首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ericaceous vegetation zone of the unique and highly fragmented afro-alpine environment in the eastern African high mountains is typically dominated by the heather Erica arborea, often in combination with its close relative E. trimera. Both species are shrubs or small trees with tiny seeds, potentially capable of dispersal by wind over long distances. While E. arborea is widely distributed in Africa, the Middle East and Europe, E. trimera is endemic to the afro-alpine region where it is restricted to higher altitudes than E. arborea. We used Amplified Fragment Length Polymorphisms (AFLPs) and variation in non-coding plastid DNA sequences to test whether these two morphologically and ecologically very similar species display similar phylogeographic patterns in the afro-alpine region. We predict that the more high-altitudinal E. trimera shows more distinct genetic structuring than E. arborea, because dispersal of the latter may have been facilitated by formation of interglacial forest bridges between mountains. Based on extensive field sampling in most of the high mountains of Ethiopia and East Africa, we show that the two species are clearly distinct at AFLP and plastid DNA loci. Both showed low levels of overall AFLP diversity, suggesting bottlenecking in small refugial populations during unfavourable climatic periods. However, their genetic structuring and inferred phylogeographic histories were conspicuously different. The more high-altitudinal E. trimera consisted of three to four distinct AFLP groups, which also had different plastid DNA haplotypes and different geographic distributions, suggesting long-term restriction to several refugia (at least one in Ethiopia and two in East Africa). In contrast, E. arborea showed little geographic structuring at AFLP loci and only a single, widespread plastid DNA haplotype, which may suggest recent colonization of the entire study area from a single source population, likely via a combination of gradual expansion via forest bridges and long-distance dispersals. The source population of E. arborea may be situated in (or north of) Ethiopia, which harbours most genetic diversity.  相似文献   

2.
In wide-ranging species, the genetic consequences of range shifts in response to climate change during the Pleistocene can be predicted to differ among different parts of the distribution area. We used amplified fragment length polymorphism data to compare the genetic structure of Arabis alpina, a widespread arctic-alpine and afro-alpine plant, in three distinct parts of its range: the North Atlantic region, which was recolonized after the last ice age, the European Alps, where range shifts were probably primarily altitudinal, and the high mountains of East Africa, where the contemporary mountain top populations result from range contraction. Genetic structure was inferred using clustering analyses and estimates of genetic diversity within and between populations. There was virtually no diversity in the vast North Atlantic region, which was probably recolonized from a single refugial population, possibly located between the Alps and the northern ice sheets. In the European mountains, genetic diversity was high and distinct genetic groups had a patchy and sometimes disjunct distribution. In the African mountains, genetic diversity was high, clearly structured and partially in accordance with a previous chloroplast phylogeography. The fragmented structure in the European and African mountains indicated that A. alpina disperses little among established populations. Occasional long-distance dispersal events were, however, suggested in all regions. The lack of genetic diversity in the north may be explained by leading-edge colonization by this pioneer plant in glacier forelands, closely following the retracting glaciers. Overall, the genetic structure observed corresponded to the expectations based on the environmental history of the different regions.  相似文献   

3.
Arabis alpina is a characteristic plant in arctic-alpine habitats and serves as a classical example to demonstrate biology, ecology and biogeography of arctic-alpine disjuncts. It has a wider distribution than most other arctic-alpine plants, covering all European mountain systems, the Canary Islands, North Africa, the high mountains of East Africa and Ethiopia, the Arabian Peninsula and mountain ranges of Central Asia in Iran and Iraq. Additionally it is found in the northern amphi-Atlantic area including northeastern North America, Greenland, Iceland, Svalbard and northwestern Europe. We used markers from the nuclear (internal transcribed spacer of ribosomal DNA) and chloroplast genome (trnL-F region) to reconstruct its phylogeographic history. Both markers revealed clear phylogeographic structure. We suggest that A. alpina originated in Asia Minor less than 2 million years ago based on synonymous mutation rates of different genes (plastidic matK, nuclear adh and chs). From the Asian ancestral stock one group migrated via the Arabian Peninsula to the East African high mountains. A second group gave rise to all European and northern populations, and also served as source for the northwest African populations. A third group, which is still centred in Asia, migrated independently southwards and came into secondary contact with the East African lineage in Ethiopia, resulting in high genetic diversity in this area. In the Mediterranean regions, the genetic diversity was relatively high with numerous unique haplotypes, but almost without geographic structure. In contrast, the populations in the northern amphi-Atlantic area were extremely depauperate, suggesting very recent (postglacial) expansion into this vast area from the south.  相似文献   

