首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Co-metabolic degradation of trichloroethylene (TCE) by Pseudomonas putida F1 was investigated in a novel bioreactor with a fibrous bed. A pseudo-first-order rate constant for TCE degradation was 1.4 h–1 for 2.4 to 100 mg TCE l–1. Competitive inhibition of toluene on TCE removal could be prevented in this bioreactor. 90% TCE was removed over 4 h when 95 mg toluene l–1 was presented simultaneously.  相似文献   

2.
The cometabolic degradation of trichloroethylene (TCE) by Pseudomonas putida F1 (strain ATCC 700007) at different concentrations was studied in single- and two-phase systems using 2-undecanone as the second organic phase. Toluene vapors were used as the primary growth substrate for Pseudomonas putida F1. The effects of the biomass concentration and the phase ratio on the biodegradation process were investigated. The best biomass concentration and the most suitable phase ratio were found to be 0.462 and 0.025 g/L (vorg/vaq), respectively. In the single-phase system, 36.5 mg/L TCE was degraded completely in 15 hours and only 78% of 55 mg/L TCE was degraded in 27 hours, while in the two-phase system 55 mg/L TCE was degraded completely in 14 hours. The use of the two-phase system not only decreased the biodegradation time of TCE but also prevented the inhibition effect of high concentrations of TCE on the microbial biomass.  相似文献   

3.
The influence of trichloroethylene (TCE) on a mixed culture of four different toluene-degrading bacterial strains (Pseudomonas putida mt-2, P. putida F1, P. putida GJ31, and Burkholderia cepacia G4) was studied with a fed-batch culture. The strains were competing for toluene, which was added at a very low rate (31 nmol mg of cells [dry weight]−1 h−1). All four strains were maintained in the mixed culture at comparable numbers when TCE was absent. After the start of the addition of TCE, the viabilities of B. cepacia G4 and P. putida F1 and GJ31 decreased 50- to 1,000-fold in 1 month. These bacteria can degrade TCE, although at considerably different rates. P. putida mt-2, which did not degrade TCE, became the dominant organism. Kinetic analysis showed that the presence of TCE caused up to a ninefold reduction in the affinity for toluene of the three disappearing strains, indicating that inhibition of toluene degradation by TCE occurred. While P. putida mt-2 took over the culture, mutants of this strain which could no longer grow on p-xylene arose. Most of them had less or no meta-cleavage activity and were able to grow on toluene with a higher growth rate. The results indicate that cometabolic degradation of TCE has a negative effect on the maintenance and competitive behavior of toluene-utilizing organisms that transform TCE.  相似文献   

4.
Trichloroethylene (TCE) is an environmental contaminant provoking genetic mutation and damages to liver and central nerve system even at low concentrations. A practical scheme is reported using toluene as a primary substrate to revitalize the biofilter column for an extended period of TCE degradation. The rate of trichloroethylene (TCE) degradation byPseudomonas putida F1 at 25°C decreased exponentially with time, without toluene feeding to a biofilter column (11 cm I.D.×95 cm height). The rate of decrease was 2.5 times faster at a TCE concentration of 970 μg/L compared to a TCE concentration of 110 μg/L. The TCE itself was not toxic to the cells, but the metabolic intermediates of the TCE degradation were apparently responsible for the decrease in the TCE degradation rate. A short-term (2 h) supply of toluene (2,200 μg/L) at an empty bed residence time (EBRT) of 6.4 min recovered the relative column activity by 43% when the TCE removal efficiency at the time of toluene feeding was 58%. The recovery of the TCE removal efficiency increased at higher incoming toluene concentrations and longer toluene supply durations according to the Monod type of kinetic expression. A longer duration (1.4∼2.4 times) of toluene supply increased the recovery of the TCE removal efficieny by 20% for the same toluene load.  相似文献   

5.
Anaerobic degradation of phenol using an acclimated mixed culture   总被引:1,自引:0,他引:1  
Summary Anaerobic methanogenesis of phenol using mixed cultures derived from cow dung and municipal sewage sludge and adapted to phenol was done in batch reactors. The phenol degradation rate depended on the period in which the culture was acclimated to phenol. Interference in phenol uptake by glucose was observed. Consumption of both phenol and acetic acid was observed when an acetate-adapted culure was used. A phenol-acclimated culture was able to degrade dihydroxy phenols thus indicating the feasibility of cross-acclimation. Offprint requests to: P. Ghosh  相似文献   

