首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human polymorphonuclear leukocytes (PMNs) express β1 integrins that mediate adhesion to extracellular matrix proteins following stimulation with agonists that induce an increase in intracellular calcium. The purpose of these studies was to determine the contribution made by alterations in intracellular calcium ([Ca++]i) to inside-out activation of β1 integrins using dimethyl sulfoxide (DMSO)-differentiated granulocytic HL60 cells as a model of human PMNs. Activation of β1 integrins was determined by measuring the expression of an activation-dependent epitope on the β1 subunit that is recognized by monoclonal antibody (mAb) 15/7. Exposure of granulocytic HL60 cells to calcium ionophore ionomycin (800 nM) alone did not increase the binding of mAb 15/7 to the cell surface, nor did it increase β1 integrin-mediated adhesion of the cells to fibronectin. Similarly, exposure of the cells to the direct protein kinase C (PKC) activator, dioctanoylglycerol (di-C8) at 100 μM, neither increased binding of mAb 15/7 to these cells nor adhesion to fibronectin. Simultaneous addition of di-C8 and ionomycin, however, caused a significant increase in the expression of the 15/7 epitope and cell adhesion, suggesting synergy between elevating [Ca++]i and stimulating PKC in β1 integrin activation. Chelation of [Ca++]i with Quin-2 and EGTA reduced both basal (unstimulated) expression of the 15/7 epitope and basal adhesion of granulocytic HL60 cells to fibronectin. In addition, chelation of [Ca++]i caused a significant decrease in 15/7 binding and adhesion stimulated by low (1 ng/ml) concentrations of phorbol myristate acetate (PMA). The inhibitory effect of [Ca++]i chelation on β1 integrin activation was reversed by repleting [Ca++]i with ionomycin in a Ca++-containing buffer, or by the addition of higher concentrations of PMA (10 ng/ml). These data suggest a role for [Ca++]i in inside-out activation of β1 integrins, probably through a synergistic effect with PKC activation. J. Cell. Physiol. 175:193–202, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
Summary Azotobacter vinelandii strain E was cultivated in PO 4 -- limited continuous cultures. The influence of growth medium Ca++ levels on dry cell weight and alginate production and composition was examined. Low Ca++ concentrations (<0.34 mM) were observed to inhibit growth, particularly in cultures maintained at a high dilution rate (D=0.32 hr-1). In cultures with high levels of polysaccharide (>1.0 g l-1), the production of alginate with a predominantly heteropolymeric structure was favoured by increasing Ca++ levels. In cultures containing less polysaccharide (<1.0 g l-1) increasing Ca++ levels (0.068–0.34 mM Ca++) resulted in the production of alginates high in polyguluronate. With further increases in Ca++ levels (0.34–2.72 mM Ca++) synthesis of alginates with a more heteropolymeric structure occurred. It is proposed that extracellular epimerisation of alginate is influenced by intermolecular associations, the formation of which is mediated by both Ca++ concentration and the concentration of the polymer itself.  相似文献   

3.
Employing the metallochromic dye murexide and by monitoring the uptake of radiolabelled calcium, photoreversible calcium fluxes were measured in wheat leaf protoplast suspensions. Results obtained by both methods were identical — red light promoted and subsequent far-red irradiation reversed an influx of Ca++ ions into the protoplasts. These findings imply phytochrome regulation of Ca++ fluxes across the plasma membrane. The influx of Ca++ stimulated by 2 min red irradiation could be maintained in total darkness for the initial 16–18 min after illumination, after which a 6–8 min efflux process was triggered and the basal Ca++ level restored. Verapamil, a calcium channel blocker, inhibited the red-promoted influx, whereas the far-red mediated efflux could be checked by the use of the ATPase inhibitor vanadate, and also by the calmodulin antagonist chlorpromazine, thus suggesting a role of ion channels and pumps in phytochrome-controlled Ca++ fluxes. The possible involvement of phosphoinositides in phytochrome-modulated calcium fluxes was also investigated.Abbreviations A difference in absorbance - CPZ chlorpromazine - FR far-red (light) - MX murexide - PI phosphatidylinositol - PIP2 phosphatidylinositol 4, 5-bisphosphate - PIPES piperazine-N,N-bis[2-ethanesulfonic acid] - POPOP 1, 4-bis [2-(5-phenyl-1, 3-oxazolyl)]-benzene - PPO 2, 5-diphenyl-1, 3-oxazole - R red (light) - SOV sodium orthovanadate  相似文献   

4.

