首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heme endows human serum albumin (HSA) with globin-like reactivity and spectroscopic properties. Here, the effect of chlorpropamide, digitoxin, furosemide, indomethacin, phenylbutazone, sulfisoxazole, tolbutamide, and warfarin on peroxynitrite isomerization to NO(3) (-) by ferric HSA-heme (HSA-heme-Fe(III)) is reported. Drugs binding to Sudlow's site I impair dose-dependently peroxynitrite isomerization by HSA-heme-Fe(III). The allosteric modulation of HSA-heme-Fe(III)-mediated peroxynitrite isomerization by drugs has been ascribed to the pivotal role of Tyr150, a residue that either provides a polar environment in Sudlow's site I or protrudes into the heme cleft (i.e., the fatty acid site 1, FA1), depending on ligand occupancy of either sites.  相似文献   

2.
A novel mathematical approach for investigation of drug–human serum albumin (HSA) interactions by means of high-performance liquid affinity chromatography is developed. The model is based on the assumption that two types of competitive binding sites exist on the HSA molecule. The widely used single-site binding equation is extended and a proper mathematical analysis is proposed allowing the determination of the major parameters characterizing the multisite binding (cobinding) process. The utility of the new approach is proved by competitive studies on HSA binding of two model drugs, diazepam and diclofenac.  相似文献   

3.
Flavonoid binding to human serum albumin   总被引:1,自引:0,他引:1  
Dietary flavonoid may have beneficial effects in the prevention of chronic diseases. However, flavonoid bioavailability is often poor probably due to their interaction with plasma proteins. Here, the affinity of daidzein and daidzein metabolites as well as of genistein, naringenin, and quercetin for human serum albumin (HSA) has been assessed in the absence and presence of oleate. Values of the dissociation equilibrium constant (K) for binding of flavonoids and related metabolites to Sudlow’s site I range between 3.3 × 10−6 and 3.9 × 10−5 M, at pH 7.0 and 20.0 °C, indicating that these flavonoids are mainly bound to HSA in vivo. Values of K increase (i.e., the flavonoid affinity decreases) in the presence of saturating amounts of oleate by about two folds. Present data indicate a novel role of fatty acids as allosteric inhibitors of flavonoid bioavailability, and appear to be relevant in rationalizing the interference between dietary compounds, food supplements, and drugs.  相似文献   

4.
High-performance affinity chromatography was used to study the binding of phenytoin to an immobilized human serum albumin (HSA) column. This was accomplished through frontal analysis and competitive binding zonal elution experiments, the latter of which used four probe compounds for the major and minor binding sites of HSA injected into the presence of mobile phases containing known concentrations of phenytoin. It was found that phenytoin can interact with HSA at the warfarin-azapropazone, indole-benzodiazepine, tamoxifen, and digitoxin sites of this protein. The association constants for phenytoin at the indole-benzodiazepine and digitoxin sites were determined to be 1.04 (+/-0.05) x 10(4)M(-1) and 6.5 (+/-0.6) x 10(3)M(-1), respectively, at pH 7.4 and 37 degrees C. Both allosteric interactions and direct binding for phenytoin appear to take place at the warfarin-azapropazone and tamoxifen sites. This rather complex binding system indicates the importance of identifying the binding regions on HSA for specific drugs as a means for understanding the transport of such substances in blood and in characterizing their potential for drug-drug interactions.  相似文献   

