首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Human DNA polymerase epsilon is composed of a 261 kDa catalytic polypeptide and a 55 kDa small subunit of unknown function. cDNAs encoding the small subunit of human and mouse DNA polymerase epsilon were cloned. The predicted polypeptides have molecular masses of 59.469 and 59.319 kDa respectively and they are 90% identical. The human and mouse polypeptides show 22% identity with the 80 kDa subunit of the five subunit DNA polymerase epsilon from the yeast Saccharomyces cerevisiae. The high degree of conservation suggests that the 55 kDa subunit shares an essential function with the yeast 80 kDa subunit, which was earlier suggested to be involved in S phase cell cycle control in a pathway that is able to sense and signal incomplete replication. The small subunits of human and mouse DNA polymerase epsilon also show homology to the C-terminal domain of the second largest subunit of DNA polymerase alpha. The gene for the small subunit of human DNA polymerase epsilon (POLE2) was localized to chromosome 14q21-q22 by fluorescence in situ hybridization.  相似文献   

3.
The contribution of human DNA polymerase epsilon to nuclear DNA replication was studied. Antibody K18 that specifically inhibits DNA polymerase activity of human DNA polymerase epsilon in vitro significantly inhibits DNA synthesis both when microinjected into nuclei of exponentially growing human fibroblasts and in isolated HeLa cell nuclei. The capability of this neutralizing antibody to inhibit DNA synthesis in cells is comparable to that of monoclonal antibody SJK-132-20 against DNA polymerase alpha. Contrary to the antibody against DNA polymerase alpha, antibody K18 against DNA polymerase epsilon did not inhibit SV40 DNA replication in vitro. These results indicate that DNA polymerase epsilon plays a role in replicative DNA synthesis in proliferating human cells like DNA polymerase alpha, and that this role for DNA polymerase epsilon cannot be modeled by SV40 DNA replication.  相似文献   

4.
We previously reported purification of two forms of DNA polymerase epsilon from calf thymus (Crute, J. J., Wahl, A. F., and Bambara, R. A. (1986) Biochemistry 25, 26-36). We have now used the "polymerase trap" photolabeling method to identify the polypeptides containing the polymerase active site in each enzyme preparation. The molecular mass of these polypeptides are 210 and 145 kDa for the polymerases now designated epsilon and epsilon*, respectively. Renaturation of polymerase activity from denaturing gel electrophoresis corroborates the polymerase trap results. Photolabeling of polymerase fractions suggests that the smaller subunit is derived by proteolysis of the larger subunit during purification. Native sedimentation coefficient measurements of polymerase-containing column fractions further suggest a precursor/product relationship between the two polymerases. Response of polymerization activity to a battery of inhibitors normally used to distinguish mammalian nuclear DNA polymerases was found to be essentially identical for polymerases epsilon, epsilon*, and the epsilon* generated in fractions initially containing epsilon. These latter results demonstrate that the loss of the protease-sensitive domain of the active site subunit does not affect catalytic function as measured in a standard DNA polymerase assay. The sole apparent functional difference observed here between the epsilon and epsilon* forms is evidence that only the full-length epsilon form can be directly photocrosslinked to dATP, independent of DNA synthesis. Photolabeling of the post-microsomal supernatant fraction from thymus glands obtained from fetal calves reveals the presence of both the epsilon and epsilon* polypeptide.  相似文献   

