首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We evaluated diurnal and seasonal patterns of carbon isotope composition of leaf dark-respired CO2 ( δ 13Cl) in the C3 perennial shrub velvet mesquite ( Prosopis velutina ) across flood plain and upland savanna ecosystems in the south-western USA. δ 13Cl of darkened leaves increased to maximum values late during daytime periods and declined gradually over night-time periods to minimum values at pre-dawn. The magnitude of the diurnal shift in δ 13Cl was strongly influenced by seasonal and habitat-related differences in soil water availability and leaf surface vapour pressure deficit. δ 13Cl and the cumulative flux-weighted δ 13C value of photosynthates were positively correlated, suggesting that progressive 13C enrichment of the CO2 evolved by darkened leaves during the daytime mainly resulted from short-term changes in photosynthetic 13C discrimination and associated shifts in the δ 13C signature of primary respiratory substrates. The 13C enrichment of dark-respired CO2 relative to photosynthates across habitats and seasons was 4 to 6‰ at the end of the daytime period (1800 h), but progressively declined to 0‰ by pre-dawn (0300 h). The origin of night-time and daytime variations in δ 13Cl is discussed in terms of the carbon source(s) feeding respiration and the drought-induced changes in carbon metabolism.  相似文献   

2.
The variations in δ 13C in both leaf carbohydrates (starch and sucrose) and CO2 respired in the dark from the cotyledonary leaves of Phaseolus vulgaris L. were investigated during a progressive drought. As expected, sucrose and starch became heavier (enriched in 13C) with decreasing stomatal conductance and decreasing p i/ p a during the first half (15 d) of the dehydration cycle. Thereafter, when stomata remained closed and leaf net photosynthesis was near zero, the tendency was reversed: the carbohydrates became lighter (depleted in 13C). This may be explained by increased p i/ p a but other possible explanations are also discussed. Interestingly, the variations in δ 13C of CO2 respired in the dark were correlated with those of sucrose for both well-watered and dehydrated plants. A linear relationship was obtained between δ 13C of CO2 respired in the dark and sucrose, respired CO2 always being enriched in 13C compared with sucrose by ≈ 6‰. The whole leaf organic matter was depleted in 13C compared with leaf carbohydrates by at least 1‰. These results suggest that: (i) a discrimination by ≈ 6‰ occurs during dark respiration processes releasing 13C-enriched CO2; and that (ii) this leads to 13C depletion in the remaining leaf material.  相似文献   

3.
Changes in carbon metabolism and δ13C value of transgenic potato plants with a maize pyruvate,orthophosphate dikinase (PPDK; EC 2.7.9.1) gene are reported. PPDK catalyzes the formation of phospho enol pyruvate (PEP), the initial acceptor of CO2 in the C4 photosynthetic pathway. PPDK activities in the leases of transgenic potatoes were up to 5.4‐fold higher than those of control potato plants (wild‐type and treated control plants). In the transgenic potato plants, PPDK activity in leaves was negatively correlated with pyruvate content (r2= 0.81), and was positively correlated with malate content (r2= 0.88). A significant increase in the δ13C value was observed in the transgenic potato plants, suggesting a certain contribution of PEP carboxylase as the initial acceptor of atmospheric CO2. These data suggest that elevated PPDK activity may alter carbon metabolism and lead to a partial operation of C4‐type carbon metabolism. However, since parameters associated with CO2 gas exchange were not affected, the altered carbon metabolism had only a small effect on the total photosynthetic characteristics of the transgenic plants.  相似文献   

4.
The main gap in our knowledge about what determines the rate of CH4 oxidation in forest soils is the biology of the microorganisms involved, the identity of which remains unclear. In this study, we used stable-isotope probing (SIP) following 13CH4 incorporation into phospholipid fatty acids (PLFAs) and DNA/RNA, and sequencing of methane mono-oxygenase ( pmoA ) genes, to identify the influence of variation in community composition on CH4 oxidation rates. The rates of 13C incorporation into PLFAs differed between horizons, with low 13C incorporation in the organic soil and relatively high 13C incorporation into the two mineral horizons. The microbial community composition of the methanotrophs incorporating the 13C label also differed between horizons, and statistical analyses suggested that the methanotroph community composition was a major cause of variation in CH4 oxidation rates. Both PLFA and pmoA -based data indicated that CH4 oxidizers in this soil belong to the uncultivated 'upland soil cluster α'. CH4 oxidation potential exhibited the opposite pattern to 13C incorporation, suggesting that CH4 oxidation potential assays may correlate poorly with in situ oxidation rates. The DNA/RNA-SIP assay was not successful, most likely due to insufficient 13C-incorporation into DNA/RNA. The limitations of the technique are briefly discussed.  相似文献   