5.
In this work, the binding characteristics of methylene blue (MB) to human serum albumin (HSA) and the influence of Cu2+ and Fe3+ on the binding affinity of MB to HSA were investigated using fluorescence, absorption, circular dichroism (CD) spectroscopy and molecular modelling. The results of competitive binding experiments using the site probes ketoprofen and ibuprofen as specific markers suggested that MB was located in site I within sub‐domain IIA of HSA. The molecular modelling results agreed with the results of competitive site marker experiments and the results of CD spectra indicated that the interaction between MB and HSA caused the conformational changes in HSA. The binding affinity of MB to HSA was enhanced but to a different extent in the presence of Cu2+ and Fe3+, respectively, which indicated that the influence of different metal ions varied. Enhancement of the binding affinity of MB to HSA in the presence of Cu2+ is due to the formation of Cu2+–HSA complex leading to the conformational changes in HSA, whereas in the presence of Fe3+, enhancement of the binding affinity is due to the greater stability of the Fe3+–HSA–MB complex compared with the MB–HSA complex. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Acetohexamide is a drug used to treat type II diabetes and is tightly bound to the protein human serum albumin (HSA) in the circulation. It has been proposed that the binding of some drugs with HSA can be affected by the non-enzymatic glycation of this protein. This study used high-performance affinity chromatography to examine the changes in acetohexamide–HSA binding that take place as the glycation of HSA is increased. It was found in frontal analysis experiments that the binding of acetohexamide to glycated HSA could be described by a two-site model involving both strong and weak affinity interactions. The average association equilibrium constant (Ka) for the high affinity interactions was in the range of 1.2–2.0 × 105 M−1 and increased in moving from normal HSA to HSA with glycation levels that might be found in advanced diabetes. It was found through competition studies that acetohexamide was binding at both Sudlow sites I and II on the glycated HSA. The Ka for acetohexamide at Sudlow site I increased by 40% in going from normal HSA to minimally glycated HSA but then decreased back to near-normal values in going to more highly glycated HSA. At Sudlow site II, the Ka for acetohexamide first decreased by about 40% and then increased in going from normal HSA to minimally glycated HSA and more highly glycated HSA. This information demonstrates the importance of conducting both frontal analysis and site-specific binding studies in examining the effects of glycation on the interactions of a drug with HSA.  相似文献   

7.
It is well known that various physiological factors such as pH, endogenous substances or post-translational modifications can affect the conformational state of human serum albumin (HSA). In a previous study, we reported that both pH- and long chain fatty acid-induced conformational changes can alter the interactive binding of ligands to the two principal binding sites of HSA, namely, site I and site II. In the present study, the effect of metal-catalyzed oxidation (MCO) caused by ascorbate/oxygen/trace metals on HSA structure and the interactive binding between dansyl-L-asparagine (DNSA; a site I ligand) and ibuprofen (a site II ligand) at pH 6.5 was investigated. MCO was accompanied by a time-dependent increase in carbonyl content in HSA, suggesting that the HSA was being oxidized. In addition, The MCO of HSA was accompanied by a change in net charge to a more negative charge and a decrease in thermal stability. SDS-PAGE patterns and α-helical contents of the oxidized HSAs were similar to those of native HSA, indicating that the HSA had not been extensively structurally modified by MCO. MCO also caused a selective decrease in ibuprofen binding. In spite of the changes in the HSA structure and ligand that bind to site II, no change in the interactive binding between DNSA and ibuprofen was observed. These data indicated that amino acid residues in site II are preferentially oxidized by MCO, whereas the spatial relationship between sites I and II (e.g. the distance between sites), the flexibility or space of each binding site are not altered. The present findings provide insights into the structural characteristics of oxidized HSA, and drug binding and drug-drug interactions on oxidized HSA.  相似文献   

8.
The use of immobilized human serum albumin (HSA) as a stationary phase in affinity chromatography has been shown to be useful in resolving optical antipodes or to investigate interactions between drugs and protein. However, to our knowledge, no inorganic ion binding has been studied on this immobilized protein type. To do this, the human serum albumin stationary phase was assimilated to a weak cation-exchanger by working with a mobile phase pH equal to 6.5. A study of the eluent ionic strength effect on ion retention was carried out by varying the buffer concentrations and the column temperatures. The thermodynamic parameters for magnesium and calcium transfer from the mobile to the stationary phase were determined from linear van’t Hoff plots. An enthalpy–entropy compensation study revealed that the type of interaction was independent of the mobile phase composition. A simple model based on the Gouy–Chapman theory was considered in order to describe the retention behavior of the test cations with the mobile phase ionic strength. From this theoretical approach, the relative charge densities of the human serum albumin surface implied in the binding process were estimated at different column temperatures.  相似文献   

