首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells of Synechococcus 6301 were briefly exposed to a phycocyanin-absorbed light in the presence of DCMU. PS II trap closure was then estimated from fluorescence induction measurements with excitation light absorbed predominantly either by chlorophyll or by phycocyanin. In cells adapted to light-state 2, the exposure to light absorbed by phycocyanin closed only a proportion of the PS II centres that could be closed by exposure to light absorbed by chlorophyll. This distinction was reduced in cells adapted to light-state 1. We conclude that a proportion of PS II core complexes become decoupled from the phycobilisomes during the transition to light-state 2.  相似文献   

2.
Cells of the cyanobacterium Synechococcus 6301 were grown in yellow light absorbed primarily by the phycobilisome (PBS) light-harvesting antenna of photosystem II (PS II), and in red light absorbed primarily by chlorophyll and, therefore, by photosystem I (PS I). Chromatic acclimation of the cells produced a higher phycocyanin/chlorophyll ratio and higher PBS-PS II/PS I ratio in cells grown under PS I-light. State 1-state 2 transitions were demonstrated as changes in the yield of chlorophyll fluorescence in both cell types. The amplitude of state transitions was substantially lower in the PS II-light grown cells, suggesting a specific attenuation of fluorescence yield by a superimposed non-photochemical quenching of excitation. 77 K fluorescence emission spectra of each cell type in state 1 and in state 2 suggested that state transitions regulate excitation energy transfer from the phycobilisome antenna to the reaction centre of PS II and are distinct from photosystem stoichiometry adjustments. The kinetics of photosystem stoichiometry adjustment and the kinetics of the appearance of the non-photochemical quenching process were measured upon switching PS I-light grown cells to PS II-light, and vice versa. Photosystem stoichiometry adjustment was complete within about 48 h, while the non-photochemical quenching occurred within about 25 h. It is proposed that there are at least three distinct phenomena exerting specific effects on the rate of light absorption and light utilization by the two photoreactions: state transitions; photosystem stoichiometry adjustment; and non-photochemical excitation quenching. The relationship between these three distinct processes is discussed.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F relative fluorescence intensity at emission wavelength nm - F o fluorescence intensity when all PS II traps are open - light 1 light absorbed preferentially by PS I - light 2 light absorbed preferentially by PS II - PBS phycobilisome - PS photosystem  相似文献   

3.
Kaori Ohki  Tetzuya Katoh 《Planta》1976,129(3):249-251
Summary When cells of Anabaena variabilis, all the phycobilin pigments of which had been newly synthesized in the dark, were excited by light absorbed in phycocyanin, the fluorescence emission spectrum showed a peak corresponding to the emission from allophycocyanin, but no emission from chlorophyll. These cells were active in photosynthesis and, when excited by light absorbed by chlorophyll, the emitted fluorescence was characteristic of photosystem II chlorophyll. This indicates that dark synthesized phycocyanin is capable of excitation transfer to allophycocyanin but not to photosystem II chlorophyll.Abbreviation CMU 3-(p-chlorophenyl)-1,1-dimethylurea  相似文献   

4.
《BBA》1987,892(1):48-55
We have studied the redistribution of excitation energy in the cryptomonad alga Cryptomonas ovata. Low-temperature fluorescence emission spectra from cells preilluminated with light 1 and light 2 show that preferential excitation of Photosystem II (PS II) leads to decreased fluorescence emission from chlorophyll (Chl) a associated with PS II relative to the emission following the preferential excitation of Photosystem I (PS I). The fluorescence change is indicative of a light-state transition by the cells. However, comparision of measurements of the kinetics of P-700 photooxidation by cells fixed with glutaraldehyde following illumination with light 1 or light 2 shows that the relative activity of PS I is lower in cells fixed in light 2. This is in contrast to the expectation for cells in State 2. Excitation spectra for the fluorescence emission from PS II Chl a show that preferential excitation of PS II leads to a decreased probability for energy transfer from phycoerythrin and Chl c2 to PS II when compared to cells in which PS I is preferentially excited. This result is in accordance with recent picosecond time-resolved fluorescence studies (Bruce, D., Biggins, J., Charbonneau, S. and Thewalt, M. (1987) in Progress in Photosynthesis Research (Biggins, J., ed.), Vol. II, pp. 777–780, Martinus Nijhoff, Dordrecht) and we, therefore, suggest that C. ovata does not undergo a classical light-state transition. However, preferential excitation of PS II or PS I appears to cause pigment-protein conformational changes which change the probability for energy transfer from phycoerythrin to PS II, and we suggest that this may be a mechanism for photoprotection of PS II. Studies of the kinetics of excitation-energy redistribution, and of the effects of electron-transport inhibitors and uncouplers of photophosphorylation indicate that the mechanism for excitation-energy redistribution in C. ovata and phycobilisome-containing organisms may be similar.  相似文献   