5.
1.  Applying Keeling plot techniques to derive δ13C of respiratory input in a closed non-equilibrated chamber can lead to large errors because steady-state diffusion rules are violated in a non-steady-state environment. To avoid these errors, respiratory δ13C can be derived using equilibrated closed chambers.
2.  We introduce a new method to obtain stem respired CO2δ13C (δst - r) with closed equilibrated stem chambers (E-SC). We present a theoretical model describing the equilibration process, test the model against field data and find excellent agreement. The method is further tested by comparing it with closed non-equilibrated stem chambers (NE-SC); we found no difference between these methods.
3.  Our theoretical model to describe CO2 diffusion from the respiratory pool into the chamber and the equation to derive the δ13C of the efflux are general. They could be applied to other ecosystem components (e.g. soils).
4.  Our method is easy to implement, cost effective, minimizes sources of error and allows for rigorous leak detection. One major limitation is its inability to detect rapid change; the equilibration process requires 15 ± 2 h. A second limitation is that it cannot be used for species that produce abundant pitch at sites of stem wounding (e.g. Pseudotsuga menziesii ).
5.  Investigating δ13C of CO2 respired by different ecosystem components is necessary to interpret δ13C of ecosystem respiration. This parameter has major implications with respect to global carbon cycle science.  相似文献   

6.
The natural abundance of 13C and 15N was measured in basidiocarps of at least 115 species in 88 genera of ectomycorrhizal, wood-decomposing and litter-decomposing fungi from Japan and Malaysia. The natural abundance of 13C and 15N was also measured in leaves, litter, soil and wood from three different sites. 15N and 13C were enriched in ectomycorrhizal and wood-decomposing fungi, respectively, relative to their substrates. Ectomycorrhizal and wood-decomposing fungi could be distinguished on the basis of their δ13C and δ15N signatures. Although there was high variability in the isotopic composition of fungi, the following isotope- enrichment factors (ε, mean±SD) of the fungi relative to substrates were observed:
εectomycorrhizal fungi/litter = 6.1±0.4‰15N
εectomycorrhizal fungi/wood = 1.4±0.8‰13C
εwood-decomposing fungi/wood = −0.6±0.7‰15N
εwood-decomposing fungi/wood = 3.5±0.9‰13C
The basis of isotope fractionation in C metabolism from wood to wood-decomposing fungus is discussed.  相似文献   

7.
Quantitative estimates of soil C input under ambient (35 Pa) and elevated (60 Pa) CO2-partial pressure (pCO2) were determined in a Free-Air Carbon dioxide Enrichment (FACE) experiment. To facilitate 13C-tracing, Trifolium repens L. was grown in a soil with an initial δ13C distinct by at least 5‰ from the δ13C of T. repens grown under ambient or elevated pCO2. A shift in δ13C of the soil organic C was detected after one growing season. Calculated new soil C inputs in soil under ambient and elevated pCO2 were 2 and 3 t ha–1, respectively. Our findings suggest that under elevated CO2 conditions, soil C sequestration may be altered by changes in plant biomass production and quality.  相似文献   

8.
1 In a glasshouse experiment we studied the effect of raised CO2 concentration (720 p.p.m.) on CH4 emission at natural boreal peat temperatures using intact cores of boreal peat with living vascular plants and Sphagnum mosses. After the end of the growing season half of the cores were kept unnaturally warm (17–20 °C). The potential for CH4 production and oxidation was measured at the end of the emission experiment.
2 The vascular cores ('Sedge') consisted of a moss layer with sedges, and the moss cores (' Sphagnum ') of Sphagnum mosses (some sedge seedlings were removed by cutting). Methane efflux was 6–12 times higher from the Sedge cores than from the Sphagnum cores. The release of CH 4 from Sedge cores increased with increasing temperature of the peat and decreased with decreasing temperature. Methane efflux from Sphagnum cores was quite stable independent of the peat temperatures.
3 In both Sedge and Sphagnum samples, CO2 treatment doubled the potential CH4 production but had no effect on the potential CH4 oxidation. A raised concentration of CO2 increased CH4 efflux weakly and only at the highest peat temperatures (17–20 °C).
4 The results suggest that in cool regions, such as boreal wetlands, temperature would restrict decomposition of the extra substrates probably derived from enhanced primary production of mire vegetation under raised CO2 concentrations, and would thus retard any consequent increase in CH4 emission.  相似文献   