9.
Cantharidin, a monoterpene isolated from the insect blister beetle, has long been used as a medicinal agent in the traditional Chinese medicine. Cantharidin inhibits a subgroup of serine/threonine phosphatases, thus inducing cell growth inhibition and cytotoxicity. Cantharidin has anticancer activity in vitro, since it is able of inducing p53‐dependent apoptosis and double‐strand breakage of DNA in cancer cells. Although the toxicity of cantharidin to the gastrointestinal and urinary tracts prevents its medical use, it is a promising lead compound for chemical modification to develop new anticancer therapeutics. In fact, cantharidin does not cause myelosuppression and displays anticancer activity against cells with a multidrug resistance phenotype. Here, the competitive inhibitory effect of cantharidin on heme‐Fe(III) binding to the fatty acid site 1 (FA1) of human serum albumin (HSA) is reported. Docking and molecular dynamics simulations support functional data indicating the preferential binding of cantharidin to the FA1 site of HSA. Present results may be relevant in vivo as HSA could transport cantharidin, which in turn could affect heme‐Fe(III) scavenging by HSA.  相似文献   

10.
This paper demonstrates the use of a near-infrared (NIR) dye as a non-covalent label for human serum albumin (HSA). The dye is a water soluble, heptamethine cyanine dye. The utility of the dye as a tracer illustrating the binding of various drugs to HSA is demonstrated via affinity capillary electrophoresis with near-infrared laser-induced fluorescence detection (ACE-NIR-LIF). Additionally, the factors affecting the separation of relevant species were investigated. The change in quantum yield of the dye upon complexation with HSA was calculated. Spectrophotometric measurements were conducted to study the stoichiometry of the dye albumin complex.  相似文献   

11.
Equations to describe the two sites binding between proteins and ligands were deduced. According to these equations, not only the binding constants, but also the mole fraction of proteins in different forms could be obtained. Using the published data on the interaction between human serum albumin (HSA) and three kinds of porphyrin (coproporphyrin (CP), uroporphyrin I (UP) and protoporphyrin (PP)), a further study on their binding was carried out. It was concluded that there may exist two binding sites with the binding constants at the first site, proved to be the preferential one, being 6.50 x l0(5), 1.94 x 10(6) and 8.94 x 10(5), respectively. In addition, it was also demonstrated that the two binding sites of HSA with CP and UP might be of different kinds, though those of HSA and PP were of the same kind but at different positions.  相似文献   

12.
Fipronil is a broad‐spectrum pesticide widely used in agriculture, horticulture, and forestry. Because fipronil can cause a variety of toxic effects in animals and humans, its use is authorized as a pesticide in veterinary medicinal products for pets, but not for the treatment of livestock animals whose products are intended for consumption. Recently, however, the presence of fipronil residues has been detected in the eggs and meat of layer hens from farms located in different European countries. Given the relevance of fipronil toxicity for human health, it is important to gain information concerning its fate in the human body, including its binding mode to human serum albumin (HSA), the most abundant protein in plasma. Here, the inhibition of heme‐Fe(III) binding to the fatty acid site 1 (FA1) of HSA by fipronil is reported. Docking simulations support functional data, indicating that the FA1 site is the preferential cleft for fipronil recognition by HSA. The affinity of fipronil for HSA (Kf = 1.9 × 10?6 M, at pH 7.3, and 20.0°C) may be relevant in vivo. Indeed, HSA could play a pivotal role in fipronil transport and scavenging, thus reducing the pesticide‐free plasmatic levels, with consequent reduced systemic toxicity. In turn, fipronil binding to the FA1 site of HSA could impair the recognition of endogenous and exogenous molecules.  相似文献   