5.
The effect of regulation of photosystem (PS) composition onthe photosynthetic steady state was examined using the cyanobacteriumSynechocystis PCC 6714. Photosynthetic rates under orange lightabsorbed by phycobiliprotein (PBP) (PBP light) and under redlight absorbed mainly by chlorophyll a (Chi a light) were comparedfor the cells before and after adaptation to the respectivelight regimes. Results were as follows: (1) Photosynthetic ratesper absorbed light quantum became higher after adaptation thanthose before adaptation. (2) Under Chi a light, the low turnoverrate of PS I before adaptation was markedly enhanced after adaptation(decrease in PS I content), but in the case of adaptation toPBP light (increase in PS I content), a marked enhancement ofPS II turnover occurred after adaptation. (3) In the formercase, a low turnover rate of PS I before adaptation was dueto the occurrence of a large number of closed PS I complexes,but in the latter, limited excitation of PS I caused a largenumber of closed PS II complexes before adaptation. Resultsfor the latter case indicate that the energy transfer from phycobilisome(PBS) to one PS I complex is far smaller than that from PBSto one PS II complex, and that the imbalance of energy distributionfrom PBS to the two photosystems is compensated for by the increasein the number of PS I complexes. (Received September 10, 1987; Accepted December 9, 1987)  相似文献   

6.
The photosynthetic apparatus of Synechocystis sp. PCC 6714 cells grown chemoheterotrophically (dark with glucose as a carbon source) and photoautotrophically (light in a mineral medium) were compared. Dark-grown cells show a decrease in phycocyanin content and an even greater decrease in chlorophyll content with respect to light-grown cells. Analysis of fluorescence emission spectra at 77 K and at 20 °C, of dark- and light-grown cells, and of phycobilisomes isolated from both types of cells, indicated that in darkness the phycobiliproteins were assembled in functional phycobilisomes (PBS). The dark synthesized PBS, however, were unable to transfer their excitation energy to PS II chlorophyll. Upon illumination of dark-grown cells, recovery of photosynthetic activity, pigment content and energy transfer between PBS and PS II was achieved in 24–48 h according to various steps. For O2 evolution the initial step was independent of protein synthesis, but the later steps needed de novo synthesis. Concerning recovery of PBS to PS II energy transfer, light seems to be necessary, but neither PS II functioning nor de novo protein synthesis were required. Similarly, light, rather than functional PS II, was important for the recovery of an efficient energy transfer in nitrate-starved cells upon readdition of nitrate. In addition, it has been shown that normal phycobilisomes could accumulate in a Synechocystis sp. PCC 6803 mutant deficient in Photosystem II activity.Abbreviations APC allophycocyanin - CAP chloroamphenicol - Chl chlorophyll - DCMU 3(3,4-dichlorophenyl)-1,1-dimethylurea - CP-47 chlorophyll-binding Photosystem II protein of 47 kDa - EF exoplasmic face - PBS phycobilisome - PC phycocyanin - PS Photosystem  相似文献   

7.
The blue-green alga, Anacystis nidulans, was grown in lights of different colors and intensities, and its absorption and fluorescence properties were studied. Strong orange light, absorbed mainly by phycocyanin, causes reduction in the ratio of phycocyanin to chlorophyll a; strong red light, absorbed mainly by chlorophyll, causes an increase in this ratio. This confirms the earlier findings of Brody and Emerson (12) on Porphyridum, and of Jones and Myers (8) on Anacystis. Anacystis cultures grown in light of low intensity show, upon excitation of phycocyanin, emission peaks at 600 mmu and 680 mmu, due to the fluorescence of phycocyanin and chlorophyll a, respectively. Changes in the efficiency of energy transfer from phycocyanin to chlorophyll a are revealed by changes in the ratios of these two bands. A decrease in efficiency of energy transfer from phycocyanin to chlorophyll a seems to occur whenever the ratio of chlorophyll a to phycocyanin deviates from the normal. Algae grown in light of high intensity show, upon excitation of phycocyanin, only a fluorescence band at 660 mmu and no band at 680 mmu. This suggests reduced efficiency of energy transfer from phycocyanin to the strongly fluorescent form of chlorophyll a (chlorophyll a(2)) and perhaps increased transfer to the weakly fluorescent form of chlorophyll a (chlorophyll a(1)).  相似文献   

