;IκBα缺失突变体蛋白在HeLa细胞中高效表达,并对NF-κB有显著的抑制活性(P<0.01).因此,真核表达载体pcDNA3.1-IκBαΔN构建成功,为一步研究NF-κB信号传导通路及其相关疾病提供有效的分子工具.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号