13.
The development of a traceable molecular probe was investigated for the monitoring of partition behaviour of biomolecules in aqueous two-phase systems. This work was based upon the selective labelling of the free thiol group of human serum albumin (i.e. Cys34) with the fluorophore N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulphonic acid. The preparation of homogeneously labelled protein required purification operations. A succession of five processes was successfully applied, comprising two size-exclusion chromatographic operations by gel filtration and a series of three appropriately manipulated aqueous two-phase systems comprising PEG 1450 and phosphate salt. Aqueous two-phase partitioning is herein presented as an alternative to difficult separation and could be applied for ‘fine’ purifications.  相似文献   

14.
Capillary electrophoresis combined with semiconductor laser-induced fluorometry was applied to an immunoassay of human serum albumin. Human serum albumin was labeled with a fluorescent molecule (Cy5), which has an absorption maximum at 649 nm. The labeled albumin was purified by ultrafiltration in order to reduce signals, which are unreacted labeling reagent, product, and fragment products derived therefrom. After the purification, no signal for unreacted labeling reagent and fragment products was detectable in the electropherogram of the labeled albumin. The labeled albumin was then reacted with anti-albumin to form an immunocomplex, which was separated from the excess free albumin. The competitive immunoassay was used in the determination of human serum albumin in a controlled serum sample, using the labeled albumin. The obtained value was found to be 0.21±0.02 mg/ml, which is in good agreement with other known values.  相似文献   

15.
Diosmin is a glycosylated polyphenolic compound, commonly found in fruits and vegetables, which is utilized for the pharmacological formulation of some drugs. The interactions of diosmin to human serum albumin have been investigated by fluorescence, UV–visible, FTIR spectroscopy, native electrophoresis and protein–ligand docking studies. The fluorescence studies indicate that the binding site of the additive involves modifications of environment around Trp214 at the level of subdomain IIA. Combining the curve-fitting results of infrared Amide I′ band, the modifications of protein secondary structure have been estimated, indicating a decrease in α-helix structure following flavonoid binding. Data obtained by fluorescence and UV–visible spectroscopy, FTIR experiments and molecular modeling afforded a clear picture of the association mode of diosmin to HSA, suggesting that the primary binding site of diosmin is located in Sudlow's site I. Computational mapping confirms this observation suggesting that the possible binding site of diosmin is located in the hydrophobic cavity of subdomain IIA, whose microenvironment is able to help and stabilize the binding of the ligand in non-planar conformation. Moreover the binding of diosmin to HSA significantly contributes to protect the protein against degradation due to HCLO and Fenton reaction.  相似文献   

16.
Glycation is a non-enzymatic reaction that is initiated by the primary addition of sugars to amino groups of proteins. In the early phase of glycation, the synthesis of intermediates leads to formation of Amadori compounds. In the last phase, advanced glycation end products (AGE) are irreversibly formed following a complex cascade of reactions. It has recently been shown that glycation also affects diabetes-related complications and Alzheimer’s disease. In this study, human serum albumin at a concentration of 10 mg/ml was incubated in PBS with 40 mM of glucose and in different concentrations of papaverine (25, 100, 250, 500 μM) for 42 days at 37 °C. HSA with no additives as well as with glucose 40 mM were incubated as a control and as a glycated sample, respectively. Following the incubation, the samples were prepared for circular dichroism, fluorescence and absorbance techniques. The results showed that in presence of papaverine and glucose, the glycation of HSA increased notably compared with the glycated sample. In conclusion, in this work, we showed that papaverine affects HSA and increases its glycation level.  相似文献   