8.
Phycobilisomes (PBS) function as light-harvesting antenna complexes in cyanobacteria, red algae and cyanelles. They are composed of two substructures: the core and peripheral rods. Interposon mutagenesis of the cpcBA genes of Synechococcus sp. PCC 7002 resulted in a strain (PR6008) lacking phycocyanin and thus the ability to form peripheral rods. Difference absorption spectroscopy of whole cells showed that intact PBS cores were assembled in vivo in the cpcBA mutant strain PR6008. Fluorescence induction measurements demonstrated that the PBS cores are able to deliver absorbed light energy to photosystem (PS) II, and fluorescence induction transients in the presence of DCMU showed that PR6008 cells could perform a state 2 to state 1 transition with similar kinetics to that of the wild-type cells. Thus, PBS core assembly, light-harvesting functions and energy transfer to PS I were not dependent upon the assembly of the peripheral rods. The ratio of PS II:PS I in the PR6008 cells was significantly increased, nearly twice that of the wild-type cells, possibly a result of long-term adaptation to compensate for the reduced antenna size of PS II. However, the ratio of PBS cores:chlorophyll remained unchanged. This result indicates that approximately half of the PS II reaction centers in the PR6008 cells had no closely associated PBS cores.  相似文献   

9.
A time-dependent loss of Photosystem II (PS II) activity seen in Anacystis nidulans grown without Ca2+ was paralleled by a loss in chlorophyll (Chl) a fluorescence of variable yield which reflects inhibition of Q reduction and of state changes. Both inhibitions were fully reversed by the addition of Ca2+ to the growth medium. The lack of state changes in Ca2+-depleted cells was confirmed in 77 K fluorescence difference spectra of light versus dark-adapted cells.Absorption spectra of control and of Ca2+-depleted cells were identical whether measured at room temperature or at 77 K. Fluorescence emission spectra measured at 39°C (cell growth temperature) demonstrated higher yields in Ca2+-depleted cells compared to controls. Fluorescence emission spectra at 77 K also produced higher yields in Ca2+-depleted cells but the increased fluorescence at this temperature occurred principally at 683 nm. The increased relative fluorescence yield in Ca2+-depleted samples results from light absorbed by phycocyanin (PC), but not from light absorbed almost exclusively by Chl. The 683 run fluorescence peak probably represents increased allophycocyanin (APC) emission as intact phycobilisomes become energetically disassociated from the photosynthetic apparatus. This inferred disassociation occurred only after PSII activity was mostly inhibited in Ca2+-depleted cells, and was not fully reversible.Abbreviations APC Allophycocyanin - Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - EDTA ethylenediaminotetraacetic acid - PC phycocyanin - PS photosystem - Q primary quinone electron acceptor of Photosystem II also a quencher of Chl a fluorescence DPB-CIW Publ. No. 817  相似文献   

10.
Spectral properties, particularly fluorescence spectra and their time-dependent behavior, were investigated for a mutant of the cyanobacterium Synechocystis sp. PCC 6803 lacking the 43 kDa chlorophyll-protein (CP43, PsbC). Lack of CP43 was confirmed by a size shift of the corresponding gene and by Western blotting. The CP43-deletion mutant grown under heterotrophic conditions accumulated a small amount of photosystem (PS) II, but virtually no PS II fluorescence was observed. A 686-nm fluorescence band was clearly observed by phycocyanin excitation, coming from the terminal pigments of phycobilisomes. In contrast, no PS I fluorescence was detected by phycocyanin excitation when accumulation of PS II components was not proved by a fluorescence excitation spectrum, indicating that energy transfer to PS I chlorophyll a was mediated by PS II chlorophyll a. Direct connection of phycobilisomes with PS I was not suggested. Based on these fluorescence properties, the energy flow in the CP43-deletion mutant cells is discussed.  相似文献   

