首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
BACKGROUND AND OBJECTIVE: Acute hypoxia is associated with apoptosis and increase in ceramide levels in various organs. To assess the effect of chronic hypoxia on ceramide accumulation in the lungs and kidneys, we utilized an animal model mimicking cyanotic heart disease. METHODS: Rats were placed in a hypoxic environment at birth and oxygen levels were maintained at 10% in an air-tight Plexiglas chamber. Controls remained in room air. Animals were sacrificed and the lung and kidneys were harvested and weighed at 1 and 4 weeks, respectively. Ceramide levels were measured using a modified diacylglycerol kinase assay. RESULTS: Significant polycythemia developed in the hypoxic rats at 1 and 4 weeks. Indexed lung and kidney masses were significantly increased in the hypoxic animals as compared to controls at 1 and 4 weeks, respectively. The ceramide levels in the hypoxic lungs and kidneys were not significantly different from control groups at 1 and 4 weeks. [Ceramide/phosphate ratio in the kidneys was 1.28 +/- 0.17 (C) versus 1.18 +/- 0.12 (H) at 1 week; P = 0.39, and 1.46 +/- 0.08 (C) versus 1.33 +/- 0.15 (H) at 4 weeks (P = 0.44)] and [ceramide/phosphate ratio (pmol/nmol) in the lungs was 2.29 +/- 0.14 (C) versus 1.98 +/- 0.12 (H) at 1 week (P = 0.17), and 2.42 +/- 0.16 (C) versus 2.30 +/- 0.05 (H) at 4 weeks, P = 0.34]. CONCLUSION: The response of lungs and kidneys to chronic hypoxia includes increase in indexed mass and lack of ceramide accumulation. This is similar to the response previously reported in the chronically hypoxic brain and heart. Thus, various organs appear to have similar ceramide response pattern to chronic hypoxia.  相似文献   

2.
The effects of structural analogues of ceramide on rat brain mitochondrial ceramidase (mt-CDase) were investigated. Design of target compounds was mainly based on modifications of the key elements in ceramide and sphingosine, including stereochemistry, the primary and secondary hydroxyl groups, the trans double bond in the sphingosine backbone, and the amide bond. Mt-CDase was inhibited by (1) all stereoisomers of D-erythro-ceramide (D-e-Cer) with an IC50 of 0.11, 0.21, and 0.26 mol % for the L-threo, D-threo, and L-erythro isomers, respectively; (2) all stereoisomers of sphingosine with IC50 ranging from 0.04 to 0.14 mol %, N-methyl-D-erythro-sphingosine (N-Me-Sph, IC50 0.13 mol %); and (3) D-erythro-urea-C16-ceramide (C16-urea-Cer IC50 0.33 mol %). The enzyme was not inhibited by N-methyl ceramide (N-Me-C16-Cer), 1-O-methyl ceramide (1-O-Me-C16-Cer), 3-O-methyl ceramide (3-O-Me-C16-Cer), cis-D-erythro ceramide (cis-D-e-C16-Cer) and 3-O-methyl-D-erythro-sphingosine (3-O-Me-Sph). It was less potently inhibited by D-erythro-sphinganine (D-e-dh-Sph, IC50 0.20 mol %), D-erythro-dehydro sphingosine (D-e-deh-Sph, IC50 0.25 mol %), (2S)-3-keto-sphinganine (3-keto-dh-Sph, IC50 0.34 mol %), (2S) 3-keto-ceramide (3-keto-C16-Cer, IC50 0.60 mol %), and ceramine (C18-ceramine, IC50 0.62 mol %), 1-O-methyl-D-erythro-sphingosine (1-O-Me-Sph), cis-D-erythro-sphingosine (cis-D-e-Sph), (2S)-3-ketosphingosine (3-keto-Sph), (2S)-3-keto-dehyrosphingosine (3-keto-deh-Sph), and N,N-dimethyl-D-erythrosphingosine (N,N-diMe-Sph) were weak inhibitors whereas ceramide-1-phosphate (Cer-1-P) and sphingosine-1-phosphate (Sph-1-P) stimulated the enzyme. Thus, for inhibition, the enzyme requires the primary and secondary hydroxyl groups, the C4-C5 double bond, the trans configuration of this double bond, and the NH-protons from either the amide of ceramide or the amine of sphingosine. Therefore, these results provide important information on the requirements for ceramide-enzyme interaction, and they suggest that ligand interaction with the enzyme occurs in a high affinity low specificity manner, in contrast to catalysis which is highly specific for D-erythro-ceramide (D-e-Cer) but occurs with a lower affinity. In addition, this study identifies two competitive inhibitors of mt-CDase; urea-ceramide (C16-urea-Cer) and ceramine (C18-ceramine) that may be further developed and used to understand the mechanism of mt-CDase in vitro and in biologic responses.  相似文献   