6.
Pseudomonas putida E41 was isolated from oil-contaminated soil and showed its ability to grow on ethyl-benzene as the sole carbon and energy source. Moreover, P. putida E41 show the activity of biodegradation of ethylbenzene in the batch culture. E41 showed high efficiency of biodegradation of ethylbenzene with the optimum conditions (a cell concentration of 0.1 g wet cell weight/L, pH 7.0, 25°C, and ethylbenzene concentration of 50 mg/L) from the results of the batch culture. The maximum degradation rate and specific growth rate (μmax) under the optimum conditions were 0.19+0.03 mg/mg-DCW (Dry Cell Weight)/h and 0.87+0.13 h−1, respectively. Benzene, toluene and ethylbenzene were degraded when these compounds were provided together; however, xylene isomers persisted during degradation by P. putida E41. When using a bioreactor batch system with a binary culture with P. putida BJ10, which was isolated previously in our lab, the degradation rate for benzene and toluene was improved in BTE mixed medium (each initial concentration: 50 mg/L). Almost all of the BTE was degraded within 4 h and 70–80% of m-, p-, and o-xylenes within 11 h in a BTEX mixture (initial concentration: 50 mg/L each). In summary, we found a valuable new strain of P. putida, determined the optimal degradation conditions for this isolate and tested a mixed culture of E41 and BJ10 for its ability to degrade a common sample of mixed contaminants containing benzene, toluene, and xylene.  相似文献   

7.
The effect of a nontoxic easily degradable substrate, glucose, on the biodegradation of toxic pollutant, phenol, was studied in batch reactors using a phenol degrading culture (Arthrobacter species). The effect of glucose on phenol degradation was determined at different glucose concentrations. The effect of different inoculum on substrate removal in a phenol and glucose mixture was also studied. Results indicated that when a mixed substrate (phenol and glucose) was used, phenol acclimated population showed an initial preference for phenol and utilised glucose after phenol removal. However phenol degradation rate was reduced in the presence of glucose. It was also observed that phenol degradation was completely inhibited when the glucose concentration exceeds 2 g/l. The substrate removal pattern changed completely when inoculum was drawn from mixed substrate acclimatised culture. The glucose utilisation started immediately and the rate of glucose utilisation was not affected by the presence of phenol. The phenol degradation also started simultaneously. In presence of phenol only, the rate of phenol degradation for the culture acclimatised to mixed substrates was lower than that of phenol acclimatised culture. These results indicate that nontoxic substrate can affect the biodegradation of toxic pollutants is suitable and acclimatisation may be necessary for biodegradation of mixed substrate.  相似文献   

8.
Summary This work examines the effects of salinity on the biodegradation of trichloroethylene (TCE) by four chemostat-cultivated cultures: LHPO-3, LHPO-6, HHPO-3 and HHPO-6, all of which had been enriched on phenol but grown under different conditions. Cultures LHPO-3 (with hydraulic retention time [HRT] of 3.1 days) and LHPO-6 (6.5-day HRT) were cultivated with fresh water, whereas cultures HHPO-3 (3.3-day HRT) and HHPO-6 (6.1-day HRT) were cultivated with seawater. Batch tests of TCE degradation by the four bacterial consortia in the absence of phenol were undertaken in solutions with salinities in the range 0–3.28% (w/v). Moreover, the effect of adding phenol on TCE degradation by LHPO-3 in 1.64% salinity solution was investigated. The results showed that the observed bacterial yields for the cultures LHPO-3, LHPO-6, HHPO-3 and HHPO-6 were 0.66, 0.47, 0.58 and 0.33 mg volatile suspended solids/mg phenol, respectively. In the absence of phenol, the extents of TCE degradation by cultures LHPO-3 and LHPO-6 increased with salinity stress, reaching 0.052 mg TCE/mg VSS for LHPO-3 and 0.033 mg TCE/mg VSS for LHPO-6, and then declined as salinity increased further. The tolerance of TCE degradation to salinity for culture LHPO-3 was around 3.28% and that for LHPO-6 was 1.64–2.33%. In the presence of phenol, the rate and extent of TCE degradation by LHPO-3 were enhanced when an optimal dosage of phenol of 10 mg phenol/mg TCE was applied. Degradation of TCE by cultures HHPO-3 and HHPO-6 was not observed.  相似文献   