11.
SANDOZ 9785, also known as BASF 13.338, is a pyridazinone derivative that inhibits Photosystem II (PS II) activity leading to an imbalance in the rate of electron transport through the photosystems. Synechococcus sp. strain PCC 7942 cells grown in the presence of sublethal concentration of SANDOZ 9785 (SAN 9785) for 48 hours exhibited a 20% decrease in Chl a per cell. However, no changes were observed in the content of phycocyanin per cell, the size of the phycobilisomes or in the PS II:PS I ratio. From an estimate of PS II electron transport rate under varying light intensities and spectral qualities and analysis of room temperature Chl a fluorescence induction, it was deduced that growth of Synechococcus PCC 7942 in the presence of SAN 9785 leads to a redistribution of excitation energy in favour of PS II. Though the redistribution appears to be primarily caused by changes affecting the Chl a antenna of PS II, the extent of energetic coupling between phycobilisomes and PS II is also enhanced in SAN 9785 grown Synechococcus PCC 7942 cells. There was a reduction in the effective size of PS I antenna based on measurement of P700 photooxidation kinetics. These results indicate that when PS II is partially inhibited, the structure of photosynthetic apparatus alters to redistribute the excitation energy in favour of PS II so that the efficiency of utilization of light energy by the two photosystems is optimized. Our results suggest that under the conditions used, drastic structural changes are not essential for redistribution of excitation energy between the photosystems.Abbreviations APC Allophycocyanin - Chl a chlorophyll a - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophyenyl)-1,1-dimethyl urea - DCIP 2,6-dichlorophenolindophenol - Fo fluorescence when all the reaction centres are open - fm fluorescence yield when all the reaction centres are closed - Fv variable chlorophyll fluorescence - HEPES N-2-Hydroxyethylpiperazine-N-2-ethanesulphonic Acid - I50 concentration that causes 50% inhibition in activity - MV methyl viologen - pBQ para benzoquinone - PBS phycobilisome - PC phycocyanin - PS I, PS II Photosystem I, Photosystem II - P700 reaction centre Chl a of PS I - SAN 9785 SANDOZ 9785 i.e. 4-chloro-5-dimethylamino-2-phenyl-3 (2H) pyridazinone, also known as BASF 13.338  相似文献   

12.
Internal conversion in the photosynthetic mechanism of blue-green algae   总被引:5,自引:0,他引:5  
1. In Chroococcus a quantum of light absorbed by phycocyanin has 90 per cent the chance of doing photosynthesis that a quantum absorbed by chlorophyll has. 2. By a process analogous to internal conversion in radioactivity (but with the linear dimensions and the wave length 104 times larger) there will be transferred from phycocyanin to chlorophyll See PDF for Equation (a number of the order of 100) quanta for every one emitted as fluorescent light by the phycocyanin in the Chroococcus cell. 3. The yield of fluorescent light in Chroococcus is between 1 and 2 per cent. 4. The transfer of energy by internal conversion can account for the photosynthesis by phycocyanin observed by Emerson and Lewis.  相似文献   

13.
The absorption spectra of the principal pigment components extracted from Chroococcus cells have been measured, and their sum compared with the absorption of a suspension of living cells. The agreement was sufficiently close so that it was concluded the absorption spectra of the extracted and separated pigment components could be used to obtain estimates of the relative absorption of the various components in the living cells. The quantum yield of Chroococcus photosynthesis was measured at a succession of wave lengths throughout the visible spectrum, and the dependence of yield on wave length was compared with the proportions of light absorbed by the pigment components. This comparison showed beyond reasonable doubt that the light absorbed by phycocyanin is utilized in photosynthesis with an efficiency approximately equal to that of the light absorbed by chlorophyll. The light absorbed by the carotenoid pigments of Chroococcus seems for the most part to be unavailable for photosynthesis. The results leave open the possibility that light absorbed by the carotenoids is active in photosynthesis, but with an efficiency considerably lower than that of chlorophyll and phycocyanin. It is also possible that the light absorbed by one or a few of the several carotenoid components is utilized with a high efficiency, while the light absorbed by most of the components is lost for photosynthesis.  相似文献   