17.
Perfluorooctanoic acid (PFOA) is a toxic compound that is absorbed and distributed throughout the body by noncovalent binding to serum proteins such as human serum albumin (hSA). Though the interaction between PFOA and hSA has been already assessed using various analytical techniques, a high resolution and detailed analysis of the binding mode is still lacking. We report here the crystal structure of hSA in complex with PFOA and a medium‐chain saturated fatty acid (FA). A total of eight distinct binding sites, four occupied by PFOAs and four by FAs, have been identified. In solution binding studies confirmed the 4:1 PFOA‐hSA stoichiometry and revealed the presence of one high and three low affinity binding sites. Competition experiments with known hSA‐binding drugs allowed locating the high affinity binding site in sub‐domain IIIA. The elucidation of the molecular basis of the interaction between PFOA and hSA might provide not only a better assessment of the absorption and elimination mechanisms of these compounds in vivo but also have implications for the development of novel molecular receptors for diagnostic and biotechnological applications.  相似文献   

18.
The reversible binding of valproate to human serum albumin determines a decrease of the binding of ligands that selectively bind to site I, site II, and bilirubin binding site. The binding inhibition was followed by displacement chromatography methodology using increasing concentrations of the competitor, i.e. valproate, in the mobile phase. Significant binding inhibition was observed for drugs binding at site I and site II. The greater displacement was observed for the more retained enantiomer of benzodiazepines and profens. A reduction of the affinity was observed also in the case of phenol red, this compound being selected as representative of bilirubin binding site. Difference circular dichroism spectroscopy was also used to characterise the binding of valproate to human serum albumin. This antiepilectic drug was proved to affect the binding at site I, II, and bilirubin binding site. The data have physiological relevance because significant inhibition of the binding resulted at clinic concentrations of valproate.  相似文献   

19.
Antioxidant protection of human serum albumin by chitosan   总被引:1,自引:0,他引:1  
Inhibition of protein oxidation by reactive oxygen species (ROS) would confer benefit to living organisms exposed to oxidative stress, because oxidized proteins are associated with many diseases and can propagate ROS-induced damage. We measured the ability of 2800Da chitosan, D-glucosamine and N-acetyl glucosamine to protect human serum albumin from oxidation by peroxyl radicals derived from 2,2'-azobis(2-amidinopropane)dihydrochloride and N-centered radicals from 1,1'-diphenyl-2-picrylhydrazyl and from 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid). Comparison with the antioxidant action of vitamin C showed that, on a molar basis, chitosan was equally effective in preventing formation of carbonyl and hydroperoxide groups in human serum albumin exposed to peroxyl radicals. It was also a potent inhibitor of conformational changes in the protein, assessed by absorption spectrum and intrinsic fluorescence. D-glucosamine was much less effective and N-acetyl glucosamine was not a useful antioxidant. Protection of the albumin from peroxyl radicals was achieved by scavenging of peroxyl radical. Chitosan was also a good scavenger of N-centered radicals, with glucosamine and N-acetyl glucosamine much less effective. The results suggest that administration of low molecular weight chitosans may inhibit neutrophil activation and oxidation of serum albumin commonly observed in patients undergoing hemodialysis, resulting in reduction of oxidative stress associated with uremia.  相似文献   

20.
In the present research, the binding properties of diazinon (DZN), as an organophosphorus herbicide, to human serum albumin (HSA) were investigated using combination of spectroscopic, electrochemistry, and molecular modeling techniques. Changes in the UV–Vis and FT-IR spectra were observed upon ligand binding along with a significant degree of tryptophan fluorescence quenching on complex formation. The obtained results from spectroscopic and electrochemistry experiments along with the computational studies suggest that DZN binds to residues located in subdomains IIA of HSA with binding constant about 1410.9 M?1 at 300 K. From the thermodynamic parameters calculated according to the van’t Hoff equation, the enthalpy change ΔH° and entropy change ΔS° were found to be ?16.695 and 0.116 KJ/mol K, respectively. The primary binding pattern is determined by hydrophobic interaction and hydrogen binding occurring in so-called site I of HSA. DZN could slightly alter the secondary structure of HSA. All of experimental results are supported by computational techniques such as docking and molecular dynamics simulation using a HSA crystal model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号