3.
Sphingolipids (SLs) have a biomodulatory role in physiological as well as pathological cardiovascular conditions. This study aims to assess the variation of SL mediators and metabolizing enzymes in the growing and hypoxic rat heart. Sprague-Dawley rats were placed in a hypoxic environment at birth. Control animals remained in room air. In control animals, activities of acidic-sphingomyelinase (A-SMase), sphingomyelin synthase (SMS), glucosylceramide synthase (GCS), and ceramidase decreased with age in both ventricles whereas activity of neutral-sphingomyelinase (N-SMase) increased with age. Hypoxic RV mass was 171 and 229% that of controls, at 4 and 8 weeks, respectively. This was accompanied by an increase in RV myocardial ceramide synthesis, consumption and breakdown, with a net effect of suppression of ceramide accumulation and increase in diacylglycerol (DAG) concentration. In addition, significant increase in activities of: A-SMase by 26 and 29%, SMS by 108 and 40%, and ceramidase by 66 and 35%, in the hypoxic RV rats as compared to controls, was noted at 4 and 8 weeks of age, respectively. Sphingolipids and their regulating enzymes appear to play a role in adaptive responses to chronic hypoxia in the neonatal rat heart.  相似文献   

4.
5.
Ceramide is a lipid molecule that regulates diverse physiological and pathological reactions in part through inverting the topology of certain transmembrane proteins. This topological inversion is achieved through regulated alternative translocation (RAT), which reverses the direction by which membrane proteins are translocated across the endoplasmic reticulum during translation. However, owing to technical challenges in studying protein–ceramide interaction, it remains unclear how ceramide levels are sensed in cells to trigger RAT. Here, we report the synthesis of pac-C7-Cer, a photoactivatable and clickable short-chain ceramide analog that can be used as a probe to study protein–ceramide interactions. We demonstrate that translocating chain-associated membrane protein 2 (TRAM2), a protein known to control RAT of transmembrane 4 L6 subfamily member 20, and TRAM1, a homolog of TRAM2, interacted with molecules derived from pac-C7-Cer. This interaction was competed by naturally existing long-chain ceramide molecules. We showed that binding of ceramide and its analogs to TRAM2 correlated with their ability to induce RAT of transmembrane 4 L6 subfamily member 20. In addition to probing ceramide–TRAM interactions, we provide evidence that pac-C7-cer could be used for proteome-wide identification of ceramide-binding proteins. Our study provides mechanistic insights into RAT by identifying TRAMs as potential ceramide-binding proteins and establishes pac-C7-Cer as a valuable tool for future study of ceramide–protein interactions.  相似文献   

