首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have isolated very high light resistant nuclear mutants (VHL R) in Chlamydomonas reinhardtii, that grow in 1500–2000 mol photons m–2 s–1 (VHL) lethal to wildtype. Four nonallelic mutants have been characterized in terms of Photosystem II (PS II) function, nonphotochemical quenching (NPQ) and xanthophyll pigments in relation to acclimation and survival under light stress. In one class of VHL R mutants isolated from wild type (S4 and S9), VHL resistance was accompanied by slower PS II electron transfer, reduced connectivity between PS II centers and decreased PS II efficiency. These lesions in PS II function were already present in the herbicide resistant D1 mutant A251L (L *) from which another class of VHL R mutants (L4 and L30) were isolated, confirming that optimal PS II function was not critical for survival in very high light. Survival of all four VHL R mutants was independent of CO2 availability, whereas photoprotective processes were not. The de-epoxidation state (DPS) of the xanthophyll cycle pigments in high light (HL, 600 mol photons m–2 s–1) was strongly depressed when all genotypes were grown in 5% CO2. In S4 and S9 grown in air under HL and VHL, high DPS was well correlated with high NPQ. However when the same genotypes were grown in 5% CO2, high DPS did not result in high NPQ, probably because high photosynthetic rates decreased thylakoid pH. Although high NPQ lowered the reduction state of PS II in air compared to 5% CO2 at HL in wildtype, S4 and S9, this did not occur during growth of S4 and S9 in VHL. L * and VHL R mutants L4 and L30, also showed high DPS with low NPQ when grown air or 5% CO2, possibly because they were unable to maintain sufficiently high pH due to constitutively impaired PS II electron transport. Although dissipation of excess photon energy through NPQ may contribute to VHL resistance, there is little evidence that the different genes conferring the VHL R phenotype affect this form of photoprotection. Rather, the decline of chlorophyll per biomass in all VHL R mutants grown under VHL suggests these genes may be involved in regulating antenna components and photosystem stoichiometries.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

2.
Dinoflagellates from the genus Symbiodinium form symbiotic associations with cnidarians including corals and anemones. The photosynthetic apparatuses of these dinoflagellates possess a unique photosynthetic antenna system incorporating the peridinin–chlorophyll a–protein (PCP). It has been proposed that the appearance of a PCP-specific 77 K fluorescence emission band around 672–675 nm indicates that high light treatment results in PCP dissociation from intrinsic membrane antenna complexes, blocking excitation transfer to the intrinsic membrane-bound antenna complexes, chlorophyll a–chlorophyll c2–peridinin–protein-complex (acpPC) and associated photosystems (Reynolds et al., 2008 Proc Natl Acad Sci USA 105:13674–13678).We have tested this model using time-resolved fluorescence decay kinetics in conjunction with global fitting to compare the time-evolution of the PCP spectral bands before and after high light exposure. Our results show that no long-lived PCP fluorescence emission components appear either before or after high light treatment, indicating that the efficiency of excitation transfer from PCP to membrane antenna systems remains efficient and rapid even after exposure to high light. The apparent increased relative emission at around 675 nm was, instead, caused by strong preferential exciton quenching of the membrane antenna complexes associated with acpPC and reaction centers. This strong non-photochemical quenching (NPQ) is consistent with the activation of xanthophyll-associated quenching mechanisms and the generally-observed avoidance in nature of long-lived photoexcited states that can lead to oxidative damage. The acpPC component appears to be the most strongly quenched under high light exposure suggesting that it houses the photoprotective exciton quencher.  相似文献   

3.
The effect of salinity on growth, photosynthetic performance and osmotic acclimation was investigated in the eulittoral red algal species Bangiopsis subsimplex (Stylonematophyceae). The strain grew in a broad salinity range between 1 and 70 psu showing optimum growth between 10 and 50 psu. The saturation point Ik of the photosynthesis irradiance curves ranged between 153 and 83 μmol photons m− 2 s− 1 at all salinities and indicates an adaptation of B. subsimplex to moderate radiation conditions. Adjustments on the photosynthetic level (non-photochemical quenching) were sufficient to prevent damage to the photosynthetic apparatus as Fv/Fm values were constantly high (> 0.7) even when grown at the most hypo- and hypersaline conditions. As main low molecular weight carbohydrates, B. subsimplex contains the heteroside digeneaside and the polyol sorbitol. Digeneaside concentration was low and almost unchanged after hypersaline treatment (< 20 μmol g− 1 DW), i.e. it did not play a role in osmotic acclimation. By contrast, sorbitol levels increased linearly from 150 to 380 μmol g− 1 DW with increasing salinities between 5 and 60 psu, indicating its important function as an osmolyte and compatible solute under hypersaline conditions. The data presented are consistent with the natural habitat of B. subsimplex, i.e. the upper eulittoral zone.  相似文献   