4.
Lobelia giberroa is a giant rosette plant growing in the afro-montane belt of the afro-alpine environment, a unique and little-studied ecosystem occupying the high mountains of eastern Africa. We analysed amplified fragment length polymorphisms (AFLPs) from 11 mountain systems in Ethiopia and Tropical East Africa to infer the phylogeographical history of the species. A total of 191 individuals were investigated from 25 populations. Principal coordinate analysis and population structure analyses revealed three major phylogeographical groups: the Ethiopian mountains and one group on each side of the Rift Valley in Tropical East Africa, respectively: Elgon-Cherangani and Kenya-Aberdare-Kilimanjaro-Meru. Analysis of Molecular Variance showed 55.7% variance among the three groups, suggesting an old divergence. Together with a clear geographical substructure within the main groups, this pattern indicates gradual expansion and supports the montane forest bridge hypothesis, stating that the area occupied by forest was larger and more continuous in previous interglacials and earlier in the present interglacial. Genetic diversity was lower in Ethiopia than in the other two main groups, possibly due to an ancient founder effect when Ethiopia was colonized from the south.  相似文献   

5.
The flora on the afro-alpine sky islands is renowned for extreme fragmentation, representing a unique natural experiment in biogeography. Here we address the roles of isolation and gene flow, in particular across the narrow Rift Valley (the RV barrier) that cuts through the Ethiopian Highlands (EH), and across the vast low-lying landscape that separates EH from the East African mountains (the EH–EA barrier). We inferred the history of two species with different dispersal mechanisms, but with similar geographic ranges and habitats based on Amplified fragment length polymorphisms (AFLPs). Contrary to our predictions, we found that the populations from opposite sides of the RV barrier were less similar than those from opposite sides of the EH–EA barrier, and that only the supposedly short distance-dispersed species (Trifolium cryptopodium) showed a strong signal of secondary gene flow across the RV barrier. In the wind-dispersed Carduus schimperi, we rather found an evidence for the gene flow between differentiated populations inhabiting different EA mountains. Both species harbored little genetic diversity but considerable genetic rarity in several individual mountains, suggesting long-term isolation and bottlenecks during climatically unfavorable periods. Our genetic data corroborate a division of C. schimperi into three subspecies, but with new delimitation of their ranges, and of T. cryptopodium into two intraspecific taxa. Our findings support the idea that stochasticity may play a major role in shaping extremely fragmented ecosystems such as the afro-alpine. After initial colonization of different mountains, periods of isolation may alternate with unpredictable episodes of intermountain gene flow.  相似文献   

6.
This study examined the population genetic structure of the major malaria vector, Anopheles arabiensis mosquitoes, in Ethiopia and Eritrea. Ethiopia and Eritrea have great geographical diversity, with high mountains, rugged plateaus, deep gorges, and rolling plains. The plateau is bisected diagonally by the Great Rift Valley into the Northwestern Highlands and the Southeastern Highlands. Five A. arabiensis populations from the Northwestern Highlands region and two populations from high-altitude sites in the Great Rift Valley were genotyped using six microsatellite markers to estimate the genetic diversity and population genetic structure of A. arabiensis. We found that A. arabiensis populations from the Northwestern Highlands and the Great Rift Valley region showed a similar level of genetic diversity. The genetic differentiation (F(ST)) of the five mosquito populations within the Northwestern Highlands region was 0.038 (P <.001), while the two populations within the Great Rift Valley showed little genetic differentiation (F(ST) = 0.007, P <.01). The degree of genetic differentiation between the Northwestern Highlands region and the Great Rift Valley region was small but statistically significant (F(ST) = 0.017, P <.001). The population genetic structure of A. arabiensis in the study area did not follow the isolation-by-distance model (r(2) = 0.014, P >.05). The low F(ST) estimates for A. arabiensis populations in Ethiopia and Eritrea are consistent with the general population genetic structure of this species in East Africa based on other molecular markers.  相似文献   

