首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whole-cell currents were recorded in guinea pig ventricular myocytes at approximately 36 degrees C before, during, and after exposure to maximally effective concentrations of strophanthidin, a cardiotonic steroid and specific inhibitor of the Na/K pump. Wide-tipped pipettes, in combination with a device for exchanging the solution inside the pipette, afforded reasonable control of the ionic composition of the intracellular solution and of the membrane potential. Internal and external solutions were designed to minimize channel currents and Na/Ca exchange current while sustaining vigorous forward Na/K transport, monitored as strophanthidin-sensitive current. 100-ms voltage pulses from the -40 mV holding potential were used to determine steady-state levels of membrane current between -140 and +60 mV. Control experiments demonstrated that if the Na/K pump cycle were first arrested, e.g., by withdrawal of external K, or of both internal and external Na, then neither strophanthidin nor its vehicle, dimethylsulfoxide, had any discernible effect on steady-state membrane current. Further controls showed that, with the Na/K pump inhibited by strophanthidin, membrane current was insensitive to changes of external [K] between 5.4 and 0 mM and was little altered by changing the pipette [Na] from 0 to 50 mM. Strophanthidin-sensitive current therefore closely approximated Na/K pump current, and was virtually free of contamination by current components altered by the changes in extracellular [K] and intracellular [Na] expected to accompany pump inhibition. The steady-state Na/K pump current-voltage (I-V) relationship, with the pump strongly activated by 5.4 mM external K and 50 mM internal Na (and 10 mM ATP), was sigmoid in shape with a steep positive slope between about 0 and -100 mV, a less steep slope at more negative potentials, and an extremely shallow slope at positive potentials; no region of negative slope was found. That shape of I-V relationship can be generated by a two-state cycle with one pair of voltage-sensitive rate constants and one pair of voltage-insensitive rate constants: such a two-state scheme is a valid steady-state representation of a multi-state cycle that includes only a single voltage-sensitive step.  相似文献   

2.
Sodium flux ratio in Na/K pump-channels opened by palytoxin   总被引:1,自引:0,他引:1       下载免费PDF全文
Palytoxin binds to Na(+)/K(+) pumps in the plasma membrane of animal cells and opens an electrodiffusive cation pathway through the pumps. We investigated properties of the palytoxin-opened channels by recording macroscopic and microscopic currents in cell bodies of neurons from the giant fiber lobe, and by simultaneously measuring net current and (22)Na(+) efflux in voltage-clamped, internally dialyzed giant axons of the squid Loligo pealei. The conductance of single palytoxin-bound "pump-channels" in outside-out patches was approximately 7 pS in symmetrical 500 mM [Na(+)], comparable to findings in other cells. In these high-[Na(+)], K(+)-free solutions, with 5 mM cytoplasmic [ATP], the K(0.5) for palytoxin action was approximately 70 pM. The pump-channels were approximately 40-50 times less permeable to N-methyl-d-glucamine (NMG(+)) than to Na(+). The reversal potential of palytoxin-elicited current under biionic conditions, with the same concentration of a different permeant cation on each side of the membrane, was independent of the concentration of those ions over the range 55-550 mM. In giant axons, the Ussing flux ratio exponent (n') for Na(+) movements through palytoxin-bound pump-channels, over a 100-400 mM range of external [Na(+)] and 0 to -40 mV range of membrane potentials, averaged 1.05 +/- 0.02 (n = 28). These findings are consistent with occupancy of palytoxin-bound Na(+)/K(+) pump-channels either by a single Na(+) ion or by two Na(+) ions as might be anticipated from other work; idiosyncratic constraints are needed if the two Na(+) ions occupy a single-file pore, but not if they occupy side-by-side binding sites, as observed in related structures, and if only one of the sites is readily accessible from both sides of the membrane.  相似文献   