6.
Sphingolipid metabolites have been involved in the regulation of proliferation, differentiation and apoptosis. While cellular mechanisms of these processes have been extensively analysed in the post-mitotic neurons, little is known about proliferating neuronal precursors. We have taken as a model of neuroblasts the embryonic hippocampal cell line HN9.10e. Apoptosis was induced by serum deprivation and by treatment with N-acetylsphingosine (C2-Cer), a membrane-permeant analogue of the second messenger ceramide. Following C2-Cer addition, cytochrome c was released from mitochondria, [Ca(2+)](i) and caspase-3-like activity increased. Both cytochrome c release and rise of [Ca(2+)](i) occurred before caspase-3 activation and nuclear condensation. The intracellular levels of ceramide peaked at 1h following the serum deprivation. These results indicate that the serum deprivation induces a rise in the intracellular ceramide level, and that increased ceramide concentration leads to calcium dysregulation and release of cytochrome c followed by caspase-3 activation. We show that cytochrome c is released without a loss of mitochondrial transmembrane potential.  相似文献   

7.
This study reports a single-step analysis of the molecular species of endogenous ceramides and of the ceramide moiety of sphingomyelins in biological samples, using gas liquid chromatography (GLC). Silylated sphingomyelins were quantitatively converted to monosilylated ceramide upon injection into GLC, whereas the free ceramides were di-silylated on the primary and secondary alcohol function, as confirmed by mass spectrometry. The reproducible shift of the retention times between the mono- and di-silylated derivatives enables simultaneous quantification of the variety of sphingomyelin and ceramide molecular species. Overlapping diacylglycerols were first removed by a mild alkaline treatment of the lipid extract. The lowest detection limit (5 pmol) did not allow for identification of free ceramides in human plasma, but 17 molecular species of ceramides derived from sphingomyelins were quantified, from NC16:0 up to NC24:1. By contrast, three major free ceramides (NC16:0, NC24:0, and NC24:1) were quantified in HEPG2 and Chinese hamster ovary (CHO) cells. Upon induction of apoptosis in CHO cells by C6-ceramide, we could follow the disappearance of the C6-ceramide, its partial conversion to C6-sphingomyelin, and the prominent increase of NC16:0 ceramide. Thus, our method represents a unique procedure of simultaneous analysis of sphingomyelin and ceramide molecular species able to monitor the variation of the different pools in biological samples.  相似文献   

8.
The present study determined whether changes in the activity and isoforms of protein kinase C (PKC) are associated with cardiac hypertrophy and heart failure owing to volume overload induced by aortocaval shunt (AVS) in rats. A significant increase in Ca2+-dependent and Ca2+-independent PKC activities in the homogenate and particulate fractions, unlike the cystolic fraction, of the hypertrophied left ventricle (LV) were evident at 2 and 4 weeks after inducing the AVS. This increase coincided with increases in PKC-alpha and PKC-zeta contents at 2 week and increases in PKC-alpha, PKC-beta1, PKC-beta2, and PKC-zeta contents at 4 weeks in the hypertrophied LV. By 8 and 16 weeks of AVS, PKC activity and content were unchanged in the failing LV. On the other hand, no increase in the PKC activity or isoform content in the hypertrophied right ventricle (RV) was observed during the 16 weeks of AVS. The content of G alpha q was increased in the LV at 2 weeks but then decreased at 16 weeks, whereas G alpha q content was increased in RV at 2 and 4 weeks. Our data suggest that an increase in PKC isoform content neither plays an important role during the development of cardiac hypertrophy nor participates in the phase leading to heart failure owing to volume overload.  相似文献   

9.
We report that apoptosis induced by N-hexanoylsphingosine (C6-Cer) in CHP-100 human neuroepithelioma cells associates with accumulation of monohexosylsphingolipids produced not only by short-chain ceramide glycosylation but also through glycosylation of a ceramide pool endogenously produced. By high-performance thin layer chromatography on borate silica gel plates, newly formed monohexosylsphingolipids were identified as glucosylceramides (GluCer); however, accumulation of lactosylceramide or higher-order glycosphingolipids was not observed. GluCer accumulation was fully suppressed by D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol; moreover, while this inhibitor had no effect on cell viability when administered alone, it markedly potentiated the apoptotic effect of C6-Cer. These results provide evidence that activation of GluCer synthesis is an important mechanism through which CHP-100 cells attempt to escape ceramide-induced apoptosis.  相似文献   