Background

Sevoflurane has been demonstrated to vasodilate the foeto-placental vasculature. We aimed to determine the contribution of modulation of potassium and calcium channel function to the vasodilatory effect of sevoflurane in isolated human chorionic plate arterial rings.

Methods

Quadruplicate ex vivo human chorionic plate arterial rings were used in all studies. Series 1 and 2 examined the role of the K+ channel in sevoflurane-mediated vasodilation. Separate experiments examined whether tetraethylammonium, which blocks large conductance calcium activated K+ (KCa++) channels (Series 1A+B) or glibenclamide, which blocks the ATP sensitive K+ (KATP) channel (Series 2), modulated sevoflurane-mediated vasodilation. Series 3 – 5 examined the role of the Ca++ channel in sevoflurane induced vasodilation. Separate experiments examined whether verapamil, which blocks the sarcolemmal voltage-operated Ca++ channel (Series 3), SK&F 96365 an inhibitor of sarcolemmal voltage-independent Ca++ channels (Series 4A+B), or ryanodine an inhibitor of the sarcoplasmic reticulum Ca++ channel (Series 5A+B), modulated sevoflurane-mediated vasodilation.

Results

Sevoflurane produced dose dependent vasodilatation of chorionic plate arterial rings in all studies. Prior blockade of the KCa++ and KATP channels augmented the vasodilator effects of sevoflurane. Furthermore, exposure of rings to sevoflurane in advance of TEA occluded the effects of TEA. Taken together, these findings suggest that sevoflurane blocks K+ channels. Blockade of the voltage-operated Ca++channels inhibited the vasodilator effects of sevoflurane. In contrast, blockade of the voltage-independent and sarcoplasmic reticulum Ca++channels did not alter sevoflurane vasodilation.

Conclusion

Sevoflurane appears to block chorionic arterial KCa++ and KATP channels. Sevoflurane also blocks voltage-operated calcium channels, and exerts a net vasodilatory effect in the in vitro foeto-placental circulation.  相似文献   

5.
Binding of [65Zn++] and [45Ca++] to the acetylcholine (ACh)-receptor, purified from the Torpedo electric organ, was studied by equilibrium dialysis. Whereas [65Zn++] bound to 56 nmoles of sites per mg protein with a dissociation constant of 2.5 × 10−6M, no binding of [45Ca++] at concentrations up to 10−3M could be detected with this method. However, the binding of [acetyl-3H]choline to the receptor was blocked equally by very high Zn++ or Ca++ concentrations, and the Ki for this low affinity binding was 7 × 10−3M. The high affinity binding of [65Zn++] to the receptor was blocked best by Cd++ then Co++ and Mn++, but least by Mg++ and Ca++. When the purified ACh-receptor itself was analyzed for the presence of cations by atomic absorption, it was discovered that 4.7% of its weight was due to bound Ca++ that could not be removed even by extensive dialysis. When Ca++-free solutions (containing 1 mM EDTA) were used during purification, 0.6% of the molecular weight of the receptor was still due to bound Ca++. This was equivalent to 15 moles of Ca++ for each mole of ACh bound at saturation. It is suggested that the source of this Ca++ is endogenous, and that it is tightly bound to the ACh-receptor molecule.  相似文献   

