首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The structural and dynamic consequence of alterations in membrane lipid composition (specifically cholesterol) in neuronal membranes is poorly understood. Previous work from our laboratory has established bovine hippocampal membranes as a convenient natural source for studying neuronal receptors. In this paper, we have explored the role of cholesterol and proteins in the dynamics and heterogeneity of bovine hippocampal membranes using fluorescence lifetime distribution analysis of the environment-sensitive fluorescent probe Nile Red incorporated into such membranes by the maximum entropy method (MEM), and time-resolved fluorescence anisotropy measurements. The peak position and the width of the lifetime distribution of Nile Red show a progressive reduction with increasing cholesterol depletion from native hippocampal membranes indicating that the extent of heterogeneity decreases with decrease in membrane cholesterol content. This is accompanied by a concomitant decrease of the fluorescence anisotropy and rotational correlation time. Our results point out that the microenvironment experienced by Nile Red is relatively insensitive to the presence of proteins in hippocampal membranes. Interestingly, Nile Red lifetime distribution in liposomes of lipid extracts is similar to that of native membranes indicating that proteins do not contribute significantly to the high level of heterogeneity observed in native membranes. These results could be relevant in understanding the neuronal diseases characterized by defective membrane lipid metabolism.  相似文献   

2.
Previous work from our laboratory has established bovine hippocampal membranes as a convenient natural source for studying neuronal receptors such as the G-protein coupled serotonin1A receptor. In this paper, we have explored the organization and dynamics of bovine hippocampal membranes using environment-sensitive and differentially localized fluorescent probes NBD-PE and NBD-cholesterol, utilizing wavelength-selective and time-resolved fluorescence measurements. The NBD group in NBD-PE is localized at the membrane interface while in NBD-cholesterol it is localized deeper in the membrane. Our results show that native hippocampal membranes offer considerable motional restriction as evidenced from red edge excitation shift of NBD probes. However, this effect progressively decreases with increasing cholesterol depletion in the case of NBD-cholesterol, possibly indicating a reduction in membrane heterogeneity. In contrast, REES of NBD-PE in hippocampal membranes does not show any significant change upon cholesterol depletion indicating relative lack of sensitivity of the membrane interface to cholesterol depletion. These observations are supported by changes in fluorescence polarization with cholesterol depletion. Taken together, these results imply that the deeper hydrocarbon region of the hippocampal membrane is more sensitive to changes in membrane organization and dynamics due to cholesterol depletion than the interfacial region. The motional restriction in native membranes is maintained even in the absence of proteins. The fluorescence lifetimes of both the NBD probes show slight reduction upon cholesterol depletion indicating a change in micro-environmental polarity possibly due to water penetration. These results are relevant in understanding the complex organization of hippocampal membranes and could have possible functional implications.  相似文献   

3.
Previous work from our laboratory has established bovine hippocampal membranes as a convenient natural source for studying neuronal receptors such as the G-protein coupled serotonin1A receptor. In this paper, we have explored the organization and dynamics of bovine hippocampal membranes using environment-sensitive and differentially localized fluorescent probes NBD-PE and NBD-cholesterol, utilizing wavelength-selective and time-resolved fluorescence measurements. The NBD group in NBD-PE is localized at the membrane interface while in NBD-cholesterol it is localized deeper in the membrane. Our results show that native hippocampal membranes offer considerable motional restriction as evidenced from red edge excitation shift of NBD probes. However, this effect progressively decreases with increasing cholesterol depletion in the case of NBD-cholesterol, possibly indicating a reduction in membrane heterogeneity. In contrast, REES of NBD-PE in hippocampal membranes does not show any significant change upon cholesterol depletion indicating relative lack of sensitivity of the membrane interface to cholesterol depletion. These observations are supported by changes in fluorescence polarization with cholesterol depletion. Taken together, these results imply that the deeper hydrocarbon region of the hippocampal membrane is more sensitive to changes in membrane organization and dynamics due to cholesterol depletion than the interfacial region. The motional restriction in native membranes is maintained even in the absence of proteins. The fluorescence lifetimes of both the NBD probes show slight reduction upon cholesterol depletion indicating a change in micro-environmental polarity possibly due to water penetration. These results are relevant in understanding the complex organization of hippocampal membranes and could have possible functional implications.  相似文献   