10.
Ceramide synthases (CerSs) are key enzymes in the biosynthesis of ceramides and display a group of at least six different isoenzymes (CerS1-6). Ceramides itself are bioactive molecules. Ceramides with different N-acyl side chains (C14:0-Cer – C26:0-Cer) possess distinct roles in cell signaling. Therefore, the selective inhibition of specific CerSs which are responsible for the formation of a specific ceramide holds promise for a number of new clinical treatment strategies, e.g., cancer. Here, we identified four of hitherto unknown functional inhibitors of CerSs derived from the FTY720 (Fingolimod) lead structure and showed their inhibitory effectiveness by two in vitro CerS activity assays. Additionally, we tested the substances in two cell lines (HCT-116 and HeLa) with different ceramide patterns. In summary, the in vitro activity assays revealed out that ST1058 and ST1074 preferentially inhibit CerS2 and CerS4, while ST1072 inhibits most potently CerS4 and CerS6. Importantly, ST1060 inhibits predominately CerS2. First structure–activity relationships and the potential biological impact of these compounds are discussed.  相似文献   

11.
The melanocyte-inhibiting tripeptide (MTP) pyroGlu-Phe-GlyNH2 is present in tissue cultures of non-transformed melanocytes and melanoma cells and influences melanocyte growth in vitro . The objective of the present study was to investigate a possible effect of MTP on the in vivo growth of B16A2, a monoclonal experimental melanoma. The B16A2 clone was established by the limited dilution technique. It has a reduced DNA content and displays slower growth both in vivo and in vitro compared to the parent cell line (B16). B16A2 cells were injected subcutaneously into hairless mice at four sites (300 000 cells in 0.25 ml buffer/site). MTP was given by i.p. injection 3 times a week at two concentrations (1 pmol and 1 nmol/animal). The control animals received the equal volume of solvent. The animals were sacrificed 1 and 2 weeks after tumour transplantation, and all tumours were weighed. One week after transplantation, the animals who received 1 pmol MTP had fewer tumours and a reduced tumour load. Two weeks after the transplantation, the differences between control and treated animals were no longer observed. The results indicate that MTP temporarily delays in vivo tumour growth.  相似文献   

12.
The binding properties of a strain of Propionibacterium granulosum derived from human skin was investigated with reference to glycosphingolipids separated on thin layer chromatograms or coated in microtiter wells using externally (125I) and metabolically [( 35S]methionine) labeled bacteria. Binding was found to lactosylceramide (LacCer; Gal beta 1-4Glc beta 1-Cer) but not to glycolipids lacking the lactose sequence (i.e. Glc beta 1-Cer, Gal beta 1-Cer or Gal alpha 1-4Gal beta 1-Cer). In microtiter wells, binding occurred at 50 ng and became half-maximal at the theoretical value for a monomolecular layer of LacCer (i.e. 100-200 ng/well). The bacteria also bound to glycolipids with various substitutions (e.g. GalNAc beta 1-4, Gal beta 1-3GalNAc beta 1-4, Fuc alpha 1-2Gal beta 1-3GalNAc beta 1-4, Gal alpha 1-3, GlcNAc beta 1-3, Gal beta 1-3GlcNAc beta 1-3, Gal beta 1-4GlcNAc beta 1-3, and Gal beta 1-3(Fuc alpha 1-4)GlcNAc beta 1-3) at the Gal of LacCer, although only those species with GalNAc beta 1-4 or Gal beta 1-3GalNAc beta 1-4 were as active as LacCer itself. Glycolipids with other additions (e.g. Gal alpha 1-4 and NeuAc alpha 2-3) were negative. For unsubstituted LacCer, the binding required either a trihydroxy base or 2-hydroxy fatty acid, specifying the epithelial type of ceramide; LacCer composed of a dihydroxy base and nonhydroxy fatty acid was negative. This is interpreted as indicating that the proper presentation of the binding epitope depends on the ceramide structure. The relevance of this to biological membranes has not yet been established. Neither free lactose (up to 20 mg/ml) nor lactose-bovine serum albumin (5 mg/ml) prevented the binding of bacteria to LacCer, two facts that support the solid-phase binding data demonstrating a low affinity binding and the crucial importance of a particular lactose epitope.  相似文献   