9.
It has been suggested previously that Japanese larch ( Larix kaempferi ) exhibits characteristics of C4 photosynthesis. To further evaluate this suggestion, stable carbon isotope ratios were determined for leaf and bark tissue of Larix gmelini, L. kaempferi, L. laricina, L. Iyallii, L. occidentalis , and L. sibirica. All δ13C values were more negative than –22‰. Short-term labeling with 14CO2 showed that phosphoglyceric acid and other phosphorylated compounds were the first products of photosynthesis in L. sibirica. Both of these results strongly suggest that the initial fixation of atmospheric CO2 in these six Larix species is accomplished solely via the C3 photosynthetic pathway.  相似文献   

10.
Water-use efficiency and stable isotope composition were studied in three tropical tree species. Seedlings of Tectona grandis , Swietenia macrophylla and Platymiscium pinnatum were grown at either high or low water supply, and with or without added fertilizer. These three species previously exhibited low, intermediate and high whole-plant water-use efficiency ( TE ) when grown at high water supply in unfertilized soil. Responses of TE to water and nutrient availability varied among species. The TE was calculated as experiment-long dry matter production divided by cumulative water use. Species-specific offsets were observed in relationships between TE and whole-plant 13C discrimination (Δ13Cp). These offsets could be attributed to a breakdown in the relationship between Δ13Cp and the ratio of intercellular to ambient CO2 partial pressures ( c i/ c a) in P. pinnatum , and to variation among species in the leaf-to-air vapour pressure difference ( v ). Thus, a plot of v · TE against c i/ c a showed a general relationship among species. Relationships between δ 18O of stem dry matter and stomatal conductance ranged from strongly negative for S. macrophylla to no relationship for T. grandis . Results suggest inter-specific variation among tropical tree species in relationships between stable isotope ratios ( δ 13C and δ 18O) and the gas exchange processes thought to affect them.  相似文献   

11.
The influence of different feeding levels below and slightly above maintenance on whole body δ13C and δ15N values of Nile tilapia Oreochromis niloticus was examined. The energy budget of each fish was determined by indirect calorimetry. The δ13C values of the lipid-free material of Nile tilapia fed below and slightly above maintenance level did not differ between the feeding groups, but the δ13C values in the lipids and the δ15N values of the lipid-free material showed small but significant differences. Those fish with a negative lipid retention had significantly higher δ13C values in the lipid fraction compared to fish that synthesized fatty acids. There was a significant negative correlation between the amount of energy metabolized by the fish and both the δ13C values in the lipids and the δ15N values of the lipid-free material. Fasting and feeding below the maintenance level may influence the isotopic composition of animals and should therefore be considered in ecological and nutritional studies.  相似文献   

12.
Abstract: Chains of lumbar sympathetic ganglia from 15-day-old chicken embryos were incubated for 4 h at 36°C in a bicarbonate-buffered salt solution equilibrated with 5% CO2-95% O2. Glucose (1–10 m M ), lactate (1–10 m M ), [U-14C]glucose, [1-14C]glucose, [6-14C]glucose, and [U-14C]lactate were added as needed. 14CO2 output was measured continuously by counting the radioactivity in gas that had passed through the incubation chamber. Lactate reduced the output of CO2 from [U-14C]glucose, and glucose reduced that from [U-14C]lactate. When using uniformly labeled substrates in the presence of 5.5 m M glucose, the output of CO2 from lactate exceeded that from glucose when the lactate concentration was >2 m M . The combined outputs at each concentration tested were greater than those from either substrate alone. The 14CO2 output from [1-14C]glucose always exceeded that from [6-14C]glucose, indicating activity of the hexose monophosphate shunt. Lactate reduced both of these outputs, with the maximum difference between them during incubation remaining constant as the lactate concentration was increased, suggesting that lactate may not affect the shunt. Modeling revealed many details of lactate metabolism as a function of its concentration. Addition of a blood-brain barrier to the model suggested that lactate can be a significant metabolite for brain during hyperlactemia, especially at the high levels reached physiologically during exercise.  相似文献   