3.
The Na(+)/K(+) ATPase is an almost ubiquitous integral membrane protein within the animal kingdom. It is also the selective target for cardiotonic derivatives, widely prescribed inhibitors for patients with heart failure. Functional studies revealed that ouabain-sensitive residues distributed widely throughout the primary sequence of the protein. Recently, structural work has brought some consensus to the functional observations. Here, we use a spectroscopic approach to estimate distances between a fluorescent ouabain and a lanthanide binding tag (LBT), which was introduced at five different positions in the Na(+)/K(+) ATPase sequence. These five normally functional LBT-Na(+)/K(+) ATPase constructs were expressed in the cell membrane of Xenopus laevis oocytes, operating under physiological internal and external ion conditions. The spectroscopic data suggest two mutually exclusive distances between the LBT and the fluorescent ouabain. From the estimated distances and using homology models of the LBT-Na(+)/K(+) ATPase constructs, approximate ouabain positions could be determined. Our results suggest that ouabain binds at two sites along the ion permeation pathway of the Na(+)/K(+) ATPase. The external site (low apparent affinity) occupies the same region as previous structural findings. The high apparent affinity site is, however, slightly deeper toward the intracellular end of the protein. Interestingly, in both cases the lactone ring faces outward. We propose a sequential ouabain binding mechanism that is consistent with all functional and structural studies.  相似文献   

4.
The current (I(p)) generated by the wild-type or the glutamate (E) 779 alanine (A) mutant of the rat Na(+)/K(+) pump alpha1-subunit expressed in HEK 293 cells was studied at 35 degrees C by means of whole-cell recording in Na(+)-free and Na(+)-containing solution. Glutamate 779 is located in the fifth transmembrane domain of the alpha-subunit of the Na(+)/K(+)-ATPase. Compared with the wild-type, the E779A mutant exhibited an apparent K(+)(o)-affinity decreased by a factor of 3-4 both in Na(+)-free and in Na(+)-containing media. The competition of Na(+)(o) and K(+)(o) for cation binding sites of the pump remained unchanged. Similarly, in Na(+)-free solution the shape of the I(p)-V curves for various external K(+)-concentrations ([K(+)](o)) was essentially the same. However, in Na(+)-containing solutions the shape of I(p)-V curves from cells expressing the mutant of the rat alpha1-subunit clearly differed from the shape observed in cells expressing the wild-type, but voltage dependence of the pump current persisted. A prominent Na(+)(o)-activated, electrogenic Na(+)-transport mediated by the pump, displaying little voltage dependence in the potential range tested (-80 to +60 mV), was present in the cells expressing the E779A mutant pump. The data suggest that exchanging E779 for A in the rat Na(+)/K(+) pump alpha1-subunit causes a modest decrease in the apparent K(+)(o) affinity and a profound, Na(+)(o)-dependent alteration in the electrogenicity of the mutant pump expressed in HEK 293 cells.  相似文献   

5.
Na(+),K(+)-ATPase is inhibited by cardiac glycosides such as ouabain, and palytoxin, which do not inhibit gastric H(+),K(+)-ATPase. Gastric H(+),K(+)-ATPase is inhibited by SCH28080, which has no effect on Na(+),K(+)-ATPase. The goal of the current study was to identify amino acid sequences of the gastric proton-potassium pump that are involved in recognition of the pump-specific inhibitor SCH 28080. A chimeric polypeptide consisting of the rat sodium pump alpha3 subunit with the peptide Gln(905)-Val(930) of the gastric proton pump alpha subunit substituted in place of the original Asn(886)-Ala(911) sequence was expressed together with the gastric beta subunit in the yeast Saccharomyces cerevisiae. Yeast cells that express this subunit combination are sensitive to palytoxin, which interacts specifically with the sodium pump, and lose intracellular K(+) ions. The palytoxin-induced K(+) efflux is inhibited by the sodium pump-specific inhibitor ouabain and also by the gastric proton pump-specific inhibitor SCH 28080. The IC(50) for SCH 28080 inhibition of palytoxin-induced K(+) efflux is 14.3 +/- 2.4 microm, which is similar to the K(i) for SCH 28080 inhibition of ATP hydrolysis by the gastric H(+),K(+)-ATPase. In contrast, palytoxin-induced K(+) efflux from cells expressing either the native alpha3 and beta1 subunits of the sodium pump or the alpha3 subunit of the sodium pump together with the beta subunit of the gastric proton pump is inhibited by ouabain but not by SCH 28080. The acquisition of SCH 28080 sensitivity by the chimera indicates that the Gln(905)-Val(930) peptide of the gastric proton pump is likely to be involved in the interactions of the gastric proton-potassium pump with SCH 28080.  相似文献   