7.
Aim Many plants occurring on the isolated mountain peaks of Africa have their closest relatives in very remote areas, even in temperate Europe and Asia. Their biogeographical history is poorly understood. The Afro‐montane element of the primarily Eurasian genus Lychnis is a typical example of such a disjunction. Here, we aim to reconstruct the phylogeny of the Afro‐montane endemics of Lychnis and to infer the history of immigration into Africa and of the subsequent dispersal and speciation. Location The Afro‐montane representatives of Lychnis occur in Ethiopia, Kenya, Tanzania, Uganda, Rwanda, Burundi, the Democratic Republic of Congo, Cameroon, and Nigeria. Methods Silica‐dried plant materials collected in Ethiopia in 2004 as well as herbarium material were used for DNA extractions. We used parsimony analysis of nucleotide data from the rps16 intron and psbE‐petL region in plastids, and the internal transcribed spacer (ITS) and a region spanning exon 18–24 in the second largest subunit of RNA polymerase II (RPB2) from the nucleus. DAPI‐flow cytometry was used to determine relative genome size and to infer polyploidization events. Results Monophyly of the Afro‐montane Lychnis with the Eurasian diploid L. flos‐cuculi resolved as sister was strongly supported by the phylogenetic analyses. The Afro‐montane group was further divided into two strongly supported groups correlated with DNA ploidy levels. The relative genome size was species‐specific except for L. abyssinica, which had two genome‐size variants. Main conclusions Our results demonstrate that the biogeographical history of the Afro‐montane Lychnis has been highly dynamic, including polyploidization and both old and recent long‐distance dispersal events, even between Eastern and West Africa. The ancestor is inferred to have immigrated once from Eurasia via the Arabian Peninsula to the Ethiopian highlands. Divergence in the lineage containing diploid taxa was followed by several dispersals from Ethiopia to the Eastern and Western Rift Mountains, and recently to West Africa. Divergence of the lineage including the tetraploid L. crassifolia may have taken place in Ethiopia, from where it dispersed to the Eastern and Western Rift Mountains; alternatively, it may have taken place in the Eastern Rift Mountains, followed by dispersal from there to the Western Rift Mountains and then to Ethiopia.  相似文献   

8.
The Ethiopian highlands – home to striking species diversity and endemism – are bisected by the Rift Valley, a zone of tectonic divergence. Using molecular data we examined the evolutionary history of two co‐distributed species of African clawed frog (Xenopus clivii and X. largeni) that are endemic to this region. Our field collections substantially extend the known distribution of X. largeni, a species formerly known from highlands southeast of the Rift, but that also occurs to the northwest. In both species, analysis of mitochondrial DNA and 19 autosomal loci identifies significant population structure, suggests little or no recent migration across the Rift Valley, and provides divergence time estimates across the Rift of ~1–3.5 million years. These results indicate that the Ethiopian Rift Valley is a major obstacle to dispersal of highland‐adapted amphibians.  相似文献   

9.
Several studies have assessed the phylogeographic patterns of vertebrates in North Africa and Sahara–Sahel, but most of the phylogeographic knowledge on amphibians comes from the Mediterranean region while the southern Sahara and Sahel remain poorly studied. Here, we assess the phylogeography of the African Groove crowned frog Hoplobatrachus occipitalis, with a focus on western Sahel in order to better understand the biogeographic patterns of semi-aquatic species in this arid region. Using mitochondrial and nuclear markers, we have assessed the species’ genetic structure, distribution of genetic diversity, and the presence of cryptic diversity. We found evidence of a recent (re-)colonization of the mountains in its northernmost distribution, but also for the role of southern Mauritanian mountains and large rivers as refugia. Two major lineages were detected, one perhaps endemic to Mauritania and the other widespread in Africa. The first lineage possibly constitutes the second Sahelian amphibian endemic; the latter may have originated through an allopolyploidy event, with the Mauritanian lineage being one of the parental ones.  相似文献   