4.
Cholesterol is an abundant lipid of mammalian membranes and plays a crucial role in membrane organization, dynamics, function and sorting. The role of cholesterol in membrane organization has been a subject of intense investigation that has largely been carried out in model membrane systems. An extension of these studies in natural membranes, more importantly in neuronal membranes, is important to establish a relationship between disease states and changes in membrane physical properties resulting from an alteration in lipid composition. We have monitored the lateral diffusion of lipid probes, DiIC(18)(3) and FAST DiI which are similar in their intrinsic fluorescence properties but differ in their structure, in native and cholesterol-depleted hippocampal membranes using the fluorescence recovery after photobleaching (FRAP) approach. Our results show that the mobility of these probes is in general higher in hippocampal membranes depleted of cholesterol. Interestingly, the increase in mobility of these probes does not linearly correlate with the extent of cholesterol depletion. These results assume significance in the light of recent reports on the requirement of cholesterol to support the function of the G-protein coupled serotonin(1A) receptor present endogenously in hippocampal membranes.  相似文献   

5.
The structural and dynamic consequence of alterations in membrane lipid composition (specifically cholesterol) in neuronal membranes is poorly understood. Previous work from our laboratory has established bovine hippocampal membranes as a convenient natural source for studying neuronal receptors. In this paper, we have explored the role of cholesterol and proteins in the dynamics and heterogeneity of bovine hippocampal membranes using fluorescence lifetime distribution analysis of the environment-sensitive fluorescent probe Nile Red incorporated into such membranes by the maximum entropy method (MEM), and time-resolved fluorescence anisotropy measurements. The peak position and the width of the lifetime distribution of Nile Red show a progressive reduction with increasing cholesterol depletion from native hippocampal membranes indicating that the extent of heterogeneity decreases with decrease in membrane cholesterol content. This is accompanied by a concomitant decrease of the fluorescence anisotropy and rotational correlation time. Our results point out that the microenvironment experienced by Nile Red is relatively insensitive to the presence of proteins in hippocampal membranes. Interestingly, Nile Red lifetime distribution in liposomes of lipid extracts is similar to that of native membranes indicating that proteins do not contribute significantly to the high level of heterogeneity observed in native membranes. These results could be relevant in understanding the neuronal diseases characterized by defective membrane lipid metabolism.  相似文献   

6.
Laurdan is a fluorescent probe that detects changes in membrane phase properties through its sensitivity to the polarity of its environment in the bilayer. Variations in membrane water content cause shifts in the laurdan emission spectrum, which are quantified by calculating the generalized polarization (GP). We tested whether laurdan fluorescence could be used to distinguish differences in phospholipid order from changes in membrane fluidity by examining the temperature dependence of laurdan GP and fluorescence anisotropy in dipalmitoylphosphatidylcholine (DPPC) vesicles. The phase transition from the solid ordered phase to the liquid disordered phase was observed as a decrease in laurdan GP values from 0.7 to −0.14 and a reduction in anisotropy from 0.25 to 0.12. Inclusion of various amounts of cholesterol in the membranes to generate a liquid ordered phase caused an increase in the apparent melting temperature detected by laurdan GP. In contrast, cholesterol decreased the apparent melting temperature estimated from anisotropy measurements. Based on these results, it appeared that laurdan anisotropy detected changes in membrane fluidity while laurdan GP sensed changes in phospholipid order. Thus, the same fluorescent probe can be used to distinguish effects of perturbations on membrane order and fluidity by comparing the results of fluorescence emission and anisotropy measurements.  相似文献   