6.
Interactions of the three transported Na ions with the Na/K pump remain incompletely understood. Na/K pump crystal structures show that the extended C terminus of the Na,K–adenosine triphosphatase (ATPase) α subunit directly contacts transmembrane helices. Deletion of the last five residues (KETYY in almost all Na/K pumps) markedly lowered the apparent affinity for Na activation of pump phosphorylation from ATP, a reflection of cytoplasmic Na affinity for forming the occluded E1P(Na3) conformation. ATPase assays further suggested that C-terminal truncations also interfere with low affinity Na interactions, which are attributable to extracellular effects. Because extracellular Na ions traverse part of the membrane’s electric field to reach their binding sites in the Na/K pump, their movements generate currents that can be monitored with high resolution. We report here electrical measurements to examine how Na/K pump interactions with extracellular Na ions are influenced by C-terminal truncations. We deleted the last two (YY) or five (KESYY) residues in Xenopus laevis α1 Na/K pumps made ouabain resistant by either of two kinds of point mutations and measured their currents as 10-mM ouabain–sensitive currents in Xenopus oocytes after silencing endogenous Xenopus Na/K pumps with 1 µM ouabain. We found the low affinity inhibitory influence of extracellular Na on outward Na/K pump current at negative voltages to be impaired in all of the C-terminally truncated pumps. Correspondingly, voltage jump–induced transient charge movements that reflect pump interactions with extracellular Na ions were strongly shifted to more negative potentials; this signals a several-fold reduction of the apparent affinity for extracellular Na in the truncated pumps. Parallel lowering of Na affinity on both sides of the membrane argues that the C-terminal contacts provide important stabilization of the occluded E1P(Na3) conformation, regardless of the route of Na ion entry into the binding pocket. Gating measurements of palytoxin-opened Na/K pump channels additionally imply that the C-terminal contacts also help stabilize pump conformations with occluded K ions.  相似文献   