6.
Correlation of the localization of La+++ with its effects on Ca++ exchange in cultured rat heart cells is examined with the use of a recently developed technique. 75% of cellular Ca++ is exchangeable and is completely accounted for by two kinetically defined phases. The rapidly exchangeable phase has a t ½ = 1.15 min and accounts for 1 1 mmoles Ca++/kg wet cells or 43% of the exchangeable Ca++ (cells perfused with [Ca++]o = 1 mM) Phase 2 has a t ½ = 19.2 min and accounts for 1.5 mmoles Ca++/kg wet cells or 57% of the exchangeable Ca++. 0.5 mM [La+++]o displaces 0 52 mmoles Ca++/kg wet cells—all from phase 1—and almost completely abolishes subsequent Ca++ influx and efflux The presence of La+++ in the washout converts the washout pattern to a single phase system with a t ½ = 124 min. The effects upon Ca++ exchange are coincident with abolition of contractile tension but regenerative depolarization of the tissue is maintained Electron microscope localization of the La+++ places it exclusively in the external lamina or basement membrane of the cells. The study indicates that negatively charged sites in the basement membrane play a crucial role in the E-C coupling process in heart muscle  相似文献   

7.

Background  

The development and regression of corpus luteum (CL) is characterized by an intense angiogenesis and angioregression accompanied by luteal tissue and extracellular matrix (ECM) remodelling. Vascular Endothelial Growth Factor (VEGF) is the main regulator of angiogenesis, promoting endothelial cell mitosis and differentiation. After the formation of neovascular tubes, the remodelling of ECM is essential for the correct development of CL, particularly by the action of specific class of proteolytic enzymes known as matrix metalloproteinases (MMPs). During luteal regression, characterized by an apoptotic process and successively by an intense ECM and luteal degradation, the activation of Ca++/Mg++-dependent endonucleases and MMPs activity are required. The levels of expression and activity of VEGF, MMP-2 and -9, and Ca++/Mg++-dependent endonucleases throughout the oestrous cycle and at pregnancy were analyzed.  相似文献   

8.
The control of calcium concentration in the cytoplasm of most cells involves both the influx and efflux of Ca++ from extracellular fluid and the release and uptake of Ca++ from two separate, but interacting intracellular membrane-bound Ca++ stores: (1) the ryanodine receptor-activated calcium store (RyR) and (2) the inositol-trisphosphate (IP3) receptor calcium store (Golovina and Blaustein, 1997, Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science 275, 1643–1648). A more complete understanding of calcium pathways may lead to the development of new strategies to reduce the pathophysiology induced by severe hyperthermia, exercise, hypoxia, and other stresses. This review discusses the fundamental mechanisms involved in the control of Cai, the main regulator of biochemical processes, and ultimately, of physiological responses to moderate and severe physical exercise and stress.  相似文献   

9.
Summary When the mulletMugil capito is transferred to medium lacking Ca++ (either Ca++-free seawater or distilled water) the passive permeability of the gill to Na+ and Cl is increased and the activating effect of external K+ on the Na+ and Cl effluxes in hyposaline media is inhibited. The permeability of the gill increases progressively in proportion to the time of Ca++ deprivation; it declines when Ca++ is added again to the external medium. The active mechanisms for ion excretion are not reversible. At external Ca++ concentrations from 0.1 to 10 mM the Na+ permeability is constant but the activation of Na+ efflux by K+ shows a maximum at a Ca++ concentration of about 1 mM. For activation of Cl efflux external bicarbonate must be present, in addition to Ca++, suggesting the existence of a Cl/HCO 3 exchange. The mechanism by which Ca++ controls the passive branchial permeability is thus probably different from that involved in K+ activation of ion excretion. The Ca++ effect on the K+ sensitive ionic excretory mechanisms seems to be related to intracellular Ca++ movements. Thus, on the one hand, substances such as Ruthenium Red and La+++ which both inhibit Ca++ exchange, in media containing Ca++ and HCO 3 also inhibit K+ activation of Na+ and Cl effluxes; on the other hand, the ionophore A 23187, a stimulator of Ca++ exchange, when added to these media, activates the Na+ and Cl effluxes; its maximal effect on the Na+ flux occurs at 2 mM Ca++.Abbreviations ASW-Ca artificial seawater minus calcium - DW deionised water - DWCa deionised water with 1 mM Ca++ added - DWCaHCO 3 DW with calcium plus bicarbonate - DWHCO 3 DW with 1 mM sodium bicarbonate added - FW freshwater (tap water) - FWK freshwater with K+ added - P. D. potential difference - SW seawater The experiments reported in this paper were done with Jean Maetz who tragically died in August 1977. It is the last report about several years of friendly collaboration  相似文献   