9.
An aerobic, single-pass, fixed-film bioreactor was designed for the continuous degradation and mineralization of gas-phase trichloroethylene (TCE). A pure culture of Burkholderia cepacia PR1(23)(TOM(23C)), a Tn5transposon mutant of B. cepacia G4 that constitutively expresses the TCE-degrading enzyme, toluene ortho-monooxygenase (TOM), was immobilized on sintered glass (SIRANtrade mark carriers) and activated carbon. The inert open-pore structures of the sintered glass and the strongly, TCE-absorbing activated carbon provide a large surface area for biofilm development (2-8 mg total cellular protein/mL carrier with glucose minimal medium that lacks chloride ions). At gas-phase TCE concentrations ranging from 0.04 to 2.42 mg/L of air and 0.1 L/min of air flow, initial maximum TCE degradation rates of 0.007-0.715 nmol/(min mg protein) (equivalent to 8.6-392.3 mg TCE/L of reactor/day) were obtained. Using chloride ion generation as the indicator of TCE mineralization, the bioreactor with activated carbon mineralized an average of 6.9-10.3 mg TCE/L of reactor/day at 0.242 mg/L TCE concentration with 0.1 L/min of air flow for 38-40 days. Although these rates of TCE degradation and mineralization are two- to 200-fold higher than reported values, TOM was inactivated in the sintered-glass bioreactor at a rate that increased with increasing TCE concentration (e.g., in approximately 2 days at 0.242 mg/L and <1 day at 2.42 mg/L), although the biofilter could be operated for longer periods at lower TCE concentrations. Using an oxygen probe and phenol as the substrate, the activity of TOM in the effluent cells of the bioreactor was monitored; the loss of TOM activity of the effluent cells corroborated the decrease in the TCE degradation and mineralization rates in the bioreactor. Repeated starving of the cells was found to restore TOM activity in the bioreactor with activated carbon and extended TCE mineralization by approximately 34%. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 674-685, 1997.  相似文献   

10.
The effects of more than 2 years of trichloroethene (TCE) application on community succession and function were studied in two aerobic sequencing batch reactors. One reactor was fed phenol, and the second reactor was fed both phenol and TCE in sequence twice per day. After initiation of TCE loading in the second reactor, the TCE transformation rates initially decreased, but they stabilized with an average second-order rate coefficient of 0.044 liter mg(-1) day(-1) for 2 years. In contrast, the phenol-fed reactor showed higher and unstable TCE transformation rates, with an average rate coefficient of 0.093 liter mg(-1) day(-1). Community analysis by terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes showed that the phenol-plus-TCE-fed reactor had marked changes in community structure during the first 100 days and remained relatively stable afterwards, corresponding to the period of stable function. In contrast, the community structure of the phenol-fed reactor changed periodically, and the changes coincided with the periodicity observed in the TCE transformation rates. Correspondence analysis of each reactor community showed that different community structures corresponded with function (TCE degradation rate). Furthermore, the phenol hydroxylase genotypes, as determined by restriction fragment length polymorphism analysis, corresponded to community structure patterns identified by T-RFLP analysis and to periods when the TCE transformation rates were high. Long-term TCE stress appeared to select for a different and stable community structure, with lower but stable TCE degradation rates. In contrast, the community under no stress exhibited a dynamic structure and dynamic function.  相似文献   

11.
Aerobic degradation of 7 mmol/L phenol in the presence of alternative carbon sources (7 mmol/L glucose or acetate or 1–2 mmol/L 2‐chlorophenol) was investigated using non‐acclimatized and acclimatized sewage sludges and enrichment cultures. The substrates represented an intermediate of phenol degradation (acetate), an independent substrate (glucose) or a “precursor‐substrate” of phenol degradation (2‐chlorophenol). Bacteria from sewage sludge, not pre‐adapted to phenol (2 mmol/L), rapidly respired acetate and glucose in the presence of phenol, whereas phenol was only bioconverted to any unknown aromatic metabolite after 24 h. In the presence of phenol and 2‐chlorophenol, no removal of both substances was observed when using the unacclimatized sludge. Sludge that was acclimatized to the degradation of phenol showed an initial preference for easily degradable co‐substrates such as glucose or acetate with only a slow concomitant respiration of phenol. Respiration of phenol increased rapidly after the co‐substrates were depleted. The highest phenol degradation rates were 51.6 mmol/L d, when phenol was the sole carbon substrate. Vice versa, phenol was preferentially respired in the presence of a less easily degradable co‐substrate such as 2‐chlorophenol at a rate of around 7 mmol/L d. Further studies with an enrichment culture that was obtained after 7 successive transfers of phenol‐adapted sludge into mineral medium with phenol as the only carbon source indicated that the acetate and glucose‐degrading capabilities were diminished or almost completely lost. In these enrichment cultures, phenol degradation was not affected by the presence of glucose, but glucose was not degraded. In contrary, the presence of acetate slightly slowed down the phenol degradation rate of the enrichment culture. Growth of the microorganisms apparently occurred at the expense of phenol and acetate respiration. The result of this work may be of practical importance in determining the feeding strategy, which is the key factor for most biological wastewater treatment systems. When acetate was present together with phenol in a wastewater, the phenol degradation rates were influenced by acetate, since acetate was an intermediate of phenol degradation. Glucose as an “independent substrate” was apparently degraded by other bacteria via acetate, and in this way it also influenced the phenol degradation rates. Glucose‐degrading bacteria could be “washed out” from the acclimatized sludge during several transfers into mineral medium with phenol as the sole carbon source. If later on, glucose was added again, it remained undegraded and did not influence phenol degradation. 2‐Chlorophenol degradation also requires other bacteria than phenol degraders.  相似文献   