13.
1. The influence of leaf thickness on internal conductance for CO2 transfer from substomatal cavity to chloroplast stroma ( g i) and carbon isotope ratio (δ13C) of leaf dry matter was investigated for some evergreen tree species from Japanese temperate forests. g i was estimated based on the combined measurements of gas exchange and concurrent carbon isotope discrimination.
2. Leaves with thicker mesophyll tended to have larger leaf dry mass per area (LMA), larger surface area of mesophyll cells exposed to intercellular air spaces per unit leaf area ( S mes) and smaller volume ratio of intercellular spaces to the whole mesophyll (mesophyll porosity).
3. g i of these leaves was correlated positively to S mes but negatively to mesophyll porosity. The variation in g i among these species would be therefore primarily determined by variation of the conductance in liquid phase rather than that in gas phase.
4. δ13C was positively correlated to mesophyll thickness and leaf nitrogen content on an area basis. However, g i values did not correlate to δ13C. These results suggest that difference in δ13C among the species was not caused by the variation in g i, but mainly by the difference in long-term photosynthetic capacity.
5. Comparison of our results with those of previous studies showed that the correlation between leaf thickness and g i differed depending on leaf functional types (evergreen, deciduous or annual). Differences in leaf properties among these functional types were discussed.  相似文献   

14.
1. Although marine research has indicated that metabolic fractionations of 13C due to differences in organismal trophic position and proximal composition can complicate the isotopic interpretation of energy flow pathways, such potentially confounding problems have never been examined in freshwater benthic food webs.
2. The δ13C values of animals comprising a littoral benthic food web composited from four Canadian Shield lakes showed no relationship with either individual trophic position (δ15N) or lipid content (C/N ratios).
3. Differences in the relative incorporation of autochthonous and allochthonous energy sources by freshwater benthic organisms will alter their δ13C and δ15N values, thereby masking any possibility of observing 13C trophic enrichment.
4. Removal of the possibly confounding influences of lipids through either empirical correction or by analytical extraction may be unnecessary in studies of freshwater benthic food webs. Likewise, a priori adjustments in δ13C for freshwater benthic organisms in order to accommodate trophic fractionations which are presumed to occur, based on data from marine offshore food webs, may also be inappropriate.  相似文献   

15.
The scales of whitefish Coregonus lavaretus were used in place of dorsal muscle, which necessitates killing the fish, to study food webs from the δ13C and δ15N isotopic ratios in the organic fraction. As scales are composed of both organic and calcified fractions, a protocol for scale decalcification was first devised. The δ13C and δ15N values of the decalcified scales were then shown to be closely correlated to those of the dorsal muscle, demonstrating that scales could be used in place of muscle to study food webs. Changes in the δ13C of whitefish were determined from a scale collection that extended over the period during which the trophic state of Lake Geneva was recovering.  相似文献   

16.
Carbon dioxide fixation in orchid aerial roots   总被引:1,自引:0,他引:1  
Acidity fluctuation, CO2 gas exchange, δ13C value, PEP carboxylase and RuBP carboxylase activities in aerial roots of selected thick-leaved orchid hybrids ( Arachnis and Aranthera ) were studied. Both aerial roots and leaves showed acidity fluctuation over a 24 h period. Dark acidification in aerial roots was enhanced at low temperature (15°C). Aerial roots had δ13C values close to those of leaves which have been previously demonstrated to possess crassulacean acid metabolism. Variation in δ13C values along the length of the roots was observed; the root tip having a less negative δ13C value (—13.34%‰) than the older portions of the roots (—14.55%‰). There was no net CO2 fixation by aerial root, although 1432CO2 fixation was observed in light and in darkness. The pattern of fluctuation in activities of PEP carboxylase and RuBP carboxylase in aerial roots was similar to that obtained for the leaves. In both aerial roots and leaves, PEP carboxylase activity was several times higher than that of RuBP carboxylase.  相似文献   