10.
Both prokaryotes and eukaryotes require Ca++ for a variety of cellular functions. Intraerythrocytic plasmodia, however, exist within a cell ordinarily impermeable to external Ca++. Our investigations of Ca++ homeostasis in murine Plasmodium berghei reveal that (1) infected erythrocytes contain 10 – 15 times as much Ca++ as do uninfected red cells, (2) these large amounts of Ca++ are located almost exclusively within the parasite, and (3) the parasite obtains at least a portion of this Ca++ through causing increased permeability of the host cell membrane to external Ca++.  相似文献   

11.
During intracellular iontophoretic injection of Ca++ into Limulus ventral photoreceptor cells, there is a progressive diminution of the light response. Following Ca++ injection, the size of the light response slowly recovers. Similarly, there is a progressive diminution of the light response during intracellular injection of Na+ and recovery after the injection is stopped. The rate of diminution during Na+ injection is greater for higher [Ca++]out. In solutions which contain 0.1 mM Ca++, there is nearly no progressive decrease in the size of the light response during Na+ injection. Intracellular injections of Li+ or K+ do not progressively decrease the size of the light response. We propose that an increase in [Na+]in leads to an increase in [Ca++]in and that an increase in [Ca++]in by any means leads to a reduction in responsiveness to light.  相似文献   

12.
Primary cultures of bone cells and skin fibroblasts were examined for their Ca++ content, intracellular distribution and Ca++ fluxes. Kinetic analysis of 45Ca++ efflux curves indicated the presence of three exchangeable Ca++ compartments which turned over at different rates: a “very fast turnover” (S1), a “fast turnover” (S2), and a “slow turnover” Ca++ pool (S3). S1 was taken to represent extracellular membrane-bound Ca++, S2 represented cytosolic Ca++, and S3 was taken to represent Ca++ sequestered in some intracellular organelles, probably the mitochondria. Bone cells contained about twice the amount of Ca++ as compared with cultured fibroblasts. Most of this extra Ca++ was localized in the “slow turnover” intracellular Ca++ pool (S3). Serum activation caused the following changes in the amount, distribution, and fluxes of Ca++: (1) In both types of cells serum caused an increase in the amount of Ca++ in the “very fast turnover” Ca++ pool, and an increase in the rate constant of 45Ca++ efflux from this pool, indicating a decrease in the strength of Ca++ binding to ligands on cell membranes. (2) In fibroblasts, serum activation also caused a marked decrease in the content of Ca++ in the “slow turnover” Ca++ pool (S3), an increase in the rates of Ca++ efflux from the cells to the medium, and from S3 to S2, as well as a decrease in the rate of influx into S3. (3) In bone cells the amount of Ca++ in S3 remained high in “serum activated” cells, the rate of efflux from S3 to S2 increased, and the rate of influx into S3 also increased. The rate of efflux from the cells to the medium did not change. The results suggest specific properties of bone cells with regard to cell Ca++ presumably connected with their differentiation. Following serum activation we investigated the time course of changes in the amount of exchangeable Ca++ in bone cells and fibroblasts, in parallel with measurements of 3H-thymidine incorporation and cell numbers. Serum activation caused a rapid decrease in the content of cell Ca++ which was followed by a biphasic increase lasting until cell division.  相似文献   

13.
The surface charge density (σ′0) and the binding constant of Ca++ with charged groups on the outer surface of the membrane (KCa) were calculated from experimentally determined values of the shift of the current-voltage characteristic curves of calcium currents in the membrane of rat spinal ganglion neurons: σ′0 = 0.15 ± 0.05 e/nm2 and KCa = 70 ± 10 liters/mole. Using a three-barrier model the energy profile of the calcium channel of the membrane of these neurons was calculated for Ca++, Ba++, Cd++, Mn++, Co++, and verapamil. The calcium current was shown to be determined mainly by the depth of the potential hole corresponding to the outer binding site of the calcium channel. It is concluded from the results that the outer binding site of the calcium channel contains only one carboxyl group.  相似文献   