7.
Cholesterol is a unique molecule in terms of high level of in-built stringency, fine tuned by natural evolution for its ability to optimize physical properties of higher eukaryotic cell membranes in relation to biological functions. We previously demonstrated the requirement of membrane cholesterol in maintaining the ligand binding activity of the hippocampal serotonin1A receptor. In order to test the molecular stringency of the requirement of cholesterol, we depleted cholesterol from native hippocampal membranes followed by replenishment with desmosterol. Desmosterol is an immediate biosynthetic precursor of cholesterol in the Bloch pathway differing only in a double bond at the 24th position in the alkyl side chain. Our results show that replenishment with desmosterol does not restore ligand binding activity of the serotonin1A receptor although replenishment with cholesterol led to significant recovery of ligand binding. This is in spite of similar membrane organization (order) in these membranes, as monitored by fluorescence anisotropy measurements. The requirement for restoration of ligand binding activity therefore appears to be more stringent than the requirement for the recovery of overall membrane order. These novel results have potential implications in understanding the interaction of membrane lipids with this important neuronal receptor in diseases such as desmosterolosis.  相似文献   

8.
Biophysical studies of fluorescence anisotropy of DPH and Laurdan generalized polarization were performed in plasma membranes (PM) isolated from control and cholesterol-depleted HEK293 cells stably expressing pertussis toxin (PTX)-insensitive DOR-Gi1α (Cys351-Ile351) fusion protein. PM isolated from control, PTX-untreated, cells were compared with PM isolated from PTX-treated cells. Results from both types of PM indicated that i) hydrophobic membrane interior was made more accessible to water molecules and more chaotically organized in cholesterol-depleted samples, ii) cholesterol depletion resulted in an overall increase in surface area of membrane, membrane fluidity, and mobility of its constituents. Analysis of DOR-Gi1α coupling in PTX-treated and PTX-untreated cells indicated that cholesterol depletion did not alter the agonist binding site of DOR (Bmax and Kd) but the ability of DOR agonist DADLE to activate G proteins was markedly impaired. In PTX-untreated membranes, EC50 for DADLE-stimulated [35S]GTPγS binding was shifted by one order of magnitude to the right: from 4.3±1.2×10(-9) M to 2.2±1.3×10(-8) M in control and cholesterol-depleted membrane samples, respectively. In PTX-treated membranes, EC50 was shifted from 4.5±1.1×10(-9) M to 2.8±1.4×10(-8) M. In summary, the perturbation of optimum PM organization by cholesterol depletion deteriorates functional coupling of DOR to covalently bound Gi1α as well as endogenously expressed PTX-sensitive G proteins of Gi/Go family while receptor ligand binding site is unchanged. The biophysical state of hydrophobic plasma (cell) membrane interior should be regarded as regulatory factor of DOR-signaling cascade.  相似文献   

9.
The fluorescence generalized polarization (GP) of 2-dimethylamino-6-lauroylnaphthalene (Laurdan) reveals different effects of cholesterol on the phase behavior of phospholipid bilayers. Phospholipid vesicles composed of gel, liquid-crystalline, and coexisting domains of the two phases have been studied at temperatures from 1 to 65 degrees C, without cholesterol and with cholesterol concentrations of 3-50 mol %. Laurdan GP measurements show the general effect of cholesterol of increasing the molecular dynamics of the gel and of decreasing the molecular dynamics of the liquid-crystalline phase. In the liquid-crystalline phase, the increased order yields Laurdan GP values close to those obtained in the gel phase. At cholesterol concentrations > 15 mol % a phase transition cannot be detected. Using the wavelength dependence of the excitation and emission GP spectra we determine that differences between the two phospholipid phases cannot be detected. In particular, in vesicles composed of coexisting gel and liquid-crystalline phases the GP wavelength dependence characteristic of coexisting domains cannot be observed at cholesterol concentrations > or = 15 mol %. Cholesterol causes the decrease in both the polarity and the dipolar relaxation effects on the neighborhood of the fluorescent naphthalene moiety of Laurdan. Probably because of a cholesterol-induced increase in the bilayer packing, these effects do not occur continuously with the increase of cholesterol concentration in the bilayer. Cholesterol concentrations inducing higher Laurdan GP values have been determined at about 5, 10, 15, 30, and 45 mol % with respect to phospholipids. We propose that the formation of ordered molecular microdomains at critical cholesterol concentrations can explain the occurrence of the observed discontinuities.  相似文献   