5.
6.
Perrino FW  Harvey S  McNeill SM 《Biochemistry》1999,38(48):16001-16009
The epsilon subunit is the 3'-->5' proofreading exonuclease that associates with the alpha and theta subunits in the E. coli DNA polymerase III. Two fragments of the epsilon protein were prepared, and binding of these epsilon fragments with alpha and theta was investigated using gel filtration chromatography and exonuclease stimulation assays. The N-terminal fragment of epsilon, containing amino acids 2-186 (epsilon186), is a relatively protease-resistant core domain of the exonuclease. The purified recombinant epsilon186 protein catalyzes the cleavage of 3' terminal nucleotides, demonstrating that the exonuclease domain of epsilon is present in the N-terminal region of the protein. The absence of the C-terminal 57 amino acids of epsilon in the epsilon186 protein reduces the binding affinity of epsilon186 for alpha by at least 400-fold relative to the binding affinity of epsilon for alpha. In addition, stimulation of the epsilon186 exonuclease by alpha using a partial duplex DNA is about 50-fold lower than stimulation of the epsilon exonuclease by alpha. These results indicate that the C-terminal region of epsilon is required in the epsilonalpha association. To directly demonstrate that the C-terminal region of epsilon contains the alpha-association domain fusion protein, constructs containing the maltose-binding protein (MBP) and fragments of the C-terminal region of epsilon were prepared. Gel filtration analysis demonstrates that the alpha-association domain of epsilon is contained within the C-terminal 40 amino acids of epsilon. Also, the epsilon186 protein forms a tight complex with theta, demonstrating that the association of theta with epsilon is localized to the N-terminal region of epsilon. Association of epsilon186 and theta is further supported by the stimulation of the epsilon186 exonuclease in the presence of theta. These data support the concept that epsilon contains a catalytic domain located within the N-terminal region and an alpha-association domain located within the C-terminal region of the protein.  相似文献   

7.
DNA polymerase delta was purified from human placenta and its polymerase catalytic subunit identified as a 125-kDa polypeptide by activity staining. This 125-kDa form of DNA polymerase delta resembles that reported from calf thymus (Lee, M. Y. W. T., Tan, C.-K., Downey, K. M., and So, A. G. (1984) Biochemistry 23, 1906-1913) and differs in molecular properties from a previously described form isolated from human placenta (Lee, M. Y. W. T., and Toomey, N. L. (1987) Biochemistry 26, 1076-1085) and now referred to as DNA polymerase epsilon. The properties of DNA polymerase delta were further investigated to determine its relationships with DNA polymerase epsilon. The two enzymes differed in their response to proliferating cell nuclear antigen. Monoclonal antibodies against DNA polymerase delta were raised and used to examine its immunochemical relationships with DNA polymerase alpha and epsilon. These studies provided evidence that all three proteins are structurally distinct but share a common epitope(s). Immunofluorescence microscopy indicates that DNA polymerase delta and possibly also DNA polymerase epsilon are localized to the nucleus.  相似文献   

8.
DNA polymerase epsilon (Pol epsilon) from Saccharomyces cerevisiae consists of four subunits (Pol2, Dpb2, Dpb3, and Dpb4) and is essential for chromosomal DNA replication. Biochemical characterizations of Pol epsilon have been cumbersome due to protease sensitivity and the limited amounts of Pol epsilon in cells. We have developed a protocol for overexpression and purification of Pol epsilon from S. cerevisiae. The native four-subunit complex was purified to homogeneity by conventional chromatography. Pol epsilon was characterized biochemically by sedimentation velocity experiments and gel filtration experiments. The stoichiometry of the four subunits was estimated to be 1:1:1:1 from colloidal Coomassie-stained gels. Based on the sedimentation coefficient (11.9 S) and the Stokes radius (74.5 A), a molecular mass for Pol epsilon of 371 kDa was calculated, in good agreement with the calculated molecular mass of 379 kDa for a heterotetramer. Furthermore, analytical equilibrium ultracentrifugation experiments support the proposed heterotetrameric structure of Pol epsilon. Thus, both DNA polymerase delta and Pol epsilon are purified as monomeric complexes, in agreement with accumulating evidence that Pol delta and Pol epsilon are located on opposite strands of the eukaryotic replication fork.  相似文献   

9.
DNA polymerase epsilon, formerly known as a proliferating cell nuclear antigen-independent form of DNA polymerase delta, has been shown elsewhere to be catalytically and structurally distinct from DNA polymerase delta. The catalytic activity of HeLa DNA polymerase epsilon, an enzyme consisting of greater than 200- and 55-kDa polypeptides, was assigned to the larger polypeptide by polymerase trap reaction. This catalytic polypeptide was cleaved by incubation with trypsin into two polypeptide fragments with molecular masses of 122 and 136 kDa, the former of which was relatively resistant to further proteolysis and possessed the polymerase activity. The cleavage increased the polymerase and exonuclease activities of the enzyme some 2-3-fold. DNA polymerase epsilon was also purified in a smaller 140-kDa form from calf thymus. The digestion of this form of the enzyme by trypsin also generated a 122-kDa polypeptide. These results suggest that the catalytic core of DNA polymerase epsilon is a 258-kDa polypeptide that is composed of two segments linked with a protease-sensitive area. One of the segments harbors both DNA polymerase and 3'----5' exonuclease activities. In spite of the different polypeptide structures, the catalytic properties of the HeLa enzyme, its trypsin-digested form, and the calf thymus enzyme remained essentially the same.  相似文献   