14.
At pH 6.4, rat kidney mitochondrial kynurenine aminotransferase activity is enhanced several-fold by the addition of CaCl2, apparently because Ca++ facilitates the translocation of α-ketoglutarate, one of the substrates, across the mitochondrial inner membrane. Chloride salts or Mg++, Mn++, Na+, K+, and NH4+ did not have this effect. At pH 6.8, the enzyme activity was near maximal even without added Ca++ but was strongly depressed by either of two calcium chelating agents, quinolinic acid (Q.A.) and ethyleneglycol-bis(β-aminoethyl ether)N,N′-tetraacetic acid (EGTA). These observations support the view that Ca++ is involved in regulating kidney mitochondrial translocation of α-ketoglutarate and that the reported interference of polycarboxylate anion translocation by Q.A. in vivo depends on the ability of that agent to chelate Ca++.  相似文献   

15.

Background  

A wide range of stimuli evoke rapid and transient increases in [Ca2+]cyt in plant cells which are transmitted by protein sensors that contain EF-hand motifs. Here, a group of Oryza sativa L. genes encoding calmodulin (CaM) and CaM-like (CML) proteins that do not possess functional domains other than the Ca2+-binding EF-hand motifs was analyzed.  相似文献   

16.

Background  

Ethylene is a widely distributed alkene product which is formed enzymatically (e.g., in plants) or by photochemical reactions (e.g., in the upper oceanic layers from dissolved organic carbon). This gaseous compound was recently found to induce in cells from the marine sponge Suberites domuncula, an increase in intracellular Ca2+ level ([Ca2+]i) and an upregulation of the expression of two genes, the potential ethylene-responsive gene, SDERR, and a Ca2+/calmodulin-dependent protein kinase.  相似文献   

17.
1.  Normal activity in bilateral pairs of heart interneurons, from ganglia 3 or 4, in the medicinal leech (Hirudo medicinalis) is antiphasic due to their reciprocally inhibitory connections. However, Ca+-free Co+-containing salines lead to synchronous oscillations in these neurons.
2.  Internal TEA+ allows expression of full plateaus during Co++ induced oscillations in heart interneurons; these plateaus are not blocked by Cs+. Similar plateaus are also observed with internal TEA+ alone, but under these conditions activity in heart interneurons from ganglia 3 or 4 is antiphasic.
3.  Plateaus in heart interneurons induced by Co++ and internal TEA+ involve a conductance increase.
4.  A voltage-dependent inward current, IP, showing little inactivation, was isolated using single-electrode voltageclamp in heart interneurons. This current is carried at least in part by Na+; the current is reduced when external Na+ is reduced and is carried by Li+ when substituted for Na+.
5.  Calcium channel blockers such as La3+ and Co++ block neither the TEA+ induced plateaus nor IP, suggesting that Na+ is not using Ca++ channels. Moreover, IP is enhanced by Ca++-free Co++-containing salines. Thus, IP is correlated with the TEA+- and Co++-induced plateau behavior.
  相似文献   

18.
Two complementary experimental methods have been used to examine mitogen-induced transmembrane conductances in human B cells using the Daudi cell line as a model for human B cell activation. Spectrofluorometry was used to investigate mitogen-induced changes in [Ca++]i and transmembrane potential. Activation of human B cells with anti-μ antibodies resulted in a biphasic rise in [Ca++]i, the second phase being mediated by the influx of extracellular Ca++. Ca++ influx was inhibited by high [K+]e, suggesting that this influx was transmembrane potential sensitive. Membrane currents of Daudi cells were investigated using voltage clamp techniques. Before mitogenic stimulation, the cells were electrically quiet. Within several minutes of the addition of anti-μ antibodies to the bath solution, inward currents were observed at negative voltages. Whole-cell currents changed instantly with voltage steps and were transmembrane potential sensitive in that at potentials more positive than ?40 mV no currents were detectable. A similar conductance was also activated by the introduction of IP3 into the intracellular solution, suggesting that IP3 generation after surface IgM crosslinking is involved in the activation of this conductance. Both anti-μ and IP3 induced currents were blocked by 1 mM La+++, which is known to block Ca++ channels. These results strongly support the presence of membrane Ca++ channels in human B cells that function in the early stages of activation. Changes in transmembrane potential appear to be important in regulating Ca++ influx. These mechanisms work in concert to regulate the level of [Ca++]i during the early phases of human B cell activation. © 1993 Wiley-Liss, Inc.  相似文献   