4.
5.
Bleaching is a worldwide phenomenon affecting coral reefs. During elevated temperature and light conditions (bleaching), expelled zooxanthellae show distinct patterns in photosynthetic health. An innovative new device was used to collect individual expelled zooxanthellae, when a coral was exposed to bleaching conditions. This has provided new insight into the photosynthetic condition and abundance of expelled zooxanthellae. It has been assumed that expelled zooxanthellae were dead or moribund; however, we have found individual cells can have healthy effective quantum yields (?PSII) >0.65 after 8 h of bleaching conditions (500 μmol photons m−2 s−1, 33 °C). The population of expelled zooxanthellae from Cyphastrea serailia and Pocillopora damicornis showed distinct patterns in the frequency distribution of ?PSII over time and between locations (sun versus shade) within a colony. During the first 4 h of exposure to bleaching conditions, only 5% of expelled individual cells from P. damicornis were photosynthetically inactive (?PSII<0.05), whereas for C. serailia, this was 30%. The overall photosynthetic health of expelled zooxanthellae from C. serailia was better than P. damicornis (0.53±0.13 and 0.38±0.13 after 8 h, respectively). This was generally reflected by the in hospite measurement of the coral, yet, the in hospite cells always had a higher ?PSII than expelled cells, suggesting that host tissue provided added photoprotection for the zooxanthellae.  相似文献   

6.
Nikolaos E. Ioannidis 《BBA》2007,1767(12):1372-1382
The three major polyamines are normally found in chloroplasts of higher plants and are implicated in plant growth and stress response. We have recently shown that putrescine can increase light energy utilization through stimulation of photophosphorylation [Ioannidis et al., (2006) BBA-Bioenergetics, 1757, 821-828]. We are now to compare the role of the three major polyamines in terms of chloroplast bioenergetics. There is a different mode of action between the diamine putrescine and the higher polyamines (spermidine and spermine). Putrescine is an efficient stimulator of ATP synthesis, better than spermidine and spermine in terms of maximal % stimulation. On the other hand, spermidine and spermine are efficient stimulators of non-photochemical quenching. Spermidine and spermine at high concentrations are efficient uncouplers of photophosphorylation. In addition, the higher the polycationic character of the amine being used, the higher was the effectiveness in PSII efficiency restoration, as well as stacking of low salt thylakoids. Spermine with 50 μM increase FV as efficiently as 100 μM of spermidine or 1000 μM of putrescine or 1000 μM of Mg2+. It is also demonstrated that the increase in FV derives mainly from the contribution of PSIIα centers. These results underline the importance of chloroplastic polyamines in the functionality of the photosynthetic membrane.  相似文献   

7.
The dark recovery kinetics of the Chl a fluorescence transient (OJIP) after 15 min light adaptation were studied and interpreted with the help of simultaneously measured 820 nm transmission. The kinetics of the changes in the shape of the OJIP transient were related to the kinetics of the qE and qT components of non-photochemical quenching. The dark-relaxation of the qE coincided with a general increase of the fluorescence yield. Light adaptation caused the disappearance of the IP-phase (20-200 ms) of the OJIP-transient. The qT correlated with the recovery of the IP-phase and with a recovery of the re-reduction of P700+ and oxidized plastocyanin in the 20-200 ms time-range as derived from 820 nm transmission measurements. On the basis of these observations, the qT is interpreted to represent the inactivation kinetics of ferredoxin-NADP+-reductase (FNR). The activation state of FNR affects the fluorescence yield via its effect on the electron flow. The qT therefore represents a form of photochemical quenching. Increasing the light intensity of the probe pulse from 1800 to 15000 μmol photons m−2 s−1 did not qualitatively change the results. The presented observations imply that in light-adapted leaves, it is not possible to ‘close’ all reaction centers with a strong light pulse. This supports the hypothesis that in addition to QA a second modulator of the fluorescence yield located on the acceptor side of photosystem II (e.g., the occupancy of the QB-site) is needed to explain these results. Besides, some of our results indicate that in pea leaves state 2 to 1 transitions may contribute to the qI-phase.  相似文献   