10.
The thermotropic behavior of intact bacterial membranes and vesicles prepared from total and polar lipids isolated from Bacillus subtilis cultures grown at 37 degrees C in normal (LB) and hyperosmotic (LBN) conditions was studied using 1,6-diphenyl-1,3,5-hexatriene (DPH), 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate (TMA-DPH), and 2-diethylamino-6-lauroyl-naphthalene (Laurdan) as fluorescent probes. No phase transition of bulk lipids was observed in these preparations at the range of temperature studied. The anisotropy values (r(s)) for DPH and TMA-DPH in purified membranes showed significant differences between the LB and LBN conditions, suggesting that there was an increase in membrane packing during the adaptation to osmotic stress. Furthermore, generalized polarization (GP) parameters for Laurdan indicated small but significant changes in water relaxation at the membrane hydrophobic/hydrophilic interface. Membrane preparations showed r(s) higher values than those of lipid vesicles and a higher temperature dependence of the Laurdan GP parameter. This fact indicates that membrane proteins increase the lipid packing and keep the membrane more sensitive to temperature changes.  相似文献   

11.
The function of membrane receptors in the nervous system depends on physicochemical characteristics of neuronal membranes such as membrane order and phase. In this work, we have monitored the changes in hippocampal membrane order and related parameters by cholesterol and protein content utilizing a Nile Red-based phase-sensitive fluorescent membrane probe NR12S. Since alteration of membrane cholesterol is often associated with membrane phase change, the phase-sensitive nature of NR12S fluorescence becomes useful in these experiments. Our results show that fluorescence spectroscopic parameters such as emission maximum, anisotropy, and lifetime of NR12S display characteristic dependence on membrane cholesterol content. Interestingly, cholesterol-dependent red edge excitation shift is displayed by NR12S under these conditions. Hippocampal membranes exhibited reduction in liquid-ordered phase upon cholesterol depletion. These results provide insight into changes in hippocampal membrane order in the overall context of cholesterol and protein modulation.  相似文献   

12.
The serotonin1A receptor is the most extensively studied member of the family of seven transmembrane domain G-protein coupled serotonin receptors. Serotonergic signaling appears to play a key role in the generation and modulation of various cognitive and behavioral functions such as sleep, mood, pain, addiction, locomotion, sexual activity, depression, anxiety, alcohol abuse, aggression and learning. Since a significant portion of the protein lies embedded in the membrane and the ligand-binding pocket is defined by the transmembrane stretches in such receptors, membrane composition and organization represent a crucial parameter in the structure-function analysis of G-protein coupled receptors. In this paper, we have monitored the role of membrane cholesterol in the ligand-binding function of the hippocampal serotonin1A receptor. Our results demonstrate that the reduction of membrane cholesterol significantly attenuates the antagonist-binding function of the serotonin1A receptor. Based on prior pharmacological knowledge regarding the requirements for the antagonist to bind the receptor, our results indicate that membrane cholesterol modulates receptor function independently of its ability to interact with G-proteins. These effects on ligand-binding function of the receptor are predominantly reversed upon cholesterol-replenishment of cholesterol-depleted membranes. When viewed in the light of our earlier results on the effect of cholesterol depletion on the serotonin1A receptor/G-protein interaction, these results comprehensively demonstrate the importance of cholesterol in the serotonin1A receptor function and form the basis for understanding lipid-protein interactions involving this important neuronal receptor.  相似文献   

13.
Cholesterol is an essential constituent of eukaryotic membranes and plays a crucial role in membrane organization, dynamics, function, and sorting. It is often found distributed non-randomly in domains or pools in biological and model membranes and is thought to contribute to a segregated distribution of membrane constituents. Signal transduction events mediated by seven transmembrane domain G-protein coupled receptors (GPCRs) are the primary means by which cells communicate with and respond to their external environment. We analyzed the role of cholesterol in the plasma membrane organization of the G-protein coupled serotonin1A receptor by fluorescence recovery after photobleaching (FRAP) measurements with varying bleach spot sizes. Our results show that lateral diffusion parameters of serotonin1A receptors in normal cells are consistent with models describing diffusion of molecules in a homogenous membrane. Interestingly, these characteristics are altered in cholesterol-depleted cells in a manner that is consistent with dynamic confinement of serotonin1A receptors in the plasma membrane. Importantly, analysis of ligand binding and downstream signaling of the serotonin1A receptor suggests that receptor function is affected in a significantly different manner when intact cells or isolated membranes are depleted of cholesterol. These results assume significance in the context of interpreting effects of cholesterol depletion on diffusion characteristics of membrane proteins in particular, and cholesterol-dependent cellular processes in general.  相似文献   