7.
Na/K pump current was determined between -140 and +60 mV as steady-state, strophanthidin-sensitive, whole-cell current in guinea pig ventricular myocytes, voltage-clamped and internally dialyzed via wide-tipped pipettes. Solutions were designed to minimize all other components of membrane current. A device for exchanging the solution inside the pipette permitted investigation of Na/K pump current-voltage (I-V) relationships at several levels of pipette [Na] [( Na]pip) in a single cell; the effects of changes in external [Na] [( Na]o) or external [K] [( K]o) were also studied. At 50 mM [Na]pip, 5.4 mM [K]o, and approximately 150 mM [Na]o, Na/K pump current was steeply voltage dependent at negative potentials but was approximately constant at positive potentials. Under those conditions, reduction of [Na]o enhanced pump current at negative potentials but had little effect at positive potentials: at zero [Na]o, pump current was only weakly voltage dependent. At 5.4 mM [K]o and approximately 150 mM [Na]o, reduction of [Na]pip from 50 mM scaled down the sigmoid pump I-V relationship and shifted it slightly to the right (toward more positive potentials). Pump current at 0 mV was activated by [Na]pip according to the Hill equation with best-fit K0.5 approximately equal to 11 mM and Hill coefficient nH approximately equal to 1.4. At zero [Na]o, reduction of [Na]pip seemed to simply scale down the relatively flat pump I-V relationship: Hill fit parameters for pump activation by [Na]pip at 0 mV were K0.5 approximately equal to 10 mM, nH approximately equal to 1.4. At 50 mM [Na]pip and high [Na]o, reduction of [K]o from 5.4 mM scaled down the sigmoid I-V relationship and shifted it slightly to the right: at 0 mV, K0.5 approximately equal to 1.5 mM and nH approximately equal to 1.0. At zero [Na]o, lowering [K]o simply scaled down the flat pump I-V relationships yielding, at 0 mV, K0.5 approximately equal to 0.2 mM, nH approximately equal to 1.1. The voltage-independent activation of Na/K pump current by both intracellular Na ions and extracellular K ions, at zero [Na]o, suggests that neither ion binds within the membrane field. Extracellular Na ions, however, seem to have both a voltage-dependent and a voltage-independent influence on the Na/K pump: they inhibit outward Na/K pump current in a strongly voltage-dependent fashion, with higher apparent affinity at more negative potentials (K0.5 approximately equal to 90 mM at -120 mV, and approximately 170 mM at -80 mV), and they compete with extracellular K ions in a seemingly voltage-independent manner.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Although the Na(+)/K(+) pump is one of the key mechanisms responsible for maintaining cell volume, we have observed experimentally that cell volume remained almost constant during 90 min exposure of guinea pig ventricular myocytes to ouabain. Simulation of this finding using a comprehensive cardiac cell model (Kyoto model incorporating Cl(-) and water fluxes) predicted roles for the plasma membrane Ca(2+)-ATPase (PMCA) and Na(+)/Ca(2+) exchanger, in addition to low membrane permeabilities for Na(+) and Cl(-), in maintaining cell volume. PMCA might help maintain the [Ca(2+)] gradient across the membrane though compromised, and thereby promote reverse Na(+)/Ca(2+) exchange stimulated by the increased [Na(+)](i) as well as the membrane depolarization. Na(+) extrusion via Na(+)/Ca(2+) exchange delayed cell swelling during Na(+)/K(+) pump block. Supporting these model predictions, we observed ventricular cell swelling after blocking Na(+)/Ca(2+) exchange with KB-R7943 or SEA0400 in the presence of ouabain. When Cl(-) conductance via the cystic fibrosis transmembrane conductance regulator (CFTR) was activated with isoproterenol during the ouabain treatment, cells showed an initial shrinkage to 94.2 +/- 0.5%, followed by a marked swelling 52.0 +/- 4.9 min after drug application. Concomitantly with the onset of swelling, a rapid jump of membrane potential was observed. These experimental observations could be reproduced well by the model simulations. Namely, the Cl(-) efflux via CFTR accompanied by a concomitant cation efflux caused the initial volume decrease. Then, the gradual membrane depolarization induced by the Na(+)/K(+) pump block activated the window current of the L-type Ca(2+) current, which increased [Ca(2+)](i). Finally, the activation of Ca(2+)-dependent cation conductance induced the jump of membrane potential, and the rapid accumulation of intracellular Na(+) accompanied by the Cl(-) influx via CFTR, resulting in the cell swelling. The pivotal role of L-type Ca(2+) channels predicted in the simulation was demonstrated in experiments, where blocking Ca(2+) channels resulted in a much delayed cell swelling.  相似文献   