13.
The chemotherapeutic agent cisplatin is widely used in treatment of solid tumors. In breast cancer cells, cisplatin produces early and marked changes in cell morphology and the actin cytoskeleton. These changes manifest as loss of lamellipodia/filopodia and appearance of membrane ruffles. Furthermore, cisplatin induces dephosphorylation of the actin-binding protein ezrin, and its relocation from membrane protrusions to the cytosol. Because cisplatin activates acid sphingomyelinase (ASMase), we investigate here the role of the ASMase/ceramide (Cer) pathway in mediating these morphological changes. We find that cisplatin induces a transient elevation in ASMase activity and its redistribution to the plasma membrane. This translocation is blocked upon overexpression of a dominant-negative (DN) ASMase(S508A) mutant and by a DN PKCdelta. Importantly; knockdown of ASMase protects MCF-7 cells from cisplatin-induced cytoskeletal changes including ezrin dephosphorylation. Reciprocally, exogenous delivery of D-e-C16-Cer, but not dihydro-C16-Cer, recapitulates the morphotropic effects of cisplatin. Collectively, these results highlight a novel tumor suppressor property for Cer and a function for ASMase in cisplatin-induced cytoskeletal remodeling.  相似文献   

14.
The transbilayer diffusion of unlabeled ceramides with different acyl chains (C6-Cer, C10-Cer, and C16-Cer) was investigated in giant unilamellar vesicles (GUVs) and in human erythrocytes. Incorporation of a very small percentage of ceramides (approximately 0.1% of total lipids) to the external leaflet of egg phosphatidylcholine GUVs suffices to trigger a shape change from prolate to pear shape vesicle. By observing the reversibility of this shape change the transmembrane diffusion of lipids was inferred. We found a half-time for unlabeled ceramide flip-flop below 1 min at 37 degrees C. The rapid diffusion of ceramides in a phosphatidylcholine bilayer was confirmed by flip-flop experiments with a spin-labeled ceramide analogue incorporated into large unilamellar vesicles. Shape change experiments were also carried out with human erythrocytes to determine the trans-membrane diffusion of unlabeled ceramides into a biological membrane. Addition of exogenous ceramides to the external leaflet of human erythrocytes did not trigger echinocyte formation immediately as one would anticipate from an asymmetrical accumulation of new amphiphiles in the outer leaflet but only after approximately 15 min of incubation at 20 degrees C in the presence of an excess of ceramide. We interpret these data as being indicative of a rapid ceramide equilibration between both erythrocyte leaflets as indicated also by electron spin resonance spectroscopy with a spin-labeled ceramide. The late appearance of echinocytes could reveal a progressive trapping of a fraction of the ceramide molecules in the outer erythrocytes leaflet. Thus, we cannot exclude the trapping of ceramides into plasma membrane domains.  相似文献   