10.
Dispersal and migration are important processes affecting the evolutionary history and genetics of species. Here we investigate post-glacial migration and gene flow in Trillium grandiflorum (Melanthiaceae), a wide-ranging, forest herb from eastern North America. Using phylogeographic approaches, we examined cpDNA and allozyme diversity in 35 populations of T. grandiflorum sampled from throughout the geographic range of the species. Nested clade analysis (NCA) of cpDNA haplotypes indicated that T. grandiflorum likely survived in two refugia in the southeastern US during the last glaciation and that long-distance dispersal characterized the post-glacial recolonization of northern areas. There was no evidence for reduced allozyme diversity in populations from glaciated compared to ice-free regions, probably because of the greater abundance and larger effective size of populations in the north. An analysis of isolation-by-distance based on the allozyme data suggested a pattern of population differentiation consistent with restricted gene flow. Notwithstanding the significance of rare seed dispersal events for migration, a comparison of allozyme and cpDNA genetic structure indicates that pollen flow between populations is more likely than seed dispersal. These results for T. grandiflorum represent the first phylogeographic analysis of a temperate woodland herb in eastern North America and support the importance of occasional long-distance dispersal events in the post-glacial migration of plants.  相似文献   

11.
Two new species of Acacia belonging to subgenus Acacia, A. origena from the high lands of N Ethiopia and Yemen and A. prasinata from the Rift Valley in central Ethiopia are described. The external morphology of the latter species is shortly described.  相似文献   

12.
The composition of isolated floras has long been thought to be the result of relatively rare long-distance dispersal events. However, it has recently become apparent that the recruitment of lineages may be relatively easy and that many dispersal events from distant but suitable habitats have occurred, even at an infraspecific level. The evolution of the flora on the high mountains of Africa has been attributed to the recruitment of taxa not only from the African lowland flora or the Cape Floristic Region, but also to a large extent from other areas with temperate climates. We used the species rich, pan-temperate genera Carex, Ranunculus and Alchemilla to explore patterns in the number of recruitment events and region of origin. Molecular phylogenetic analyses, parametric bootstrapping and ancestral area optimizations under parsimony indicate that there has been a high number of colonization events of Carex and Ranunculus into Africa, but only two introductions of Alchemilla. Most of the colonization events have been derived from Holarctic ancestors. Backward dispersal out of Africa seems to be extremely rare. Thus, repeated colonization from the Northern Hemisphere in combination with in situ radiation has played an important role in the composition of the flora of African high mountains.  相似文献   

13.
《Ostrich》2013,84(1-2):58-73
Phylogenetic relationships between species of akalats (Sheppardia) and alethes (Alethe) were derived from mitochondrial and nuclear sequence data, and phylogeographic pattern was also investigated in three widespread species (two Alethe and one Sheppardia) endemic to the African lowland rainforest biome. Co-distributed species of Alethe and Sheppardia showed similar spatial relationships between the Guineo-Congolian biome and the Western Rift mountains, and preliminary area relationships are shown for species of Sheppardia and Alethe distributed in the Cameroon highlands, the woodland areas north and south of the lowland forest block, and east African montane and lowland forest. Within widespread species, phylogeographic pattern was generally similar, with long branches between Upper and Lower Guinea populations, and between eastern and western Congolian populations. At the interspecific level, the nuclear intron used gave more resolution than the mitochondrial data, which gave poor resolution at basal nodes. While the affinities of some species groups were weakly supported, no support was suggested for the monophyly of Alethe and little for Sheppardia as those genera are currently circumscribed, and taxonomic changes are suggested. As found by previous workers, monophyletic clades corresponding to Muscicapini and Saxicolini of Sibley and Ahlquist (1990) were not recovered, and the membership of any monophyletic 'African forest robin assemblage' needs to be resolved.  相似文献   