19.
Our laboratory has recently reported that intestinal bile acid malabsorption in cystic fibrosis (CF) is a primary mucosal cell defect. Others have suggested that elevated intracellular Ca++ levels in other cell types in CF may represent a common primary dysfunction in Ca++ efflux in these cells. We examined the possibility that intestinal bile acid absorption and Ca++ efflux in mucosal cells may be linked physiologically. Brush border membrane vesicles (BBMV) prepared from guinea pig ileum served as the experimental model to test this hypothesis. Ca++ (2.5×10?3M) present in the incubation medium did not alter the uptake of taurocholic acid (TCA) by BBMV. Also, TCA uptake into BBMV preloaded with Ca++ was not significantly different from that in BBMV not previously loaded with Ca++. Furthermore, with TCA present in the incubation medium, Ca++ efflux from preloaded BBMV was not altered. These data suggest that ileal TCA uptake, as measured by BBMV, is not dependent upon either intra- or extravesicular Ca++. Also, Ca++ efflux from BBMV is unaffected by TCA uptake. Although separate lines of evidence suggest that intestinal bile acid malabsorption and reduced plasma membrane Ca++ flux are primary defects in CF, we conclude that in the normal intestine these functions are independent physiological processes.  相似文献   

20.
Summary Homeostasis of intracellular calcium ([Ca++]i) and pH (pHi) is important in the cell's ability to respond to growth factors, to initiate differentiation and proliferation, and to maintain normal metabolic pathways. Because of the importance of these ions to cellular functions, we investigated the effects of changes of [Ca++]i and pHi on each other in primary cultures of rabbit corneal epithelial cells. Digitized fluorescence imaging was used to measure [Ca++]i with fura-2 and pHi with 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Resting pHi in these cells was 7.37±0.05 (n=20 cells) and resting [Ca++]i was 129±10 nM (n=35 cells) using a nominally bicarbonate-free Krebs Ringer HEPES buffer (KRHB), pH 7.4. On exposure to 20 mM NH4Cl, which rapidly alkalinized cells by 0.45 pH units, an increase in [Ca++]i to 215±14 nM occurred. Pretreatment of the cells with 100 μM verapamil or exposure to 1 mM ethylene bis-(oxyethylenenitrilo)-tetraacetic acid (EGTA) without extracellular calcium before addition of 20 mM NH4Cl did not abolish the calcium increase, suggesting that the source of the calcium transient was from intracellular calcium stores. On removal of NH4Cl or addition of 20 mM sodium lactate, there were minimal changes in calcium even though pHi decreased. Treatment of CE cells with the calcium ionophores, ionomycin and 4-bromo A23187, increased [Ca++]i, but produced a biphasic change in pHi. Initially, there was an acidification of the cytosol, and then an alkalinization of 0.10 to 0.11 pH units above initial values. When [Ca++]i was decreased by treating the cells with 5 mM EGTA and 20 μM ionomycin, pHi decreased by 0.35±0.02 units. We conclude that an increase in pHi leads to an increase in [Ca++]i in rabbit corneal epithelial cells; however, a decrease in pHi leads to minor changes in [Ca++]i. The ability of CE cells to maintain proper calcium homeostasis when pHi is decreased may represent an adaptive mechanism to maintain physiological calcium levels during periods of acidification, which occur during prolonged eye closure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号