10.
The current model of eukaryotic DNA replication involves the two DNA polymerases delta and alpha as the leading and lagging strand enzymes, respectively. A DNA polymerase first discovered in yeast has now been found in all eukaryotic cells and is termed DNA polymerase epsilon. In yeast, the gene for DNA polymerase epsilon has recently been found to be essential for viability, raising new questions about its functions.  相似文献   

11.
DNA polymerase epsilon is a mammalian polymerase that has a tightly associated 3'----5' exonuclease activity. Because of this readily detectable exonuclease activity, the enzyme has been regarded as a form of DNA polymerase delta, an enzyme which, together with DNA polymerase alpha, is in all probability required for the replication of chromosomal DNA. Recently, it was discovered that DNA polymerase epsilon is both catalytically and structurally distinct from DNA polymerase delta. The most striking difference between the two DNA polymerases is that processive DNA synthesis by DNA polymerase delta is dependent on proliferating cell nuclear antigen (PCNA), a replication factor, while DNA polymerase epsilon is inherently processive. DNA polymerase epsilon is required at least for the repair synthesis of UV-damaged DNA. DNA polymerases are highly conserved in eukaryotic cells. Mammalian DNA polymerases alpha, delta and epsilon are counterparts of yeast DNA polymerases I, III and II, respectively. Like DNA polymerases I and III, DNA polymerase II is also essential for the viability of cells, which suggests that DNA polymerase II (and epsilon) may play a role in DNA replication.  相似文献   

12.
By using a complementation assay that enabled DNA polymerase delta and DNA polymerase epsilon to replicate a singly-DNA primed M13 DNA in the presence of proliferating cell nuclear antigen (PCNA) and Escherichia coli single-stranded DNA binding protein (SSB), we have purified from calf thymus in a five step procedure a multipolypeptide complex with molecular masses of polypeptides of 155, 70, 60, 58, 39 (doublet), 38 (doublet) and 36 kDa. The protein is very likely replication factor C (Tsurimoto, T. and Stillman, B. (1989) Mol. Cell. Biol. 9, 609-619). This conclusion is based on biochemical and physicochemical data and the finding that it contains a DNA stimulated ATPase which is under certain conditions stimulated by PCNA. Together RF-C, PCNA and ATP convert DNA polymerases delta and epsilon to holoenzyme forms, which were able to replicate efficiently SSB-covered singly-DNA primed M13 DNA. Calf thymus RF-C could form a primer recognition complex on a 3'-OH primer terminus in the presence of calf thymus PCNA and ATP. Holoenzyme complexes of DNA polymerase delta and epsilon could be isolated suggesting that these enzymes directly interact with the auxiliary proteins in a similar way. Under optimal replication conditions on singly-DNA primed M13 DNA the DNA synthesis rate of DNA polymerase delta was higher than of DNA polymerase epsilon. Based on these functional date possible roles of these two DNA polymerases in eukaryotic DNA replication are discussed.  相似文献   

13.
Saccharomyces cerevisiae DNA polymerase epsilon (pol epsilon) is essential for chromosomal replication. A major form of pol epsilon purified from yeast consists of at least four subunits: Pol2p, Dpb2p, Dpb3p, and Dpb4p. We have investigated the protein/protein interactions between these polypeptides by using expression of individual subunits in baculovirus-infected Sf9 insect cells and by using the yeast two-hybrid assay. The essential subunits, Pol2p and Dpb2p, interact directly in the absence of the other two subunits, and the C-terminal half of POL2, the only essential portion of Pol2p, is sufficient for interaction with Dpb2p. Dpb3p and Dpb4p, non-essential subunits, also interact directly with each other in the absence of the other two subunits. We propose that Pol2p.Dpb2p and Dpb3p.Dpb4p complexes interact with each other and document several interactions between individual members of the two respective complexes. We present biochemical evidence to support the proposal that pol epsilon may be dimeric in vivo. Gel filtration of the Pol2p.Dpb2p complexes reveals a novel heterotetrameric form, consisting of two heterodimers of Pol2p.Dpb2p. Dpb2p, but not Pol2p, exists as a homodimer, and thus the Pol2p dimerization may be mediated by Dpb2p. The pol2-E and pol2-F mutations that cause replication defects in vivo weaken the interaction between Pol2p and Dpb2p and also reduce dimerization of Pol2p. This suggests, but does not prove, that dimerization may also occur in vivo and be essential for DNA replication.  相似文献   