8.
Rosa meillandina plants were used to study the effects of water deficit on photosynthesis and chlororespiration. Plants showed high tolerance to heat and high illumination in controlled conditions that ensured that there was no water deficit. However, when heat and high illumination were accompanied by low watering photosynthetic linear electron transport was down regulated, as indicated by the reduced photochemistry efficiency of PS II, which was associated with an increase in the non-photochemical quenching of fluorescence. In addition to the effects on the photosynthetic activity, changes were also observed in the plastidial NDH complex, PTOX and PGR5. In plants exposed to heat and high illumination without water deficit, the activities and amounts of the chlororespiration enzymes, NDH complex and PTOX, remained similar to the control and only increased in response to drought, high light and heat stress, applied together. In contrast, both the PS I activity and the amount of PGR5 polypeptide were higher in plants exposed to heat and high illumination without water deficit than in those with water deficit. The results indicated that in the conditions studied, the contribution of chlororespiration to regulating photosynthetic electron flow is not relevant when there is no water deficit, and another pathway, such as cyclic electron flow involving PGR5 polypeptide, may be more important. However, when PS II activity is inhibited by drought, chlororespiration, together with other routes of electron input to the electron transfer chain, is probably essential.  相似文献   

9.
In photosynthetic chains, the kinetics of fluorescence yield depends on the photochemical rates at the level of both Photosystem I and II and thus on the absorption cross section of the photosynthetic units as well as on the coupling between light harvesting complexes and photosynthetic traps. A new set-up is described which, at variance with the commonly used set-ups, uses of a weakly absorbed light source (light-emitting diodes with maximum output at 520 nm) to excite the photosynthetic electron chain and probe the resulting fluorescence yield changes and their time course. This approach optimizes the homogeneity of the exciting light throughout the leaf and we show that this homogeneity narrows the distribution of the photochemical rates. Although the exciting light is weakly absorbed, the possibility to tune the intensity of the light emitting diodes allows one to reach photochemical rates ranging from 104 s− 1 to 0.25 s− 1 rendering experimentally accessible different functional regimes. The variations of the fluorescence yield induced by the photosynthetic activity are qualitatively and quantitatively discussed. When illuminating dark-adapted leaves by a weak light, the kinetics of fluorescence changes displays a pronounced plateau which precedes the fluorescence increase reflecting the full reduction of the plastoquinone pool. We ascribe this plateau to the time delay needed to reduce the photosystem I electron acceptors.  相似文献   

10.
Effects of exogenous calcium chloride (CaCl2) (20 mM) on photosynthetic gas exchange, photosystem II photochemistry, and the activities of antioxidant enzymes in tobacco plants under high temperature stress (43 °C for 2 h) were investigated. Heat stress resulted in a decrease in net photosynthetic rate (Pn), stomatal conductance as well as the apparent quantum yield (AQY) and carboxylation efficiency (CE) of photosynthesis. Heat stress also caused a decrease of the maximal photochemical efficiency of primary photochemistry (Fv/Fm). On the other hand, CaCl2 application improved Pn, AQY, and CE as well as Fv/Fm under high temperature stress. Heat stress reduced the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD), whereas the activities of these enzymes either decreased less or increased in plants pretreated with CaCl2; glutathione reductase (GR) activity increased under high temperature, and it increased more in plants pretreated with CaCl2. There was an obvious accumulation of H2O2 and O2 under high temperature, but CaCl2 application decreased the contents of H2O2 and O2 under heat stress conditions. Heat stress induced the level of heat shock protein 70 (HSP70), while CaCl2 pretreatment enhanced it. These results suggested that photosynthesis was improved by CaCl2 application in heat-stressed plants and such an improvement was associated with an improvement in stomatal conductance and the thermostability of oxygen-evolving complex (OEC), which might be due to less accumulation of reactive oxygen species.  相似文献   

11.
The luminostat regime has been proposed as a way to maximize light absorption and thus to increase the microalgae photosynthetic efficiency within photobioreactors. In this study, simulated outdoor light conditions were applied to a lab-scale photobioreactor in order to evaluate the luminostat control under varying light conditions. The photon flux density leaving the reactor (PFDout) was varied from 4 to 20 μmol photons m−2 s−1and the productivity and photosynthetic efficiency of Chlorella sorokiniana were assessed.Maximal volumetric productivity (1.22 g kg−1 d−1) and biomass yield on PAR photons (400-700 nm) absorbed (1.27 g mol−1) were found when PFDout was maintained between 4 and 6 μmol photons m−2 s−1. The resultant photosynthetic efficiency was comparable to that already reported in a chemostat-controlled reactor. A strict luminostat regime could not be maintained under varying light conditions. Further modifications to the luminostat control are required before application under outdoor conditions.  相似文献   