9.
Wild-type and mutants with alpha-subunits truncated at the N terminus of Na+/K+ pumps of Torpedo electroplax were expressed in Xenopus oocytes by injection of cRNAs encoding for one of the alpha-subunits and for the beta-subunit. Currents generated by the pump were investigated under voltage clamp in Na(+)-free solution, a condition where stimulation by external [K+] is the only voltage-dependent and rate-determining step in the pump cycle (Rakowski, R. F., Vasilets, L. A., LaTona, J., and Schwarz, W. (1991) J. Membr. Biol. 121, 177-187). Voltage dependence of the apparent Km value for pump stimulation and of maximum transport activity was investigated. Truncation of the intracellular N-terminal end of the alpha-subunit at the trypsin-accessible site (alpha delta K37, leaving Lys37) leads to nearly complete inhibition of pump current at physiological potentials, whereas ouabain binding capacity is retained indicating an essential involvement of the N-terminal end in the process of ion translocation. Truncation at the N-terminal end leaving Lys28 (alpha delta K28) or Thr29 (alpha delta T29) leads to removal of 6 or 7 lysine residues, respectively, and has no effect on maximum transport activity. On the other hand, the mutated pumps with alpha delta K28 or alpha delta T29 exhibit more pronounced voltage dependences for stimulation of pump current by external [K+] compared with the wild-type Torpedo pump. In particular, a pronounced increase in voltage dependence of the apparent affinity of pump stimulation is obtained by the removal of the Lys28. The results support the view that the lysine-rich region in the N-terminal end affects the cation binding to the pump molecule and that Lys28 is important.  相似文献   

10.
Lithium (1-8 mM) caused a dose-dependent increase in the number of [3H]ouabain binding sites and in sodium/potassium (Na/K) pump activity in normal lymphocytes after incubation for 72 h. The increase in Na/K pump activity was due to an increase in the Vmax of the pump, with no change in the apparent affinity (Km) for potassium (rubidium). There was no change in the turnover number of the pump and the intracellular sodium concentration fell. The increase in [3H]ouabain binding sites was prevented by the addition of myo-inositol (10 mM), by inhibition of the protein kinase C with staurosporine (100 nM) and by inhibition of the Na/H antiport with dimethylamiloride (50 microM). These results suggest that the increase in Na/K pump activity caused by lithium is due to an increase in pump numbers and not due to increased activity of individual pumps or to an alteration in the affinity of the pumps for potassium. The increase in Na/K pump numbers and activity in lymphocytes exposed to lithium for 72 h may be related to altered Na/H antiport activity secondary to inhibition of phosphoinositol breakdown by lithium.  相似文献   

11.
Experiments are reviewed here in which Na/K pump current was determined as strophanthidin-sensitive current in guinea-pig ventricular myocytes, voltage-clamped and internally-dialyzed via wide-tipped pipettes. In the presence of 150 mM extracellular [Na], both outward and inward pump current, during forward and reverse Na/K exchange respectively, were strongly voltage dependent. But reduction of external [Na] to 1.5 mM severely attenuated the voltage sensitivity of outward Na/K pump current. Voltage jumps elicited large transient pump currents during forward or reverse Na/K exchange, or when pump activity was restricted to Na translocation steps, but not when pumps were presumably engaged in K/K exchange. These findings indicate that Na translocation, but not K translocation, involves net charge movement through the membrane field, and that both forward and reverse Na/K transport cycles are rate-limited not by that voltage-sensitive step but by a subsequent voltage-insensitive step.  相似文献   

12.
The steady-state voltage and [Na(+)](o) dependence of the electrogenic sodium pump was investigated in voltage-clamped internally dialyzed giant axons of the squid, Loligo pealei, under conditions that promote the backward-running mode (K(+)-free seawater; ATP- and Na(+)-free internal solution containing ADP and orthophosphate). The ratio of pump-mediated (42)K(+) efflux to reverse pump current, I(pump) (both defined by sensitivity to dihydrodigitoxigenin, H(2)DTG), scaled by Faraday's constant, was -1.5 +/- 0.4 (n = 5; expected ratio for 2 K(+)/3 Na(+) stoichiometry is -2.0). Steady-state reverse pump current-voltage (I(pump)-V) relationships were obtained either from the shifts in holding current after repeated exposures of an axon clamped at various V(m) to H(2)DTG or from the difference between membrane I-V relationships obtained by imposing V(m) staircases in the presence or absence of H(2)DTG. With the second method, we also investigated the influence of [Na(+)](o) (up to 800 mM, for which hypertonic solutions were used) on the steady-state reverse I(pump)-V relationship. The reverse I(pump)-V relationship is sigmoid, I(pump) saturating at large negative V(m), and each doubling of [Na(+)](o) causes a fixed (29 mV) rightward parallel shift along the voltage axis of this Boltzmann partition function (apparent valence z = 0.80). These characteristics mirror those of steady-state (22)Na(+) efflux during electroneutral Na(+)/Na(+) exchange, and follow without additional postulates from the same simple high field access channel model (Gadsby, D.C., R.F. Rakowski, and P. De Weer, 1993. Science. 260:100-103). This model predicts valence z = nlambda, where n (1.33 +/- 0.05) is the Hill coefficient of Na binding, and lambda (0.61 +/- 0.03) is the fraction of the membrane electric field traversed by Na ions reaching their binding site. More elaborate alternative models can accommodate all the steady-state features of the reverse pumping and electroneutral Na(+)/Na(+) exchange modes only with additional assumptions that render them less likely.  相似文献   