14.
Synechocystis sp. PCC 6803 when grown in the presence of sublethal (M) levels of cobalt chloride shows an enhancement of Photosystem II (PS II) catalyzed Hill reaction. This stimulation seems to be induced by cobalt ions as other metal ions inhibit para-benzoquinone catalyzed Hill reaction. At saturating white light intensity, this enhancement is two times over that of the control cells on unit chlorophyll basis. Analysis of the PS II electron transport rate at varying intensities of white, blue or yellow light suggests an increased maximal rates but no change in the quantum yield or effective antenna size of CoCl2-grown cells. There were no structural and functional changes in the phycobilisome as judged by the absence of changes in the phycocyanin/allophycocyanin ratio, fluorescence emission spectra, second derivative absorption spectra at 77 K and SDS-PAGE analysis of isolated phycobilisomes. The 77 K fluorescence emission spectra of the cells showed a decrease in the ratio of Photosystem I emission (F725) to Photosystem II emission (F685) in CoCl2-grown cells compared to the control cells. These observations indicate three possibilities: (1) there is an increase in the number of Photosystem II units; (2) a faster turnover of Photosystem II centers; or (3) an alteration in energy redistribution between PS II and PS I in CoCl2-grown cells which causes stimulation of Photosystem II electron transport rate.Abbreviations APC allophycocyanin - Chl a chlorophyll a - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - EDTA ethylene diamine tetraacetic acid - PBS phycobilisome - PC phycocyanin - PSI Photosystem I - PS II Photosystem II - pBQ p-benzoquinone - PMSF phenyl methyl sulfonyl fluoride  相似文献   

15.
Abstract The cyanobacteria Fremyella diplosiphon 7601 and Synechocystis 6701 were grown in continuous cultures with monochromatic red light (680 nm). The distribution of light energy over photosystem I and II was determined from changes in PS II fluorescence at 685 nm. In both organisms, wavelengths absorbed primarily by chlorophyll a caused the high fluorescent state of PS II (State 1), while wavelengths absorbed by the phycobilisome led to low PS II fluorescence (State 2). Superimposing continuous light 2 on the excitation light yielded State 2 fluorescence patterns for Synechocystis 6701, while F. diplosiphon 7601 showed fluorescence patterns similar to state 1 → 2 transitions and changes in fluorescence yield were related to the intensity of the background light. Some ecological implications of energy (re)distribution in cyanobacterial photosynthesis are discussed.  相似文献   

16.
1. The fluorescence spectra of the alga Porphyridium have been recorded as energy distribution curves for eleven different incident wave lengths of monochromatic incident light between wave lengths 405 and 546 mµ. 2. In these spectra chlorophyll fluorescence predominates when the incident light is in the blue part of the spectrum which is strongly absorbed by chlorophyll. 3. For blue-green and green light the spectrum excited in Porphyridium contains in addition to chlorophyll fluorescence, the fluorescence bands characteristic of phycoerythrin and of phycocyanin. 4. From these spectra the approximate curves for the fluorescence of the individual pigments phycoerythrin, phycocyanin, and chlorophyll in the living material have been derived and the relative intensity of each of them has been obtained for each of the eleven incident wave lengths. 5. The effectiveness spectrum for the excitation of the fluorescence of these three pigments in vivo has been plotted. 6. From comparisons of the effectiveness spectrum for the excitation of each of these pigments it appears that both phycocyanin and chlorophyll receive energy from light which is absorbed by phycoerythrin. 7. It is suggested that phycocyanin may be an intermediate in the resonance transfer of energy from phycoerythrin to chlorophyll. 8. Since phycoerythrin and phycocyanin transfer energy to chlorophyll, it appears probable that chlorophyll plays a specific chemical role in photosynthesis in addition to acting as a light absorber.  相似文献   

17.
《FEBS letters》1985,179(2):321-324
The hypothesis that excitation energy distribution between PS I and PS II is controlled by the redox state of the plastoquinone pool between the two photosystems was investigated using the green alga Chlorella vulgaris. Changes in the redox state of the pool were monitored by measurement of the area above the fluorescence induction curve on exposure to high-intensity light. In agreement with the hypothesis, exposure of state I adapted cells to light preferentially absorbed by PS II led to a reduction of the plastoquinone pool whilst exposure of State II adapted cells to light preferentially absorbed by PS I resulted in its oxidation. However, the limits within which these fluctuations occurred were much narrower than anticipated. The reasons for this are discussed in terms of the possible involvement of changes in the redox state of more specialised molecules associated with the main plastoquinone pool and the postulated role of plastoquinone as an electron shuttle between the two photosystems.  相似文献   