12.
Short-and long-duration light curves were applied to four macroalgae (Ulva sp., Codium fragile, Ecklonia radiata and Lessonia variegata), and two microalgal species (Chlorella emersonii and Chaetoceros muellerii). With increasing light curve duration, the maximal relative electron transport rate increased by a factor of three in E. radiata, and by factors of 1.25 and 1.23 in C. emersonii and L. variegata, respectively, but did not change in C. fragile and Ch. muellerii. The light saturation point Ek increased by 26 μmol photons m−2 s−1 in C. emersonii and 20 μmol photons m−2 s−1 in Ch. muellerii and E. radiata with elevated light curve exposure times. Oscillatory patterns of the continuous fluorescence readings reflect accumulation of QA. Continuous fluorescence values increased, or decreased, by approximately 10% within light curve increments. However, oscillations of 25% were not uncommon, which shows that cells are changing their photo-physiological response state during steady light conditions. Increasing dark acclimation times prior to light curve application lowered maximal relative electron transport rates in the C. emersonii (from 28 ± 1.7 to 25 ± 1.2 for 15 and 95 min dark acclimation in short-duration light curves respectively). This effect was counterbalanced by longer light curve application. It can therefore be concluded that manipulation of light exposure and dark incubation prior to the experiment affects the photosynthetic response, presumably due to different activation states of photosynthetic and photoprotective mechanisms. The highly species-specific photo-response patterns imply that a common rapid light curve protocol will generate artefacts in some species.  相似文献   

13.
Diatoms, which are primary producers in the oceans, can rapidly switch on/off efficient photoprotection to respond to fast light-intensity changes in moving waters. The corresponding thermal dissipation of excess-absorbed-light energy can be observed as non-photochemical quenching (NPQ) of chlorophyll a fluorescence. Fluorescence-induction measurements on Cyclotella meneghiniana diatoms show two NPQ processes: qE1 relaxes rapidly in the dark while qE2 remains present upon switching to darkness and is related to the presence of the xanthophyll-cycle pigment diatoxanthin (Dtx). We performed picosecond fluorescence measurements on cells locked in different (quenching) states, revealing the following sequence of events during full development of NPQ. At first, trimers of light-harvesting complexes (fucoxanthin–chlorophyll a/c proteins), or FCPa, become quenched, while being part of photosystem II (PSII), due to the induced pH gradient across the thylakoid membrane. This is followed by (partial) detachment of FCPa from PSII after which quenching persists. The pH gradient also causes the formation of Dtx which leads to further quenching of isolated PSII cores and some aggregated FCPa. In subsequent darkness, the pH gradient disappears but Dtx remains present and quenching partly pertains. Only in the presence of some light the system completely recovers to the unquenched state.  相似文献   

14.
Environmental constraints disturb plant metabolism and are often associated with photosynthetic impairments and yield reductions. Among them, low positive temperatures are of up most importance in tropical plant species, namely in Coffea spp. in which some acclimation ability has been reported. To further explain cold tolerance, the impacts on photosynthetic functioning and the expression of photosynthetic-related genes were analyzed. The experiments were carried out along a period of slow cold imposition (to allow acclimation), after chilling (4 °C) exposure and in the following rewarming period, using 1.5-year-old coffee seedlings of 5 genotypes with different cold sensitivity: Coffea canephora cv. Apoatã, Coffea arabica cv. Catuaí, Coffea dewevrei and 2 hybrids, Icatu (C. arabica × C. canephora) and Piatã (C. dewevrei × C. arabica). All genotypes suffered a significant leaf area loss only after chilling exposure, with Icatu showing the lowest impact, a first indication of a higher cold tolerance, contrasting with Apoatã and C. dewevrei. During cold exposure, net photosynthesis and Chl a fluorescence parameters were strongly affected in all genotypes, but stomatal limitations were not detected. However, the extent of mesophyll limitation, reflecting regulatory mechanisms and/or damage, was genotype dependent. Overnight retention of zeaxanthin was common to Coffea genotypes, but the accumulation of photoprotective pigments was highest in Icatu. That down-regulated photochemical events but efficiently protected the photosynthetic structures, as shown, e.g., by the lowest impacts on Amax and PSI activity and the strongest reinforcement of PSII activity, the latter possibly reflecting the presence of a photoprotective cycle around PSII in Icatu (and Catuaí). Concomitant to these protection mechanisms, Icatu was the sole genotype to present simultaneous upregulation of caCP22, caPI and caCytf, related to, respectively, PSII, PSI and to the complex Cytb6/f, which could promote better repair ability, contributing to the maintenance of efficient thylakoid functioning. We conclude that Icatu showed the best acclimation ability among the studied genotypes, mostly due to a better upregulation of photoprotection and repair mechanisms. We confirmed the presence of important variability in Coffea spp. that could be exploited in breeding programs, which should be assisted by useful markers of cold tolerance, namely the upregulation of antioxidative molecules, the expression of selected genes and PSI sensitivity.  相似文献   