14.
GINS is a protein complex found in eukaryotic cells that is composed of Sld5p, Psf1p, Psf2p, and Psf3p. GINS polypeptides are highly conserved in eukaryotes, and the GINS complex is required for chromosomal DNA replication in yeasts and Xenopus egg. This study reports purification and biochemical characterization of GINS from Saccharomyces cerevisiae. The results presented here demonstrate that GINS forms a 1:1 complex with DNA polymerase epsilon (Pol epsilon) holoenzyme and greatly stimulates its catalytic activity in vitro. In the presence of GINS, Pol epsilon is more processive and dissociates more readily from replicated DNA, while under identical conditions, proliferating cell nuclear antigen slightly stimulates Pol epsilon in vitro. These results strongly suggest that GINS is a Pol epsilon accessory protein during chromosomal DNA replication in budding yeast. Based on these results, we propose a model for molecular dynamics at eukaryotic chromosomal replication fork.  相似文献   

15.
Vitamin B(6) compounds such as pyridoxal 5(')-phosphate (PLP), pyridoxal (PL), pyridoxine (PN), and pyridoxamine (PM), which reportedly have anti-angiogenic and anti-cancer effects, were thought to be inhibitors of some types of eukaryotic DNA polymerases. PL moderately inhibited only the activities of calf DNA polymerase alpha (pol alpha), while PN and PM had no inhibitory effects on any of the polymerases tested. On the other hand, PLP, a phosphated form of PL, was potentially a strong inhibitor of pol alpha and epsilon from phylogenetic-wide organisms including mammals, fish, insects, plants, and protists. PLP did not suppress the activities of prokaryotic DNA polymerases such as Escherichia coli DNA polymerase I and Taq DNA polymerase, or DNA-metabolic enzymes such as deoxyribonuclease I. For pol alpha and epsilon, PLP acted non-competitively with the DNA template-primer and competitively with the nucleotide substrate. Since PL was converted to PLP in vivo after being incorporated into human cancer cells, the anti-angiogenic and anti-cancer effects caused by PL must have been caused by the inhibition of pol alpha and epsilon activities after conversion to PLP.  相似文献   

16.
Conformations of IgE bound to its receptor Fc epsilon RI and in solution.   总被引:2,自引:0,他引:2  
Y Zheng  B Shopes  D Holowka  B Baird 《Biochemistry》1991,30(38):9125-9132
  相似文献   

17.
In Schizosaccharomyces pombe, the catalytic subunit of DNA polymerase epsilon (Pol epsilon) is encoded by cdc20(+) and is essential for chromosomal DNA replication. Here we demonstrate that the N-terminal half of Pol epsilon that includes the highly conserved polymerase and exonuclease domains is dispensable for cell viability, similar to observations made with regard to Saccharomyces cerevisiae. However, unlike budding yeast, we find that fission yeast cells lacking the N terminus of Pol epsilon (cdc20(DeltaN-term)) are hypersensitive to DNA-damaging agents and have a cell cycle delay. Moreover, the viability of cdc20(DeltaN-term) cells is dependent on expression of rad3(+), hus1(+), and chk1(+), three genes essential for the DNA damage checkpoint control. These data suggest that in the absence of the N terminus of Pol epsilon, cells accumulate DNA damage that must be repaired prior to mitosis. Our observation that S phase occurs more slowly for cdc20(DeltaN-term) cells suggests that DNA damage might result from defects in DNA synthesis. We hypothesize that the C-terminal half of Pol epsilon is required for assembly of the replicative complex at the onset of S phase. This unique and essential function of the C terminus is preserved in the absence of the N-terminal catalytic domains, suggesting that the C terminus can interact with and recruit other DNA polymerases to the site of initiation.  相似文献   

