首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
In this work, we analyse the potential for using structural knowledge to improve the detection of the DNA-binding helix–turn–helix (HTH) motif from sequence. Starting from a set of DNA-binding protein structures that include a functional HTH motif and have no apparent sequence similarity to each other, two different libraries of hidden Markov models (HMMs) were built. One library included sequence models of whole DNA-binding domains, which incorporate the HTH motif, the second library included shorter models of ‘partial’ domains, representing only the fraction of the domain that corresponds to the functionally relevant HTH motif itself. The libraries were scanned against a dataset of protein sequences, some containing the HTH motifs, others not. HMM predictions were compared with the results obtained from a previously published structure-based method and subsequently combined with it. The combined method proved more effective than either of the single-featured approaches, showing that information carried by motif sequences and motif structures are to some extent complementary and can successfully be used together for the detection of DNA-binding HTHs in proteins of unknown function.  相似文献   

2.
3.
4.
5.
Lac repressor, lambda cro protein and their operator complexes are structurally, biochemically and genetically well analysed. Both proteins contain a helix-turn-helix (HTH) motif which they use to bind specifically to their operators. The DNA sequences 5'-GTGA-3' and 5'-TCAC-3' recognized in palindromic lac operator are the same as in lambda operator but their order is inverted form head to head to tail to tail. Different modes of aggregation of the monomers of the two proteins determine the different arrangements of the HTH motifs. Here we show that the HTH motif of lambda cro protein can replace the HTH motif of Lac repressor without changing its specificity. Such hybrid Lac repressor is unstable. It binds in vitro more weakly than Lac repressor but with the same specificity to ideal lac operator. It does not bind to consensus lambda operator.  相似文献   

6.
A method for discerning protein structures containing the DNA-binding helix-turn-helix (HTH) motif has been developed. The method uses statistical models based on geometrical measurements of the motif. With a decision tree model, key structural features required for DNA binding were identified. These include a high average solvent-accessibility of residues within the recognition helix and a conserved hydrophobic interaction between the recognition helix and the second alpha helix preceding it. The Protein Data Bank was searched using a more accurate model of the motif created using the Adaboost algorithm to identify structures that have a high probability of containing the motif, including those that had not been reported previously.  相似文献   

7.
Robust methods to detect DNA-binding proteins from structures of unknown function are important for structural biology. This paper describes a method for identifying such proteins that (i) have a solvent accessible structural motif necessary for DNA-binding and (ii) a positive electrostatic potential in the region of the binding region. We focus on three structural motifs: helix–turn-helix (HTH), helix–hairpin–helix (HhH) and helix–loop–helix (HLH). We find that the combination of these variables detect 78% of proteins with an HTH motif, which is a substantial improvement over previous work based purely on structural templates and is comparable to more complex methods of identifying DNA-binding proteins. Similar true positive fractions are achieved for the HhH and HLH motifs. We see evidence of wide evolutionary diversity for DNA-binding proteins with an HTH motif, and much smaller diversity for those with an HhH or HLH motif.  相似文献   

8.
The CI protein of coliphage 186 is responsible for maintaining the stable lysogenic state. To do this CI must recognize two distinct DNA sequences, termed A type sites and B type sites. Here we investigate whether CI contains two separate DNA binding motifs or whether CI has one motif that recognizes two different operator sequences. Sequence alignment with 186-like repressors predicts an N-terminal helix-turn-helix (HTH) motif, albeit with poor homology to a large master set of such motifs. The domain structure of CI was investigated by linker insertion mutagenesis and limited proteolysis. CI consists of an N-terminal domain, which weakly dimerizes and binds both A and B type sequences, and a C-terminal domain, which associates to octamers but is unable to bind DNA. A fusion protein consisting of the 186 N-terminal domain and the phage lambda oligomerization domain binds A and B type sequences more efficiently than the isolated 186 CI N-terminal domain, hence the 186 C-terminal domain likely mediates oligomerization and cooperativity. Site-directed mutation of the putative 186 HTH motif eliminates binding to both A and B type sites, supporting the idea that binding to the two distinct DNA sequences is mediated by a variant HTH motif.  相似文献   