18.
A chromatic adaptation in the photosynthetic quantum yield forthe light mainly absorbed by chlorophyll a (Chl a light) firstfound by Yocum (1951) was studied with one red and three blue-greenalgal strains. When the cells were grown under a weak Chl alight, the quantum yield in all the strains increased. Comparisonof photosystem (PS) compositions, including phycobilin (PBP)and Chl a antennae, reaction centers I and II, in the cellsgrown under the light mainly absorbed by PBP and Chl a revealedthat changes in quantum yield could be attributed to changesin the ratio of PS I/II; PS I/II becomes larger than 1 underPBP light but decreases to 1 in most cases under Chl a light.The change in the PS I/II ratio is due solely to the changesin the PS I population in the cell; PS II remains constant.These results are similar to the intensity-dependent responsein PS composition. A common hypothesis for both the chromatic and intensity-inducedregulation of PS composition was proposed based on the ideaof balance between the electron flow from H2O to NADP drivenby PS I and II and the cyclic one driven by PS I. (Received May 16, 1985; Accepted September 4, 1985)  相似文献   

19.
Growth of Anacystis in high light in the presence of sublethal concentrations of DCMU-type inhibitors leads to an increased synthesis of phycocyanin paralleled by a reduced rate of 35S methionine incorporation into the D1 protein compared to the high light controls, as is characteristic for naturally-induced shade phenotype. On the contrary, sun phenotype is characterized by a low rate of antenna synthesis, but a high rate of 35S methionine incorporation into the D1 protein.Room temperature excitation spectra of 684 nm fluorescence emission clearly demonstrate the participation of the extraordinarily high concentration of phycocyanin in artificially shade-adapted cells in excitation energy transfer to chlorophyll.It could be shown that the development of shade-type appearance is not simply the consequence of an imbalance in electron transport, since an addition of thiosulphate to cultures growing in high light in the presence of DCMU-type inhibitors can only partially prevent or revert the change from sun to artificial-herbicide-induced-shade phenotype. This is regarded as evidence that the dynamic herbicide-binding D1 protein itself may play a role as a light meter in the process of natural shade adaptation, the rate of its degradation and resynthesis possibly giving the signal for the adaptive reorganization of the photosynthetic apparatus. The chain of signal transduction remains to be established.Abbreviations atrazine 2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine - chl chlorophyll - D1 reaction center polypeptide carrying the secondary plastoquinone electron acceptor of PS II - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - PAGE polyacrylamide gel electrophoresis - PAR photosynthetically active radiation - PC phycocyanin - PCC Pasteur Culture Collection - PS photosystem - QB secondary plastoquinone electron acceptor of PS II - SAUG Sammlung von Algenkulturen am Pflanzenphysiologischen Institut der Universtität Göttingen - SDS sodium dodecyl sulphate Dedicated to Professor Wilhelm Menke on the occasion of his 80th birthday.  相似文献   

20.
《BBA》1985,806(2):237-246
The sequential energy-transfer pathway through the phycobilin pigments to chlorophyll a was investigated as a function of the state transition in the cyanobacterium Anacystis nidulans and the red alga Porphyridium cruentum. The fluorescence decay kinetics of the phycobilin pigments and chlorophyll a were determined for cells frozen at 77 K in state 1 and state 2 using a single-photon timing fluorescence spectroscopy apparatus with picosecond resolution. Time-resolved 77 K fluorescence emission spectra were also obtained for both species in state 1 and state 2. In both A. nidulans and P. cruentum the transition to state 1 was accompanied by a large increase in the apparent fluorescent lifetime of chlorophyll a associated with PS II (emission peak at 695 nm). There were smaller increases in the lifetime of the terminal phycobilin emitter (685 nm) in both species and no change in phycocyanin (645 nm) or allophycocyanin (660 nm). Time-resolved spectra showed sequential emission from phycocyanin, allophycocyanin, the terminal phycobilin emitter and chlorophyll a. Spectral red shifts were observed with time for all emission peaks with the exception of the terminal phycobilin emitter. In A. nidulans this peak showed a small blue shift with time. The results are interpreted as evidence for an effective uncoupling of PS II chlorophyll a from subsequent energy transfer to PS I chlorophyll a upon transition to state 1. Our recently proposed model for the mechanism of the state transition in phycobilisome-containing organisms is discussed in terms of a decrease in the energy transfer overlap between PS II chlorophyll a and PS I chlorophyll a in state 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号