17.
Using a combined method of pulse-labelling trees and analysing detailed distribution of 13C tracer within tree rings, we studied how photo-assimilates incorporated on a given day are then distributed in a tree ring. A branch of a 4-year-old Cryptomeria japonica D.Don tree growing in Tsukuba, Japan was pulse-labelled with non-radioactive 13CO2 on two occasions: 29 May 2001 and 18 September 2001. Two discs were cut from the stem on 4 March 2002, one immediately under and the other 0.5 m below the branch and put through high-resolution δ 13C analysis. δ 13C peaks were observed in both the earlywood and latewood of the concerned tree ring, corresponding to each pulse-labelling date. The earlywood peaks was broader than the latewood peaks, possibly reflecting seasonal variation of the width of wood developing zone. Half-widths of the peaks were measured and used as indicators for the potential time resolution of tree-ring isotope analysis. The half-widths of the peaks indicated a time resolution no finer than 8.7–28 and 33–42 d in the early and latewood, respectively. Holocellulose extraction yielded only a slight change to the shape of the δ 13C peaks. 13C tracer pulse-labelled in May and September reached tangentially different locations in the lower disc, suggesting a seasonal change in the pathway of carbohydrates. Local consumption of spring assimilates and long-distance downward transport of autumn assimilates were also suggested.  相似文献   

18.
1. Although marine research has indicated that metabolic fractionations of 13C due to differences in organismal trophic position and proximal composition can complicate the isotopic interpretation of energy flow pathways, such potentially confounding problems have never been examined in freshwater benthic food webs.
2. The δ13C values of animals comprising a littoral benthic food web composited from four Canadian Shield lakes showed no relationship with either individual trophic position (δ15N) or lipid content (C/N ratios).
3. Differences in the relative incorporation of autochthonous and allochthonous energy sources by freshwater benthic organisms will alter their δ13C and δ15N values, thereby masking any possibility of observing 13C trophic enrichment.
4. Removal of the possibly confounding influences of lipids through either empirical correction or by analytical extraction may be unnecessary in studies of freshwater benthic food webs. Likewise, a priori adjustments in δ13C for freshwater benthic organisms in order to accommodate trophic fractionations which are presumed to occur, based on data from marine offshore food webs, may also be inappropriate.  相似文献   

19.
Aspartate metabolism was investigated in excised cotyledons of radiata pine ( Pinus radiata D. Don). These cotyledons were cultured under shoot-forming (plus N6-benzyladenine, SF), non-shoot-forming (minus N6-benzyladenine, NSF) and unresponsive (plus N6-benzyladenine, OLD) conditions, then incubated with [14C]-aspartate for 3-h pulse treatments followed by 3-h chase treatments with cold aspartate. The majority of label was recovered in the CO2, amino acid, organic acid and pellet fractions. Uptake was greatest in all tissue types early in culture. Most (over 80%) of the [14C]-aspartate taken up by the tissues was converted to CO2 at day 0 in SF and NSF tissues, CO2 accounted for less than 50% of the total radioactivity in other tissues. Greater incorporation into fractions was observed in SF tissues during promeristemoid formation, while in NSF tissues the greatest incorporation was observed during a period of rapid elongation. Generally, less incorporation was observed in OLD cotyledons than in SF and NSF cotyledons. Analysis of the amino acid fraction showed that labelled aspartate was converted to other amino acids, mainly glutamate, glutamine, asparagine and 4-aminobutyric acid.  相似文献   

20.
Plantago lanceolata L. seedlings were grown in sand microcosm units over a 43‐day experimental period under two CO2 regimes (800 or 400 µmol mol−1) to investigate the effect of elevated atmospheric CO2 concentration on carbon partitioning and exudate release. Total organic carbon (TOC) content of the collected exudate material was measured throughout the experimental period. After 42 days growth the seedlings were labelled with [14C]‐CO2 and the fate of the label within the plant and its release by the roots monitored. Elevated CO2 significantly (P ≤ 0.001) enhanced shoot, root and total dry matter production although the R:S ratio was unaltered, suggesting no alteration in gross carbon partitioning. The cumulative release of TOC (in mg C) over 0‐42 days was unaltered by CO2 treatment however, when expressed as a percentage of net assimilated C, ambient‐grown plants released a significantly (P≤ 0.001) higher percentage from their roots compared to elevated CO2‐grown plants (i.e. 8 vs 3%). The distribution of 14C‐label was markedly altered by CO2 treatment with significantly (P≤ 0.001) greater per cent label partitioned to the roots under elevated CO2. This indicates increased partitioning of recent assimilate below‐ground under elevated CO2 treatment although there was no significant difference in the percentage of 14C‐label released by the roots. Comparison of plant C budgets based on 14C‐pulse‐chase methodology and TOC measurements is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号