9.
10.
Redesign of the bacteriophage 434 Cro repressor was accomplished by using an in vivo genetic screening system to identify new variants that specifically bound previously unrecognized DNA sequences. Site-directed, combinatorial mutagenesis of the 434 Cro helix-turn-helix (HTH) motif generated libraries of new variants which were screened for binding to new target sequences. Multiple mutations of 434 Cro that functionally converted wild-type (wt) 434 Cro DNA binding-sequence specificity to that of a lambda bacteriophage-specific repressor were identified. The libraries contained variations within the HTH sequence at only three positions. In vivo and in vitro analysis of several of the identified 434 Cro variants showed that the relatively few changes in the recognition helix of the HTH motif of 434 Cro resulted in specific and tight binding of the target DNA sequences. For the best 434 Cro variant identified, an apparent K(d) for lambda O(R)3 of 1 nM was observed. In competition experiments, this Cro variant was observed to be highly selective. We conclude that functional 434 Cro repressor variants with new DNA binding specificities can be generated from wt 434 Cro by mutating just the recognition helix. Important characteristics of the screening system responsible for the successful identifications are discussed. Application of the techniques presented here may allow the identification of DNA binding protein variants that functionally affect DNA regulatory sequences important in disease and industrial and biotechnological processes.  相似文献   

11.
ParB proteins are one of the three essential components of partition systems that actively segregate bacterial chromosomes and plasmids. In binding to centromere sequences, ParB assembles as nucleoprotein structures called partition complexes. These assemblies are the substrates for the partitioning process that ensures DNA molecules are segregated to both sides of the cell. We recently identified the sopC centromere nucleotides required for binding to the ParB homologue of plasmid F, SopB. This analysis also suggested a role in sopC binding for an arginine residue, R219, located outside the helix-turn-helix (HTH) DNA-binding motif previously shown to be the only determinant for sopC-specific binding. Here, we demonstrated that the R219 residue is critical for SopB binding to sopC during partition. Mutating R219 to alanine or lysine abolished partition by preventing partition complex assembly. Thus, specificity of SopB binding relies on two distinct motifs, an HTH and an arginine residue, which define a split DNA-binding domain larger than previously thought. Bioinformatic analysis over a broad range of chromosomal ParBs generalized our findings with the identification of a non-HTH positively charged residue essential for partition and centromere binding, present in a newly identified highly conserved motif. We propose that ParB proteins possess two DNA-binding motifs that form an extended centromere-binding domain, providing high specificity.  相似文献   

12.
In Rhizobium meliloti, expression of the nodulation genes (nod and nol genes) is under both positive and negative controls. These genes are activated by the products of the three related nodD genes, in conjunction with signal molecules from the host plants. We showed that negative regulation is mediated by a repressor protein, binding to the overlapping nodD1 and nodA as well as to the nodD2 promoters. The encoding gene, termed nolR, was identified and cloned from strain 41. By subcloning, deletion and Tn5 mutagenesis, a region of 594 base-pairs was found to be necessary and sufficient for repressor production in strains of R. meliloti lacking the repressor or in Escherichia coli. Sequence analysis revealed that nolR encodes a 13,349 Da protein, which is in agreement with the molecular weight of the NolR protein, determined after purification by affinity chromatography, utilizing long synthetic DNA multimers of the 21 base-pair conserved repressor-binding sequence. Our data suggest that the native NolR binds to the operator site in dimeric form. The NolR contains a helix-turn-helix motif, which shows homology to the DNA-binding sequences of numerous prokaryotic regulatory proteins such as the repressor XylR or the activator NodD and other members of the LysR family. Comparison of the putative DNA-binding helix-turn-helix motifs of a large number of regulatory proteins pointed to a number of novel regularities in this sequence. Hybridizations with an internal nolR fragment showed that sequences homologous to the nolR gene are present in all R. meliloti isolates tested, even in those that do not produce the repressor. In another species, such as Rhizobium leguminosarum, where NodD is autoregulated, however, such sequences were not detected.  相似文献   