14.
The current distribution of most species results from ecological niche, past distribution, and migrations during glacial–interglacial periods and in situ evolution. Here, we disentangle the colonization history of Saxifraga longifolia Lapeyr., a limestone plant abundant in the Pyrenees and rare in other Iberian mountains and the African Atlas. Our working hypothesis is that the current distribution results from the shrinkage of a more extensive distribution in previous cold periods. We sampled 160 individuals of 32 populations across the whole distribution range and sequenced four DNA regions (rpl32-trnL, rps16-trnQ, trnS-trnG, and ITS). Ecological conditions were modeled to identify factors promoting high genetic diversity and long-term persistence areas for S. longifolia. In addition, we inferred phylogenetic relationships, phylogeographic divergence, genetic diversity, and migration routes. Seven plastid haplotypes were found, of which six occur in the Pyrenees and one in the High Atlas (Morocco). Discrete phylogeographic analysis (DPA) estimated migration routes predominantly from the Pyrenees to the other areas. Colonization events to those areas appear to have taken place recently given that the rest of the Iberian mountains do not harbor exclusive haplotypes. Iberian–Northern African distribution was inferred to be the result of long-distance dispersal because the split between Iberian and High Atlas haplotypes is estimated to have taken place in the last 4 million years ago when the Strait of Gibraltar was already open. Migrations from the Pyrenees to the south may have been favored by a corridor of predominant limestone rocks along Eastern Iberia, followed by successful overcoming the Strait of Gibraltar to reach northern Africa.  相似文献   

15.
Although best known for its fossil hominins, the Omo-Turkana Basin of Kenya and Ethiopia is the source of one of the best records of vertebrate evolution from the Late Cenozoic of Africa. Located near the heart of the East African Rift Valley, the basin serves as an important frame of reference for the continent. The fossil record from this region plays a key role in our efforts to understand the environmental and ecological context of human evolution in Africa. The Omo-Turkana faunal data shed light on key questions of human evolution: What kinds of environments did early humans inhabit? How did these environments change over time? What is the relationship between faunal change in East Africa and broader patterns of climatic change?  相似文献   

16.
The tribe Delphinieae (Ranunculaceae) comprises two species-rich genera, Aconitum and Delphinium, the latter including Consolida and Aconitella. The 650-700 species are distributed in Eurasia and North America; three species occur on tropical African mountains. Maximum likelihood analyses of 2088 aligned nucleotides of plastid and nuclear sequences obtained from up to 185 species of Delphinieae from throughout the geographic range (plus relevant outgroups) show that three short-lived (facultative annual or biennial) Mediterranean species belonging to Delphinium subgenus Staphisagria are the sister clade to all other Delphinieae, implying that Staphisagria needs to be raised to genus status if Delphinium and Aconitum are to become mutually monophyletic. Molecular clock dating suggests an origin of the sampled Delphinieae in the Early Oligocene (c. 32.3 Ma) and expansion to North America of Aconitum and Delphinium around 3.3 and 2.9 Ma ago, respectively; the East African Mts. were reached by long-distance dispersal some 2.4 Ma ago, coincident with the major uplift of the East African Rift system. The ancestral growth form of the Delphinieae could not be reconstructed, but Late Miocene bursts in diversification rates in the Himalayan and southwestern Chinese clades of Aconitum and Delphinium appear to be associated with transitions from short-lived to long-lived life histories.  相似文献   

17.
This study focused on three species that occur disjunctly between western North America and the Mediterranean region of southern Europe, northern Africa, and western Asia, forming the so-called Madrean-Tethyan distribution pattern. Quantitative morphological characters were measured in New and Old World plants to find any subtle phenotypic differentiation between the disjunct populations. Sequences from the nuclear ribosomal internal transcribed spacer region were obtained from the same populations to assess differentiation at the molecular level and to compare molecular diversity with patterns of morphological similarity among plants. Little or no morphological differentiation existed between New and Old World plants in any of the species, but internal transcribed spacer (ITS) sequences revealed some phylogeographic structure. Patterns of morphological similarity in all three species were incongruent with phylogeographic structure revealed by sequence data. New World populations were more variable than Old World populations at the molecular level in the three species. Despite some evidence for differentiation between disjunct plants, no plausible mutation rate would date the divergence at ≥20 million years ago (MYA), as implied by the Madrean-Tethyan hypothesis. Recent long-distance dispersal is a more likely explanation for intercontinental disjunctions in these species.  相似文献   