12.
Microbial degradation of trichloroethylene (TCE) has been demonstrated under aerobic conditions with propane. The primary objective of this research was to evaluate the feasibility of introducing a vapor phase form of TCE in the presence of propane to batch bioreactors containing a liquid phase suspension of Mycobacterium vaccae JOB5 to accomplish degradation. The reactor system consisted of three phases: a vapor phase introducing air, propane, and TCE; a liquid phase of the microbial suspension; and a solid phase in the form of the microorganisms. Long-term and initial rate experiments were conducted on three culture sets to evaluate microbial response. In two long-term test fed propane and approximately 0.1 mg/L and 1 mg/L of TCE, respectively, propane utilization was more efficient at the high TCE concentration (600 mmol propane/mmol TCE versus 11,900 mmol propane/mmol TCE), because the propane degradation rate was approximately the same for both tests (6.73 mg/L . h and 7.85 mg/L . h for the high and low tests). In addition, TCE utilization decreased after complete propane consumption. Initial rate tests on culture sets fed propane only revealed that cells with a history of exposure to a high concentration of TCE had the highest specific growth rate, but the lowest half-saturation constant (7.60e(-3) h(-1) and 0.10 mg/L, respectively). Tests fed variable TCE concentrations (0.031 to 5.378 mg/L in the liquid phase) with no propane showed TCE depletion but no biomass growth. The tests revealed that the TCE removal increased as the TCE concentration increased, indicating a greater removal efficiency at the higher concentrations. Tests with a constant initial propane concentration and variable liquid phase TCE concentration revealed that specific propane utilization was essentially the same. (c) 1995 John Wiley & Sons, Inc.  相似文献   

13.
Summary A defined mixed culture of the yeast Cryptococcus elinovii H1 and the bacterium Pseudomonas putida P8 was immobilized by adsorption on activated carbon and sintered glass, respectively. Depending on its adsorption capacity for phenol the activated carbon system could completely degrade 17 g/l in batch culture, whereas the sintered glass system was able to degrade phenol up to 4 g/l. During semicontinuous degradation of phenol (1 g/l) both systems reached constant degradation times with the fourth batch that lasted 8 h when using the activated carbon system and 10 h in the sintered glass system. In the course of continuous degradation of phenol the activated carbon system reached a maximum degradation rate of 9.2 g l–1 day–1 compared to 6.4 g l–1 day–1degraded by the sintered glass system. 2-Hydroxymuconic acid semialdehyde could be identified and quantitatively determined as a metabolite of phenol degradation by P. putida P8. Increased membrane permeability under the influence of phenol was demonstrated by the examination of K+ efflux from P. putida P8. Offprint requests to: H.-J. Rehm  相似文献   