18.
J Tuusa  L Uitto    J E Syvoja 《Nucleic acids research》1995,23(12):2178-2183
In order to shed light on the role of mammalian DNA polymerase epsilon we studied the expression of mRNA for the human enzyme during cell proliferation and during the cell cycle. Steady-state levels of mRNA encoding DNA polymerase epsilon were elevated dramatically when quiescent (G0) cells were stimulated to proliferate (G1/S) in a similar manner to those of DNA polymerase alpha. Message levels of DNA polymerase beta were unchanged in similar experiments. The concentration of immunoreactive DNA polymerase epsilon was also much higher in extracts from proliferating tissues than in those from non-proliferating or slowly proliferating tissues. The level of DNA polymerase epsilon mRNA in actively cycling cells synchronized with nocodazole and in cells fractionated by counterflow centrifugal elutriation showed weaker variation, being at its highest at the G1/S stage boundary. The results presented strongly suggest that mammalian DNA polymerase epsilon is involved in the replication of chromosomal DNA and/or in a repair process that may be substantially activated during the replication of chromosomal DNA. A hypothetical role for DNA polymerase epsilon in a repair process coupled to replication is discussed.  相似文献   

19.
The isolation of DNA polymerase (Pol) epsilon from extracts of HeLa cells is described. The final fractions contained two major subunits of 210 and 50 kDa which cosedimented with Pol epsilon activity, similar to those described previously (Syvaoja, J., and Linn, S. (1989) J. Biol. Chem. 264, 2489-2497). The properties of the human Pol epsilon and the yeast Pol epsilon were compared. Both enzymes elongated singly primed single-stranded circular DNA templates. Yeast Pol epsilon required the presence of a DNA binding protein (SSB) whereas human Pol epsilon required the addition of SSB, Activator 1 and proliferating cell nuclear antigen (PCNA) for maximal activity. Both enzymes were totally unable to elongate primed DNA templates in the presence of salt; however, activity could be restored by the addition of Activator 1 and PCNA. Like Pol delta, Pol epsilon formed complexes with SSB-coated primed DNA templates in the presence of Activator 1 and PCNA which could be isolated by filtration through Bio-Gel A-5m columns. Unlike Pol delta, Pol epsilon bound to SSB-coated primed DNA in the absence of the auxiliary factors. In the presence of salt, Pol epsilon complexes were less stable than they were in the absence of salt. In the in vitro simian virus 40 (SV40) T antigen-dependent synthesis of DNA containing the SV40 origin of replication, yeast Pol epsilon but not human Pol epsilon could substitute for yeast or human Pol delta in the generation of long DNA products. However, human Pol epsilon did increase slightly the length of DNA chains formed by the DNA polymerase alpha-primase complex in SV40 DNA synthesis. The bearing of this observation on the requirement for a PCNA-dependent DNA polymerase in the synthesis and maturation of Okazaki fragments is discussed. However, no unique role for human Pol epsilon in the in vitro SV40 DNA replication system was detected.  相似文献   

20.
Liu W  Linn S 《Nucleic acids research》2000,28(21):4180-4188
Human DNA polymerase epsilon (pol ) normally contains a 261-kDa catalytic subunit (p261), but from some sources it is isolated as a 140-kDa catalytic core of p261. This shortened form possesses normal or somewhat enhanced polymerase activity and its significance is unknown. We report here that caspase-3 and calpain can form p140 from p261 in vitro and in vivo and that during early stages of apoptosis induced in Jurkat cells by staurosporine or anti-Fas-activating antibody, p261 is cleaved into p140 by caspase-3. At later stages, activated calpain might also contribute to this conversion. The sites of cleavage by caspase-3 have been identified, and mutations at these ‘DEAD boxes’ resulted in cleavage-resistant enzyme. Cleavage at these sites separates the ‘N-terminal catalytic core’ from the ‘C-terminal’ regions described for p261. Cleavage does not occur during necrosis or following exposure to H2O2 or methanesulfonic acid methyl ester. p140 is unlikely to be able to functionally replace p261 in vivo, since it does not bind to PCNA or the other pol subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号