15.
Osmotic stress responses of water content, photosynthetic parameters and biomass production were investigated in wheat-Aegilops biuncialis amphiploids and in wheat genotypes to clarify whether they can use to improve the drought tolerance of bread wheat. A decrease in the osmotic pressure of the medium resulted in considerable water loss, stomatal closure and a decreased CO2 assimilation rate for the wheat genotypes, while the changes in these parameters were moderate for the amphiploids. Maximal assimilation rate was maintained at high level even under severe osmotic stress in the amphiploids, while it decreased substantially in the wheat genotypes. Nevertheless, the effective quantum yield of PS II was higher and the quantum yield of non-photochemical quenching of PS II and PS I was lower for the amphiploids than for the wheat cultivars. Parallel with this, higher cyclic electron flow was detected in wheat than in the amphiploids. The elevated photosynthetic activity of amphiploids under osmotic stress conditions was manifested in higher biomass production by roots and shoots as compared to wheat genotypes. These results indicate that the drought-tolerant traits of Ae. biuncialis can be manifested in the wheat genetic background and these amphiploids are suitable genetic materials for improving drought tolerance of wheat.  相似文献   

16.
Arbuscular mycorrhizal fungi enhance CO2 assimilation of their hosts which ensure the demand for carbohydrates of these obligate biotrophic microorganisms. Photosynthetic parameters were measured in tomato colonised or not by the arbuscular mycorrhizal fungus Glomus mosseae. In addition, carbohydrate contents and mRNA accumulation of three sucrose transporter genes were analysed. Mycorrhizal plants showed increased opening of stomata and assimilated significant more CO2. A higher proportion of the absorbed light was used for photochemical processes, while non-photochemical quenching and the content of photoprotective pigments were lower. Analysis of sugar contents showed no significant differences in leaves but enhanced levels of sucrose and fructose in roots, while glucose amounts stayed constant. The three sucrose transporter encoding genes of tomato SlSUT1, SlSUT2 and SlSUT4 were up-regulated providing transport capacities to transfer sucrose into the roots. It is proposed that a significant proportion of sugars is used by the mycorrhizal fungus, because only amounts of fructose were increased, while levels of glucose, which is mainly transferred towards the fungus, were nearly constant.  相似文献   

17.
Cyanobacteria are capable of using dissipation of phycobilisome-absorbed energy into heat as part of their photoprotective strategy. Non-photochemical quenching in cyanobacteria cells is triggered by absorption of blue-green light by the carotenoid-binding protein, and involves quenching of phycobilisome fluorescence. In this study, we find direct evidence that the quenching is accompanied by a considerable reduction of energy flow to the photosystems. We present light saturation curves of photosystems’ activity in quenched and non-quenched states in the cyanobacterium Synechocystis sp. PCC 6803. In the quenched state, the quantum efficiency of light absorbed by phycobilisomes drops by about 30-40% for both photoreactions—P700 photooxidation in the photosystem II-less strain and photosystem II fluorescence induction in the photosystem I-less strain of Synechocystis. A similar decrease of the excitation pressure on both photosystems leads us to believe that the core-membrane linker allophycocyanin APC-LCM is at or beyond the point of non-photochemical quenching. We analyze 77 K fluorescence spectra and suggest that the quenching center is formed at the level of the short-wavelength allophycocyanin trimers. It seems that both chlorophyll and APC-LCM may dissipate excess energy via uphill energy transfer at physiological temperatures, but neither of the two is at the heart of the carotenoid-binding protein-dependent non-photochemical quenching mechanism.  相似文献   