15.
Mammalian ceramide synthases 1 to 6 (CerS1-6) generate Cer in an acyl-CoA-dependent manner, and expression of individual CerS has been shown to enhance the synthesis of ceramides with particular acyl chain lengths. However, the contribution of each CerS to steady-state levels of specific Cer species has not been evaluated. We investigated the knockdown of individual CerS in the MCF-7 human breast adenocarcinoma cell line by using small-interfering RNA (siRNA). We found that siRNA-induced downregulation of each CerS resulted in counter-regulation of nontargeted CerS. Additionally, each CerS knockdown produced unique effects on the levels of multiple sphingolipid species. For example, downregulation of CerS2 decreased very long-chain Cer but increased levels of CerS4, CerS5, and CerS6 expression and upregulated long-chain and medium-long-chain sphingolipids. Conversely, CerS6 knockdown decreased C16:0-Cer but increased CerS5 expression and caused non-C16:0 sphingolipids to be upregulated. Knockdown of individual CerS failed to decrease total sphingolipids or upregulate sphingoid bases. Treatment with siRNAs targeting combined CerS, CerS2, CerS5, and CerS6, did not change overall Cer or sphingomyelin mass but caused upregulation of dihydroceramide and hexosyl-ceramide and promoted endoplasmic reticulum stress. These data suggest that sphingolipid metabolism is robustly regulated by both redundancy in CerS-mediated Cer synthesis and counter-regulation of CerS expression.  相似文献   

16.
Our previous data showed the inhibitory effect of ethanol on AMP-activated protein kinase phosphorylation, which appears to be mediated, in part, through increased levels of hepatic ceramide and activation of protein phosphatase 2A (Liangpunsakul S, Sozio MS, Shin E, Zhao Z, Xu Y, Ross RA, Zeng Y, Crabb DW. Am J Physiol Gastrointest Liver Physiol 298: G1004-G1012, 2010). The effect of ethanol on AMP-activated protein kinase phosphorylation was reversed by imipramine, suggesting that the generation of ceramide via acid sphingomyelinase (ASMase) is stimulated by ethanol. In this study, we determined the effects of imipramine on the development of hepatic steatosis, the generation of ceramide, and downstream effects of ceramide on inflammatory, insulin, and apoptotic signaling pathways, in ethanol-fed mice. The effect of ethanol and imipramine (10 μg/g body wt ip) on ceramide levels, as well as inflammatory, insulin, and apoptotic signaling pathways, was studied in C57BL/6J mice fed the Lieber-DeCarli diet. Ethanol-fed mice developed the expected steatosis, and cotreatment with imipramine for the last 2 wk of ethanol feeding resulted in improvement in hepatic steatosis. Ethanol feeding for 4 wk induced impaired glucose tolerance compared with controls, and this was modestly improved with imipramine treatment. There was a significant decrease in total ceramide concentrations in response to imipramine in ethanol-fed mice treated with and without imipramine (287 ± 11 vs. 348 ± 12 pmol/mg tissue). The magnitude and specificity of inhibition on each ceramide species differed. A significant decrease was observed for C16 (28 ± 3 vs. 33 ± 2 pmol/mg tissue) and C24 (164 ± 9 vs. 201 ± 4 pmol/mg tissue) ceramide. Ethanol feeding increased the levels of the phosphorylated forms of ERK slightly and increased phospho-p38 and phospho-JNK substantially. The levels of phospho-p38 and phospho-JNK were reduced by treatment with imipramine. The activation of ASMase and generation of ceramide in response to ethanol feeding may underlie several effects of ethanol. ASMase inhibitors may be considered as a therapeutic target for alcohol-induced hepatic steatosis and activation of stress kinases.  相似文献   

17.
缺氧对右心室最大心肌心血流量的影响   总被引:3,自引:0,他引:3  
为了探讨氧对冠状血管贮备方法的影响,我们观察了缺氧对血流动力学及右心室最大心肌血汉量的变化。结果表明,急性缺氧引起的PaO2、心输出量及氧运送量降低,但右心室心肌血流量增加,右心室最大与安静血流量比值降低,生缺氧时PaO2降低,血球比积和右心室生理指数增加,氧运送量和右心室血流量正常,但最大血流量降低,小动脉增厚、外胶元增加,以上结果提示,慢性缺氧对冠状血管贮备减少可能是小动脉壁增厚、外胶元增加和  相似文献   