13.
The N-terminus of the Na(+),K(+)-ATPase alpha-subunit shows some homology to that of Shaker-B K(+) channels; the latter has been shown to mediate the N-type channel inactivation in a ball-and-chain mechanism. When the Torpedo Na(+),K(+)-ATPase is expressed in Xenopus oocytes and the pump is transformed into an ion channel with palytoxin (PTX), the channel exhibits a time-dependent inactivation gating at positive potentials. The inactivation gating is eliminated when the N-terminus is truncated by deleting the first 35 amino acids after the initial methionine. The inactivation gating is restored when a synthetic N-terminal peptide is applied to the truncated pumps at the intracellular surface. Truncated pumps generate no electrogenic current and exhibit an altered stoichiometry for active transport. Thus, the N-terminus of the alpha-subunit appears to act like an inactivation gate and performs a critical step in the Na(+),K(+)-ATPase pumping function.  相似文献   

14.
The voltage dependence of steady state current produced by the forward mode of operation of the endogenous electrogenic Na+/K+ pump in Na(+)- loaded Xenopus oocytes has been examined using a two-microelectrode voltage clamp technique. Four experimental cases (in a total of 18 different experimental conditions) were explored: variation of external [Na+] ([Na]o) at saturating (10 mM) external [K+] ([K]o), and activation of pump current by various [K]o at 0, 15, and 120 mM [Na]o (tetramethylammonium replacement). Ionic current through K+ channels was blocked by Ba2+ (5 mM) and tetraethylammonium (20 mM), thereby allowing pump-mediated current to be measured by addition or removal of external K+. Control measurements and corrections were made for pump current run-down and holding current drift. Additional controls were done to estimate the magnitude of the inwardly directed pump-mediated current that was present in K(+)-free solution and the residual K(+)- channel current. A pseudo two-state access channel model is described in the Appendix in which only the pseudo first-order rate coefficients for binding of external Na+ and K+ are assumed to be voltage dependent and all transitions between states in the Na+/K+ pump cycle are assumed to be voltage independent. Any three-state or higher order model with only two oppositely directed voltage-dependent rate coefficients can be reduced to an equivalent pseudo two-state model. The steady state current-voltage (I-V) equations derived from the model for each case were simultaneously fit to the I-V data for all four experimental cases and yielded least-squares estimates of the model parameters. The apparent fractional depth of the external access channel for Na+ is 0.486 +/- 0.010; for K+ it is 0.256 +/- 0.009. The Hill coefficient for Na+ is 2.18 +/- 0.06, and the Hill coefficient for K+ (which is dependent on [Na]o) ranges from 0.581 +/- 0.019 to 1.35 +/- 0.034 for 0 and 120 mM [Na]o, respectively. The model provides a reasonable fit to the data and supports the hypothesis that under conditions of saturating internal [Na+], the principal voltage dependence of the Na+/K+ pump cycle is a consequence of the existence of an external high- field access channel in the pump molecule through which Na+ and K+ ions must pass in order to reach their binding sites.  相似文献   