14.
We have monitored the ligand binding of the bovine hippocampal 5-HT1A receptor following treatment with the sterol-binding antifungal antibiotic nystatin. Nystatin considerably inhibits the specific binding of the antagonist to 5-HT1A receptors in a concentration-dependent manner. However, the specific agonist binding does not show significant changes. Fluorescence polarization measurements of membrane probes incorporated at different locations in the membrane revealed a substantial decrease in the membrane order in the interior of the bilayer. Experiments with cholesterol-depleted membranes indicate that the action of nystatin is mediated through membrane cholesterol. These results represent the first report on the effect of a cholesterol-perturbing agent on the ligand-binding activity of this important neurotransmitter receptor.  相似文献   

15.
Cholesterol is known to affect the activity of membrane-bound enzymes, including Na(+)/K(+)-ATPase. To gain insight into the mechanism of cholesterol's effect, we have used various hydrophobic fluorescent probes which insert into different regions of the membrane bilayer and report on the degree of hydration of their environment. Specifially, we have measured the generalized polarization of Laurdan and the lifetime of DPH and derivatives of DPH inserted into membranes from pig kidneys enriched in Na(+)/K(+)-ATPase. Spectral measurements were also carried out on these membranes after modification of their cholesterol content. The generalized polarization of Laurdan increased with increasing cholesterol, showing an abrupt modification at the native cholesterol content. The fluorescence lifetimes of DPH and the DPH derivatives were analyzed using a distribution model. The center value of these lifetime distributions and their widths also changed with increasing cholesterol. One DPH derivative, DPH-PC, showed a minimum value for the lifetime center at the native cholesterol concentration, whereas the other derivatives showed a maximum value for the lifetime center at that cholesterol concentration. DPH-PC is known to sense the protein-lipid interface, whereas the other derivatives sense the bulk lipid phase. These data suggest that hydration at the protein-lipid interface is maximal at the native cholesterol concentration as is the enzymatic activity. Hydration at the protein-lipid interface is therefore proposed to be required for activity. These results are in agreement with current models of membrane dynamics and thermodynamics of protein function.  相似文献   

16.
Detection of the fluorescent properties of Laurdan has been proven to be an efficient tool to investigate membrane packing and ordered lipid phases in model membranes and living cells. Traditionally the spectral shift of Laurdan’s emission from blue in the ordered lipid phase of the membrane (more rigid) toward green in the disordered lipid phase (more fluid) is quantified by the generalized polarization function. Here, we investigate the fluorescence lifetime of Laurdan at two different emission wavelengths and find that when the dipolar relaxation of Laurdan’s emission is spectrally isolated, analysis of the fluorescence decay can distinguish changes in membrane fluidity from changes in cholesterol content. Using the phasor representation to analyze changes in Laurdan’s fluorescence lifetime we obtain two different phasor trajectories for changes in polarity versus changes in cholesterol content. This gives us the ability to resolve in vivo membranes with different properties such as water content and cholesterol content and thus perform a more comprehensive analysis of cell membrane heterogeneity. We demonstrate this analysis in NIH3T3 cells using Laurdan as a biosensor to monitor changes in the membrane water content during cell migration.  相似文献   

17.
Xylooligosaccharides (XOS) are non-digestible carbohydrate prebiotics that beneficially affect the host by selective stimulation of specific bacteria in the gastro-intestinal tract. The impact of XOS on gastrointestinal microflora and blood lipids is well known but the exact mechanism of action on liver membranes is still unclear. The organization of membrane lipids in domains is known to be important for the proper functioning of various receptors and mechanisms triggering cell signaling. In this study the influence of XOS-enriched diet on the lipid bilayer structure of rat liver plasma membrane was investigated. XOS intake caused a slight decrease of the fluidity of lipid extracts from liver plasma membranes compared to the controls. This observation was based on the increased generalized polarization (GP) and blue shifted emission spectra of Laurdan. The elevated amount of membrane sphingomyelin may be one possible reason for the reported effects. The micron-scale phase separation of the lipid extracts was also investigated by fluorescence microscopy. A different temperature of phase separation and domain pattern was observed in plasma membrane lipid extracts from XOS-fed animals. We presume that it could be assigned to the altered lipid composition of the membrane bilayer, in particular to the changes in the sphingomyelin/cholesterol ratio. All observed alterations are discussed in the light of the impact of XOS on human health and physiology.  相似文献   