18.
缺氧对右心室最大心肌血流量的影响   总被引:4,自引:0,他引:4  
为了探讨缺氧对冠状血管贮备力的影响,我们观察了缺氧时大鼠血流动力学及右心室最大心肌血流量的变化。结果表明,急性缺氧引起PaO2、心输出量及氧运送量降低,但右心室心肌血流量增加,右心室最大与安静血流量比值降低。慢性缺氧时PaO2降低,血球比积和右心室重量指数增加,氧运送量和右心室血流量正常,但最大血流量降低,小动脉增厚、外膜胶元增加。以上结果提示,慢性缺氧对冠状血管贮备减少可能是小动脉壁增厚、外膜胶元增加和血液粘滞性增加及右心室肥大的结果。  相似文献   

19.
Ceramide, a major structural element in the cellular membrane, is a key regulatory factor in various cellular behaviors that are dependent on ceramide-induced association of specific proteins. However, molecular mechanisms that regulate ceramide-induced embryonic stem cell (ESC) migration are still not well understood. Thus, we investigated the effect of ceramide on migration and its related signal pathways in mouse ESCs. Among ceramide species with different fatty acid chain lengths, C16-Cer increased migration of mouse ESCs in a dose- (≥ 1 μM) and time-dependent (≥ 8 h) manners, as determined by the cell migration assay. C16-Cer (10 μM) increased protein-kinase C (PKC) phosphorylation. Subsequently, C16-Cer increased focal adhesion kinase (FAK) and Paxillin phosphorylation, which were inhibited by PKC inhibitor Bisindolylmaleimide I (1 μM). When we examined for the downstream signaling molecules, C16-Cer activated small G protein (Cdc42) and increased the formation of complex with Neural Wiskott-Aldrich Syndrome Protein (N-WASP)/Cdc42/Actin-Related Protein 2/3 (Arp2/3). This complex formation was disrupted by FAK- and Paxillin-specific siRNAs. Furthermore, C16-Cer-induced increase of filamentous actin (F-actin) expression was inhibited by Cdc42-, N-WASP-, and Arp2/3-specific siRNAs, respectively. Indeed, C16-Cer increased cofilin-1/F-actin interaction or F-actin/α-actinin-1 and α-actinin-4 interactions in the cytoskeleton compartment, which was reversed by Cdc42-specific siRNA. Finally, C16-Cer-induced increase of cell migration was inhibited by knocking down each signal pathway-related molecules with siRNA or inhibitors. In conclusion, C16-Cer enhances mouse ESC migration through the regulation of PKC and FAK/Paxillin-dependent N-WASP/Cdc42/Arp2/3 complex formation as well as through promoting the interaction between cofilin-1 or α-actinin-1/-4 and F-actin.  相似文献   

20.
Induction of heat shock protein (Hsp) 72 in the right ventricular muscle of the rat with heart failure following acute myocardial infarction (AMI) was examined. AMI was induced by the left coronary artery ligation (CAL). The animals at the 8th, but not 2nd, week after CAL revealed a decrease in cardiac output index (COI), suggesting that heart failure had developed by 8 weeks after CAL. Increases in the right ventricular developed pressure and the ratios of right ventricle/body weight and lung/body weight at the 2nd and 8th weeks showed the development of the right ventricular hypertrophy. After measurement of hemodynamic parameters, the hearts isolated from animals at the 2nd and 8th weeks after CAL (2w- and 8w-CAL hearts, respectively) were perfused and subjected to heat shock (at 42 degrees C, for 15 min) followed by 6-h perfusion. At the end of perfusion, Hsp72 content in the left ventricle without infarct area (viable LV) and the right ventricle (RV) was determined by the Western immunoblotting method. The production of myocardial Hsp72 in the viable LV and RV of the 2w-CAL heart increased after an exposure to heat shock. In contrast, induction of Hsp72 in the viable LV and RV of the 8w-CAL heart was blunted. The results suggest that the development of heart failure following AMI may result in a decrease in the ability for Hsp72 induction not only in the viable LV but also in the RV, leading to contractile dysfunction of the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号