15.
To investigate effects of pH on the Na(+),K(+)-ATPase, we used the Xenopus oocytes to measure transient charge movements in the absence of extracellular K(+), and steady-state currents mediated by the pump as well as ATPase activity. The activity of purified Na(+), K(+)-ATPase strongly depends on pH, which has been attributed to protonation of intracellular sites. The steady-state current reflects pump activity, the transient charge movement voltage-dependent interaction of external Na(+) ions with the pump molecule and/or conformational changes during Na(+)/Na(+) exchange. The steady-state current exhibits a characteristic voltage dependence with maximum at about 0 mV at low external K(+) (< or =2 mM) and with 50 Na(+). This dependency is not significantly affected by changes in external pH in the range from pH 9 to pH 6. Only below pH 6, the voltage dependence of pump current becomes less steep, and may be attributed to a pH-dependent inhibition of the forward pump cycle by external Na(+). External stimulation of the pump by K(+) in the absence of Na(+) can be described by a voltage-dependent K(m) value with an apparent valency z(K). At higher external pH the z(K) value is reduced. The transient current signal in the absence of external K(+) can be described by the sum of three exponentials with voltage-dependent time constants of about 50 ms, 700 micros and less than 100 micros during pulses to 0 mV. The charge distribution was calculated by integration of the transient current signals. The slowest component and the associated charge distributions do not significantly depend on external pH changes. The intermediate component of the transients is represented by a voltage-dependent rate constant which shows a minimum at about -120 mV and increases with decreasing pH. Nevertheless, the contribution to the charge movement is not altered by pH changes due to a simultaneous increase of the amplitude of this component. We conclude that reduction of external pH counteracts external K(+) and Na(+) binding.  相似文献   

16.
Palytoxin stimulated a cation-dependent short-circuit current (Isc) in rat distal and proximal colon in a concentration-dependent fashion when applied to the mucosal surface of the tissue. The distal colon exhibited a higher sensitivity to the toxin. The palytoxin-induced Isc was blocked by vanadate but was resistant to ouabain or scilliroside, suggesting the conversion of a vanadate-sensitive H+/K+-ATPase into an electrogenic cation transporter. Cation substitution experiments with basolaterally depolarized tissues suggested an apparent permeability of the palytoxin-induced conductance of Na+>K+>Li+. Immunohistochemical control experiments confirmed the absence of the Na+/K+-ATPase in the apical membrane. Consequently, the pore-forming action of palytoxin is not restricted to Na+/K+-ATPase but is also observed with the colonic H+/K+-ATPase.  相似文献   

17.
We have characterized the physiological and biochemical properties of the Na(+)/K(+) pump and its molecular expression in L8 rat muscle cells. Pump properties were measured by [(3)H]ouabain binding and (86)Rb uptake. Scatchard plot analysis of specific ouabain binding indicated the presence of a single family of binding sites with a B(max) of approximately 135 fmol/ mg P and a K(D) of 3.3 x 10(-8). (86)Rb uptake due to specific pump activity was found to be 20% of the total in L8 cells. The results indicated lower affinity of L8 cells for ouabain and lower activity of the pump than that reported for chick or rat skeletal muscle in primary culture. Both the alpha(1) and beta(1) protein and mRNA isoforms were expressed in myoblasts and in myotubes, while the alpha(2), alpha(3), and beta(2) isoforms were not detectable. We attempted to overcome low physiological expression of the Na(+)/K(+) pump by employing a vector expressing an avian high affinity alpha subunit. This allowed identification of the transfected subunit separate from that endogenously expressed in L8 cells. Successful transfection into L8 myoblasts and myotubes was recognized by anti-avian alpha subunit monoclonal antibodies. Fusion index, Na(+)/K(+) pump activity, and the level of the transmembrane resting potential were all significantly greater in transfected L8 (tL8) cells than in non-tL8. The total amount of alpha subunit (avian and rat) in tL8 cells was greater than that (only rat) in non-tL8 cells. This relatively high abundance of the Na(+)/K(+) pump in transfected cells may indicate that avian and rat alpha subunits hybridize to form functional pump complexes.  相似文献   