13.
14.
15.
16.
17.
This review describes methods for the prediction of DNA binding function, and specifically summarizes a new method using 3D structural templates. The new method features the HTH motif that is found in approximately one-third of DNAbinding protein families. A library of 3D structural templates of HTH motifs was derived from proteins in the PDB. Templates were scanned against complete protein structures and the optimal superposition of a template on a structure calculated. Significance thresholds in terms of a minimum root mean squared deviation (rmsd) of an optimal superposition, and a minimum motif accessible surface area (ASA), have been calculated. In this way, it is possible to scan the template library against proteins of unknown function to make predictions about DNA-binding functionality.  相似文献   

18.
To determine the factors influencing the binding of L1 repressor to its cognate operator DNA, several gel shift as well as bioinformatic analyses have been carried out. The data show that time, temperature, salt, and pH each greatly affect the binding. In order to achieve optimum operator binding of L1 repressor in Tris buffer, the minimum requirements of time, temperature, salt, and pH were estimated to be 1 min, 32 degrees C, NaCl (50 mM), and 7.9, respectively. Interestingly Na+ but not NH4+, K+, or Li+ was found to augment significantly the binding activity of CI protein above the basal level. Anions like Cl-, citrate-, acetate-, and H2PO4- do not alter the binding of L1 repressor to its operator. We also show that an in frame deletion mutant of L1 repressor which does not carry the putative HTH motif (at its N-terminal end) fails to bind to its cognate operator DNA even at very high concentrations. The putative HTH motif was found highly conserved and evolutionarily very close to that of regulatory proteins of Y. pestis, H. marismortui, A. tumefaciens, etc. Taken together we suggest that N-terminal end of L1 repressor carries a HTH motif. Further analysis of the putative secondary structures of mycobacteriophage repressors reveals that two common regions encompassing more than 90% of primary sequence are present in all the four repressor molecules studied here. The results suggest that these common regions are utilized for carrying out identical functions.  相似文献   

19.
The helix-turn-helix (HTH) motif features frequently in protein DNA-binding assemblies. Viral pac site-targeting small terminase proteins possess an unusual architecture in which the HTH motifs are displayed in a ring, distinct from the classical HTH dimer. Here we investigate how such a circular array of HTH motifs enables specific recognition of the viral genome for initiation of DNA packaging during virus assembly. We found, by surface plasmon resonance and analytical ultracentrifugation, that individual HTH motifs of the Bacillus phage SF6 small terminase bind the packaging regions of SF6 and related SPP1 genome weakly, with little local sequence specificity. Nuclear magnetic resonance chemical shift perturbation studies with an arbitrary single-site substrate suggest that the HTH motif contacts DNA similarly to how certain HTH proteins contact DNA non-specifically. Our observations support a model where specificity is generated through conformational selection of an intrinsically bent DNA segment by a ring of HTHs which bind weakly but cooperatively. Such a system would enable viral gene regulation and control of the viral life cycle, with a minimal genome, conferring a major evolutionary advantage for SPP1-like viruses.  相似文献   

20.
Prediction of DNA-binding regulatory proteins in bacteriophage T7   总被引:1,自引:0,他引:1  
The high-resolution structure of several specific DNA-binding proteins have been determined, and they display a common structural motif which mediates their binding to DNA. This motif consists of two alpha-helices connected by a sharp turn, and its amino acid sequence has several distinguishing features. A computer search of the proteins coded by the genome of bacteriophage T7 has been performed in an attempt to identify those proteins that potentially contain this motif. Eight proteins were found to have regions similar to that of the motif. Of these, three are relatively small, have no known function and are good candidates for being DNA-binding regulatory proteins. The methods described use commonly available computer programs and databases, and are therefore easy to implement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号