18.
Twenty-five years ago, non-photochemical quenching of chlorophyll fluorescence by oxidised plastoquinone (PQ) was proposed to be responsible for the lowering of the maximum fluorescence yield reported to occur when leaves or chloroplasts were treated in the dark with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of electron flow beyond the primary quinone electron acceptor (QA) of photosystem (PS) II [C. Vernotte, A.L. Etienne, J.-M. Briantais, Quenching of the system II chlorophyll fluorescence by the plastoquinone pool, Biochim. Biophys. Acta 545 (1979) 519-527]. Since then, the notion of PQ-quenching has received support but has also been put in doubt, due to inconsistent experimental findings. In the present study, the possible role of the native PQ-pool as a non-photochemical quencher was reinvestigated, employing measurements of the fast chlorophyll a fluorescence kinetics (from 50 μs to 5 s). The about 20% lowering of the maximum fluorescence yield FM, observed in osmotically broken spinach chloroplasts treated with DCMU, was eliminated when the oxidised PQ-pool was non-photochemically reduced to PQH2 by dark incubation of the samples in the presence of NAD(P)H, both under anaerobic and aerobic conditions. Incubation under anaerobic conditions in the absence of NAD(P)H had comparatively minor effects. In DCMU-treated samples incubated in the presence of NAD(P)H fluorescence quenching started to develop again after 20-30 ms of illumination, i.e., the time when PQH2 starts getting reoxidised by PS I activity. NAD(P)H-dependent restoration of FM was largely, if not completely, eliminated when the samples were briefly (5 s) pre-illuminated with red or far-red light. Addition to the incubation medium of HgCl2 that inhibits dark reduction of PQ by NAD(P)H also abolished NAD(P)H-dependent restoration of FM. Collectively, our results provide strong new evidence for the occurrence of PQ-quenching. The finding that DCMU alone did not affect the minimum fluorescence yield F0 allowed us to calculate, for different redox states of the native PQ-pool, the fractional quenching at the F0 level (Q0) and to compare it with the fractional quenching at the FM level (QM). The experimentally determined Q0/QM ratios were found to be equal to the corresponding F0/FM ratios, demonstrating that PQ-quenching is solely exerted on the excited state of antenna chlorophylls.  相似文献   

19.
Saber Hamdani 《BBA》2009,1787(10):1223-1229
The interaction of methylamine with chloroplasts' photosystem II (PSII) was studied in isolated thylakoid membranes. Low concentration of methylamine (mM range) was shown to affect water oxidation and the advancement of the S-states. Modified kinetics of chlorophyll fluorescence rise and thermoluminescence in the presence of methylamine indicated that the electron transfer was affected at both sides of PSII, and in particular the electron transfer between YZ and P680+. As the concentration of methylamine was raised above 10 mM, the extrinsic polypeptides associated with the oxygen-evolving complex were lost and energy transfer between PSII antenna complexes and reaction centers was impaired. It was concluded that methylamine is able to affect both extrinsic and intrinsic subunits of PSII even at the lowest concentrations used where the extrinsic polypeptides of the OEC are still associated with the luminal side of the photosystem. As methylamine concentration increases, the extrinsic polypeptides are lost and the interaction with intrinsic domains is amplified resulting in an increased F0.  相似文献   

20.
Chlorophyll fluorescence analysis is one of the most convenient and widespread techniques used to monitor photosynthesis performance in plants. In this work, after a brief overview of the mechanisms of regulation of photosynthetic electron transport and protection of photosynthetic apparatus against photodamage, we describe results of our study of the effects of actinic light intensity on photosynthetic performance in Tradescantia species of different ecological groups. Using the chlorophyll fluorescence as a probe of photosynthetic activity, we have found that the shade-tolerant species Tradescantia fluminensis shows a higher sensitivity to short-term illumination (≤20 min) with low and moderate light (≤200 μE m−2 s−1) as compared with the light-resistant species Tradescantia sillamontana. In T. fluminensis, non-photochemical quenching of chlorophyll fluorescence (NPQ) and photosystem II operational efficiency (parameter ΦPSII) saturate as soon as actinic light reaches ≈200 μE m−2 s−1. Otherwise, T. sillamontana revealed a higher capacity for NPQ at strong light (≥800 μE m−2 s−1). The post-illumination adaptation of shade-tolerant plants occurs slower than in the light-resistant species. The data obtained are discussed in terms of reactivity of photosynthetic apparatus to short-term variations of the environment light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号