18.
We have examined vanadate inhibition of the Na,K pump in the presence of external Na (Nao). Nao protects against inhibition of the Na,K pump by vanadate, but not against inhibition by phosphate or arsenate. Protection by Nao is reversed by external K (Ko). Although the site at which Na exerts its protective effect has properties similar to the two transport sites for K at the outside of the pump, it is not one of the transport sites. The data can be qualitatively accounted for if it is postulated that there is a protective site, separate from the transport sites, at which Nao and Ko compete. When the site is empty or bound to K, vanadate combines with high affinity with pumps that have two K ions bound to the transport sites, but not with pumps that have Na bound to the protective site, even if K is bound to the transport sites. The protective site has a high affinity for both Na and K; the apparent K 1/2 for external Na is less than 2 mM, which is similar to that of a previously described site at which Nao inhibits a number of the partial reactions of the pump. Nao protects against vanadate inhibition of the K-K exchange in the absence of cell Na, and against vanadate inhibition of p-nitrophenylphosphatase activity of the pump in the absence of ATP. The protective site is a manifestation of an E2 conformation of the pump. The protective effect of Nao is not changed by altering the intracellular Mg2+ concentration.  相似文献   

19.
Treatment with ouabain led to massive death of principal cells from collecting ducts (C7-MDCK), indicated by cell swelling, loss of mitochondrial function, an irregular pattern of DNA degradation, and insensitivity to pan-caspase inhibitor. Equimolar substitution of extracellular Na(+) by K(+) or choline(+) sharply attenuated the effect of ouabain on intracellular Na(+) and K(+) content but did not protect the cells from death in the presence of ouabain. In contrast to ouabain, inhibition of the Na(+)/K(+) pump in K(+)-free medium increased Na(+)(i) content but did not affect cell survival. In control and K(+)-free medium, ouabain triggered half-maximal cell death at concentrations of approximately 0.5 and 0.05 microM, respectively, which was consistent with elevation of Na(+)/K(+) pump sensitivity to ouabain in K(+)-depleted medium. Our results show for the first time that the death of ouabain-treated renal epithelial cells is independent of the inhibition of Na(+)/K(+) pump-mediated ion fluxes and the [Na(+)](i)]/[K(+)](i) ratio.  相似文献   

20.
Whether a given dose of ouabain will produce inotropic or toxic effects depends on factors that affect the apparent affinity (K0.5) of the Na/K pump for ouabain. To accurately resolve these factors, especially the effect of intracellular Na concentration (Nai), we have applied three complementary techniques for measuring the K0.5 for ouabain in cultured embryonic chick cardiac myocytes. Under control conditions with 5.4 mM Ko, the value of the K0.5 for ouabain was 20.6 +/- 1.2, 12.3 +/- 1.7, and 6.6 +/- 0.4 microM, measured by voltage-clamp, Na-selective microelectrode, and equilibrium [3H]ouabain-binding techniques, respectively. A significant difference in the three techniques was the time of exposure to ouabain (30 s-30 min). Since increased duration of exposure to ouabain would increase Nai, monensin was used to raise Nai to investigate what effect Nai might have on the apparent affinity of block by ouabain. Monensin enhanced the rise in Na content induced by 1 microM ouabain. In the presence of 1 microM [3H]ouabain, total binding was found to be a saturating function of Na content. Using the voltage-clamp method, we found that the value of the K0.5 for ouabain was lowered by nearly an order of magnitude in the presence of 3 microM monensin to 2.4 +/- 0.2 microM and the magnitude of the Na/K pump current was increased about threefold. Modeling the Na/K pump as a cyclic sequence of states with a single state having high affinity for ouabain shows that changes in Nai alone are sufficient to cause a 10-fold change in K0.5. These results suggest that Nai reduces the value of the apparent affinity of the Na/K pump for ouabain in 5.4 mM Ko by increasing its turnover rate, thus increasing the availability of the conformation of the Na/K pump that binds ouabain with high affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号