18.
The serotonin(1A) (5-HT(1A)) receptor is an important member of the superfamily of seven-transmembrane domain G-protein-coupled receptors. We have examined the modulatory role of cholesterol on the ligand binding activity and G-protein coupling of the bovine hippocampal 5-HT(1A) receptor by depleting cholesterol from native membranes using methyl-beta-cyclodextrin (MbetaCD). Removal of cholesterol from bovine hippocampal membranes using varying concentrations of MbetaCD results in a concentration-dependent reduction in specific binding of the agonist 8-OH-DPAT to 5-HT(1A) receptors. This is accompanied by alterations in binding affinity and sites obtained from analysis of binding data. Importantly, cholesterol depletion affected G-protein-coupling of the receptor as monitored by the GTP-gamma-S assay. The concomitant changes in membrane order were reported by changes in fluorescence polarization of membrane probes such as DPH and TMA-DPH, which are incorporated at different locations (depths) in the membrane. Replenishment of membranes with cholesterol led to recovery of ligand binding activity as well as membrane order to a considerable extent. Our results provide evidence, for the first time, that cholesterol is necessary for ligand binding and G-protein coupling of this important neurotransmitter receptor. These results could have significant implications in understanding the influence of the membrane lipid environment on the activity and signal transduction of other G-protein-coupled transmembrane receptors.  相似文献   

19.
The serotonin1A (5-HT1A) receptor is an important member of the superfamily of seven transmembrane domain G-protein-coupled receptors. We have examined the modulatory role of cholesterol on the ligand binding of the bovine hippocampal 5-HT1A receptor by cholesterol complexation in native membranes using digitonin. Complexation of cholesterol from bovine hippocampal membranes using digitonin results in a concentration-dependent reduction in specific binding of the agonist 8-OH-DPAT and antagonist p-MPPF to 5-HT1A receptors. The corresponding changes in membrane order were monitored by analysis of fluorescence polarization data of the membrane depth-specific probes, DPH and TMA-DPH. Taken together, our results point out the important role of membrane cholesterol in maintaining the function of the 5-HT1A receptor. An important aspect of these results is that non-availability of free cholesterol in the membrane due to complexation with digitonin rather than physical depletion is sufficient to significantly reduce the 5-HT1A receptor function. These results provide a comprehensive understanding of the effects of the sterol-complexing agent digitonin in particular, and the role of membrane cholesterol in general, on the 5-HT1A receptor function.  相似文献   

20.
Quercetin (QCT) is an important bioactive natural compound found in numerous edible plants. Since the lipid bilayer represents an essential compound of the cell membrane, QCT's direct interaction with this structure is of great interest. Therefore, we proposed to study the effects of QCT on DMPC liposomes containing cholesterol (Chol), and for this purpose Laurdan fluorescence was used. As a fluorescent probe, Laurdan is able to detect changes in membrane phase properties. When incorporated in lipid bilayers, Laurdan emits from two different excited states, a non-relaxed one when the bilayer packing is tight and a relaxed state when the bilayer packing is loose. The main tool for quantifying QCT's effects on phospholipid membranes containing Chol has been the analysis, the decomposition of Laurdan emission spectra in sums of two Gaussian functions on energy. This kind of approach has allowed good analysis of the balance between the two emitting states of Laurdan. Our results show that both Laurdan emission states are present to different extents in a wide temperature range for DMPC liposomes with Chol. QCT is decreasing the phase transition temperature in pure DMPC liposomes as proved by generalized polarization (GP) values. QCT also quenches Laurdan fluorescence, depending on the temperature and the presence of Chol in the membrane. Stern-Volmer constants were calculated for different lipid membrane compositions, and the conclusion was that the relaxed state favors the nonradiative transitions of the fluorophore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号