14.
TCE degradation in a methanotrophic attached-film bioreactor   总被引:1,自引:0,他引:1  
Trichloroethene was degraded in expanded-bed bioreactors operated with mixed-culture methanotrophic attached films. Biomass concentrations of 8 to 75 g volatile solids (VS) per liter static bed (L(sb)) were observed. Batch TCE degradation rates at 35 degrees C followed the Michaelis-Menten model, and a maximum TCE degradation rate (q(max)) of 10.6 mg TCE/gVS . day and a half velocity coefficient (K(S)) of 2.8 mg TCE/L were predicted. Continuous-flow kinetics also followed the Michaelis-Menten model, but other parameters may be limiting, such as dissolved copper and dissolved methane-q(max) and K(S) were 2.9 mg TCE/gVS . day and 1.5 mg TCE/L, respectively, at low copper concentrations (0.003 to 0.006 mg Cu/L). The maximum rates decreased substantially with small increases in dissolved copper. Methane consumption during continuous-flow operation varied from 23 to 1200 g CH(4)/g TCE degraded. Increasing the influent dissolved methane concentration from 0.01 mg/L to 5.4 mg/L reduced the TCE degradation rate by nearly an order of magnitude at 21 degrees C. Exposure of biofilms to 1.4 mg/L tetrachloroethene (PCE) at 35 degrees C resulted in the loss of methane utilization ability. Tests with methanotrophs grown on granular activated carbon indicated that lower effluent TCE concentrations could be obtained. The low efficiencies of TCE removal and low degradation rates obtained at 35 degrees C suggest that additional improvements will be necessary to make methanotrophic TCE treatment attractive. (c) 1993 John Wiley & Sons, Inc.  相似文献   

15.
An anaerobic enrichment culture with glucose as the sole source of carbon and energy plus trichloroethene (TCE) as a potential electron acceptor was inoculated with material from a full size anaerobic charcoal reactor that biologically eliminated dichloromethane from contaminated groundwater (Stromeyer et al. 1991). In subcultures of this enrichment complete sequential transformation of 10 µM TCE viacis-dichloroethene and chloroethene to ethene was reproducibly observed. Maintenance of this activity on subcultivation required the presence of TCE in the medium. The enrichment culture was used to inoculate an anaerobic fixed-bed reactor containing sintered glass Raschig elements as support material. The reactor had a total volume of 1780 ml and was operated at 20 °C in an up-flow mode with a flow rate of 50 ml/h. It was fed continuously with 2 mM glucose and 55 µM TCE. Glucose was converted to acetate as the major product and to a minor amount of methane; TCE was quantitatively dehalogenated to ethene. When, in addition to TCE, tetrachloroethene or 1,2-dichloroethane were added to the system, these compounds were also dehalogenated to ethene. In contrast, 1,1,1-trichloroethane was not dehalogenated, but at 40 µM severely inhibited acetogenesis and methanogenesis. When the concentration of TCE in the feed was raised to 220 µM, chloroethene transiently accumulated, but after an adaptation period ethene was again the only volatile product detected in the effluent. The volumetric degradation rate at this stage amounted to 6.2 µmol/l/h. Since complete transformation of TCE occurred in the first sixth of the reactor volume, the degradation capacity of the system is estimated to exceed this value by factor of about ten.Abbreviations CA chloroethane - 1,1-DCA 1,1-dichloroethane - 1,2-DCA 1,2-dichloroethane - 1,1-DCE 1,1-dichloroethene - c-DCE cis-1,2-dichloroethene - t-DCE trans-1,2-dichloroethene - PCE tetrachloroethene, perchloroethene - 1,1,1-TCA 1,1,1-trichloroethane - TCE trichloroethene - VC chloroethene, vinyl chloride  相似文献   

16.
Various bacterial isolates from enrichments with isopropylbenzene (cumene), toluene or phenol as carbon and energy sources were tested as to their potential to oxidize trichloroethene (TCE). In contrast to toluene and phenol, all isolates enriched on isopropylbenzene were able to oxidize TCE. Two isolates, strain JR1 and strain BD1, were identified as Pseudomonas spec. and as Rhodococcus erythropolis, respectively. TCE oxidation was accompanied by the liberation of stoichiometric amounts of chloride. Initial TCE oxidation rate increased proportional to the substrate concentration from 25 to 200 M TCE. Maximal initial TCE-degradation rates found here were 4 to 5 nmol · min-1 · mg protein-1. The TCE degradation rate decreased with time. The two isolates showed a temperature optimum for TCE degradation between 10 and 20 °C. In addition to TCE, R. erythropolis BD1 degraded only cis- and trans-dichloroethene whereas Pseudomonas spec. JR1 was able to oxidize also 1,1-dichloroethene, vinyl chloride, trichloroethane, and 1,2-dichloroethane.Abbrevations DMF dimethylformamide - TCE trichloroethene  相似文献   