18.
High tropical mountains harbour remarkable and fragmented biodiversity thought to a large degree to have been shaped by multiple dispersals of cold‐adapted lineages from remote areas. Few dated phylogenetic/phylogeographic analyses are however available. Here, we address the hypotheses that the sub‐Saharan African sweet vernal grasses have a dual colonization history and that lineages of independent origins have established secondary contact. We carried out rangewide sampling across the eastern African high mountains, inferred dated phylogenies from nuclear ribosomal and plastid DNA using Bayesian methods, and performed flow cytometry and AFLP (amplified fragment length polymorphism) analyses. We inferred a single Late Pliocene western Eurasian origin of the eastern African taxa, whose high‐ploid populations in one mountain group formed a distinct phylogeographic group and carried plastids that diverged from those of the currently allopatric southern African lineage in the Mid‐ to Late Pleistocene. We show that Anthoxanthum has an intriguing history in sub‐Saharan Africa, including Late Pliocene colonization from southeast and north, followed by secondary contact, hybridization, allopolyploidization and local extinction during one of the last glacial cycles. Our results add to a growing body of evidence showing that isolated tropical high mountain habitats have a dynamic recent history involving niche conservatism and recruitment from remote sources, repeated dispersals, diversification, hybridization and local extinction.  相似文献   

19.

Background

Due to its complex, dynamic and well-known paleogeography, the Mediterranean region provides an ideal framework to study the colonization history of plant lineages. The genus Linaria has its diversity centre in the Mediterranean region, both in Europe and Africa. The last land connection between both continental plates occurred during the Messinian Salinity Crisis, in the late Miocene (5.96 to 5.33 Ma).

Methodology/Principal Findings

We analyzed the colonization history of Linaria sect. Versicolores (bifid toadflaxes), which includes c. 22 species distributed across the Mediterranean, including Europe and Africa. Two cpDNA regions (rpl32-trnLUAG and trnK-matK) were sequenced from 66 samples of Linaria. We conducted phylogenetic, dating, biogeographic and phylogeographic analyses to reconstruct colonization patterns in space and time. Four major clades were found: two of them exclusively contain Iberian samples, while the other two include northern African samples together with some European samples. The bifid toadflaxes have been split in African and European clades since the late Miocene, and most lineage and speciation differentiation occurred during the Pliocene and Quaternary. We have strongly inferred four events of post-Messinian colonization following long-distance dispersal from northern Africa to the Iberian Peninsula, Sicily and Greece.

Conclusions/Significance

The current distribution of Linaria sect. Versicolores lineages is explained by both ancient isolation between African and European populations and recent events of long-distance dispersal over sea barriers. This result provides new evidence for the biogeographic complexity of the Mediterranean region.  相似文献   

20.
Aim  It is well established that many groups of plants and animals have undergone long-distance dispersal, but the extent to which this continues beyond initial colonization is largely unknown. To provide further insight into the frequency of gene flow mediated by long-distance dispersal, we investigated the origins of the fern Asplenium hookerianum on the Chatham Islands, and present a review of the contribution of molecular data to elucidating the origins of this archipelago's biota.
Location  Chatham Islands and New Zealand. A. hookerianum is scarce on the Chatham Islands but common in New Zealand, some 800 km to the west.
Methods  We compared chloroplast trnL–trnF DNA sequence data from Chatham Islands' A. hookerianum with extensive phylogeographic data for this genetically variable species in mainland New Zealand.
Results  Our sequencing revealed the presence of two haplotypes in Chatham Islands' A. hookerianum . These haplotypes differed by four mutational events and were each more closely related to haplotypes found in New Zealand than to each other.
Main conclusions  Despite the rarity of A. hookerianum on the Chatham Islands, its populations there appear to derive from at least two long-distance dispersal events from New Zealand, these possibly originating from different areas. We suggest that long-distance transoceanic dispersal, and the gene flow it can mediate, may be more common than is generally appreciated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号