17.
Summary An aerobic mixed culture removing phenol was developed and maintained with a biomass of 2900mg/l–3400 mg/l in a fed-batch reactor by feeding phenol 500 mg/l/day. The mixed culture (AS) consisted of two non-phenol bacteria and eight phenol degraders, of which 4 gram-negative rods and 4 gram-positive rods, that could remove about 96% of the fed phenol in 12 hours at 30°C±3°C. This paper also reports the stability of the consortium with respect to its constitution and phenol degradation.  相似文献   

18.
Karim K  Gupta SK 《Biodegradation》2002,13(5):353-360
The removal of nitrophenols under denitrifying conditions was studied in bench-scale upflow anaerobic sludge blanket (UASB) reactors (R1, R2, R3 and R4) using three different carbon sources. Initially acetate was used as carbon source (substrate) in all the four reactors followed by glucose and methanol. Reactor R1 was kept as control and R2, R3, R4 were fed with 30 mg/l concentration of 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), and 2,4-dinitrophenol (2,4-DNP), respectively. Throughout the study the hydraulic retention time (HRT) and COD/NO3 -–N ratio were kept as 24 h and 10, respectively. 2-Aminophenol (2-AP), 4-aminophenol (4-AP) and 2-amino,4-nitrophenol (2-A,4-NP) were found as the major intermediate metabolites of 2-NP, 4-NP and 2,4-DNP degradation, respectively. Methanol was found to be a better carbon source for 4-NP and 2,4-DNP degradation as compared to acetate and glucose, while 2-NP degradation was not influenced much by the change of substrate. Nitrate nitrogen removal was always more than 99%. COD removal efficiency of the nitrophenol fed reactors varied from 85.7% to 97.7%. The oxidation-reduction potential (ORP) inside the reactors dropped, up to –300 mv, with glucose as carbon source. As the reactors were switched over to methanol, ORP increased to –190 mv. The granular sludge developed inside the reactors was light brown in colour when acetate and glucose were used as substrate, which turned dark brown to black at the end of methanol run. Biomass yield in terms of volatile suspended solids was observed as 0.15, 0.089 and 0.14 g per gram of COD removal for acetate, glucose and methanol, respectively.  相似文献   

19.
Cometabolic degradation of TCE by toluene-degrading bacteria has the potential for being a cost-effective bioremediation technology. However, the application of toluene may pose environmental problems. In this study, several plant essential oils and their components were examined as alternative inducer for TCE cometabolic degradation in a toluene-degrading bacterium, Rhodococcus sp. L4. Using the initial TCE concentration of 80 muM, lemon and lemongrass oil-grown cells were capable of 20 +/- 6% and 27 +/- 8% TCE degradation, which were lower than that of toluene-grown cells (57 +/- 5%). The ability of TCE degradation increased to 36 +/- 6% when the bacterium was induced with cumin oil. The induction of TCE-degrading enzymes was suggested to be due to the presence of citral, cumin aldehyde, cumene, and limonene in these essential oils. In particular, the efficiency of cumin aldehyde and cumene as inducers for TCE cometabolic degradation was similar to toluene. TCE transformation capacities (T (c)) for these induced cells were between 9.4 and 15.1 mug of TCE mg cells(-1), which were similar to the known toluene, phenol, propane or ammonia degraders. Since these plant essential oils are abundant and considered non-toxic to humans, they may be applied to stimulate TCE degradation in the environment.  相似文献   

20.
Phenol, a major pollutant in several industrial waste waters is often used as a model compound for studies on biodegradation. This study investigated the anoxic degradation of phenol and other phenolic compounds by a defined mixed culture of Alcaligenes faecalis and Enterobacter species. The culture was capable of degrading high concentrations of phenol (up to 600 mg/l) under anoxic conditions in a simple minimal mineral medium at an initial cell mass of 8 mg/l. However, the lag phase in growth and phenol removal increased with increase in phenol concentration. Dissolved CO2 was an absolute requirement for phenol degradation. In addition to nitrate, nitrite and oxygen could be used as electron acceptors. The kinetic constants, maximum specific growth rate max; inhibition constant, K i and saturation constant, K s were determined to be 0.206 h–1, 113 and 15 mg phenol/l respectively. p-Hydroxybenzoic acid was identified as an intermediate during phenol degradation. Apart from phenol, the culture utilized few other monocyclic aromatic compounds as growth substrates. The defined culture has remained stable with consistent phenol-degrading ability for more than 3 years and thus shows promise for its application in anoxic treatment of industrial waste waters containing phenolic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号