首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The potential involvement of activated oxygen species by submergence stress was studied in two Malaysian rice cultivars, MR219-4 and MR219-9, and cultivar FR13A that is known to be tolerant to submergence. Seedlings of these three rice cultivars were subjected to different submergence periods (4, 8, and 12 days). Under 8 days of complete submergence, FR13A cultivar showed higher lipid peroxidation in terms of malondialdehyde level and activities of antioxidative enzymes, superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) when compared to the MR219-4 and MR219-9 cultivars. MR219-9 showed higher SOD, APX, and GR activities after 12 days of submergence. The levels of SOD activity indicated that detoxification of O2·− to H2O2 was maintained at a stable level throughout the submergence stress until up to 8 days and increased rapidly at 12 days of submergence. The results indicated that tolerance to submergence in rice is associated until 8 days submergence for MR219-4 and FR13A cultivars. These findings suggested that tolerance to submergence stress in rice might be proven by increased the capacity of antioxidative system. In addition, CAT activity has much higher affinity for scavenges H2O2 than APX. Therefore, ascorbate glutathione cycle might be more efficient to scavenge H2O2.  相似文献   

2.
Two cultivars of peanut (Arachis hypogaea L.) which were designated as resistant (Florispan) and sensitive (Gazipasa) according to their growth retardation under drought stress conditions were compared for their oxidative damage and antioxidant responses. Sixteen days-old peanut seedlings were subjected to PEG-6000 solutions of two different osmotic potentials; −0.4 and −0.8 MPa, and various growth parameters, photosystem II activity, changes in malondialdehyde (MDA), hydrogen peroxide (H2O2) and proline levels, activities of ascorbate peroxidase (APX), catalase (CAT), peroxidase (POX) and gluthatione reductase (GR) enzymes were determined. Both cultivars exhibited water deficit at −0.8 MPa osmotic potential of PEG-6000 and H2O2 levels significantly increased during exposure to −0.4 MPa osmotic potential. However, H2O2 levels were under control in both cultivars at exposure to −0.8 MPa osmotic potential. Significant proline accumulation was observed in the tissues of cv. Florispan at −0.8 MPa osmotic potential, whereas proline accumulation did not appear to be an essential part of the protection mechanism against drought in cv. Gazipasa. No significant variation in chlorophyll fluorescence values were detected in neither of the cultivars. Enzyme activity measurements revealed that Gazipasa copes well with lesser magnitudes of drought stress by increasing the activity of mainly APX, and during harsh stress conditions, only APX maintains its activity in the tissues. In cultivar Florispan, GR activity appears to take role in lesser magnitudes of drought stress, whereas CAT and APX activities appear to be very crucial antioxidative defenses during intense stress conditions. The results indicate that, the level of proline and activities of the enzymes CAT and APX are important mechanisms for the maintenance of drought tolerance in peanut plants.  相似文献   

3.
The physiological role of peroxisomal ascorbate peroxidases (pAPX) is unknown; therefore, we utilized pAPX4 knockdown rice and catalase (CAT) inhibition to assess its role in CAT compensation under high photorespiration. pAPX4 knockdown induced co‐suppression in the expression of pAPX3. The rice mutants exhibited metabolic changes such as lower CAT and glycolate oxidase (GO) activities and reduced glyoxylate content; however, APX activity was not altered. CAT inhibition triggered different changes in the expression of CAT, APX and glutathione peroxidase (GPX) isoforms between non‐transformed (NT) and silenced plants. These responses were associated with alterations in APX, GPX and GO activities, suggesting redox homeostasis differences. The glutathione oxidation‐reduction states were modulated differently in mutants, and the ascorbate redox state was greatly affected in both genotypes. The pAPX suffered less oxidative stress and photosystem II (PSII) damage and displayed higher photosynthesis than the NT plants. The improved acclimation exhibited by the pAPX plants was indicated by lower H2O2 accumulation, which was associated with lower GO activity and glyoxylate content. The suppression of both pAPXs and/or its downstream metabolic and molecular effects may trigger favourable antioxidant and compensatory mechanisms to cope with CAT deficiency. This physiological acclimation may involve signalling by peroxisomal H2O2, which minimized the photorespiration.  相似文献   

4.
We explored the interaction between radiation of different wavelength and jasmonic acid (JA) or brassinosteroids (BR) on leaf senescence-induced oxidative stress. Three approaches were used: 1) jasmonic acid insensitive1-1 (jai1-1) and brassinosteroid-deficient [dumpy (dpy)] mutants were treated with red (R) or far-red (FR) radiation; 2) phytochromedeficient aurea (au) and high pigment-1 (hp-1) (radiation exaggerated response) mutants were treated with methyl jasmonate (MeJA) or epibrassinolide (epiBL); and 3) double mutants au jai1-1 and au dpy were produced. Leaf chlorophyll content, lipid peroxidation, and antioxidant enzyme activities were determined. After senescence induction in detached leaves, we verified that the patterns of chlorophyll degradation of hormonal and photomorphogenic mutants were not significantly different in comparison with original cv. Micro-Tom (MT). Moreover, there was no significant change in lipid peroxidation measured as malondialdehyde (MDA) production, as well as catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) activities in the hormonal mutants. Exogenous BR increased CAT and APX activities in MT, au, and hp-1. As concerns the double mutants, severe reduction in H2O2 production which was not accompanied by changes in MDA content, and CAT and APX activities was observed during senescence in au dpy. The results suggest that JA and BR do not participate in light signaling pathway during leaf senescence-induced oxidative stress.  相似文献   

5.
We studied the effects of different concentrations of mercury (0.0 to 100 μM) on growth and photosynthetic efficiency in rice plants treated for 21 d. In addition, we investigated how this metal affected the malondialdehyde (MDA) content as well as the activity of five antioxidant enzymes — superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), guaiacol peroxidase (POD), and catalase (CAT). Photosynthetic efficiency (Fμ/Fm) and seedling growth decreased as the concentration of Hg was increased in the growth media. Plants also responded to Hg-induced oxidative stress by changing the levels of their antioxidative enzymes. Enhanced lipid peroxidation was observed in both leaves and roots that had been exposed to oxidative stress, with leaves showing higher enzymatic activity. Both SOD and APX activities increased in treatments with up to 50 μM Hg, then decreased at higher concentrations. In the leaves, both CAT and POD activities increased gradually, with CAT levels decreasing at higher concentrations. In the roots, however, CAT activity remained unchanged while that of POD increased a bit more than did the control for concentrations of up to 10 μM Hg. At higher Hg levels, both CAT and POD activities decreased. GR activity increased in leaves exposed to no more than 0.25 μM Hg, then decreased gradually. In contrast, its activity was greatly inhibited in the roots. Based on these results, we suggest that when rice plants are exposed to different concentrations of mercury, their antioxidative enzymes become involved in defense mechanisms against the free radicals that are induced by this stress.  相似文献   

6.
The responses of antioxidative system and photosystem II photochemistry of rice (Oryza sativa L.) to paraquat induced oxidative stress were investigated in a chilling-tolerant cultivar Xiangnuo no. 1, and a chilling-susceptible cultivar, IR-50. Electrolyte leakage and malondialdehyde (MDA) content of Xiangnuo no. 1 were little affected by paraquat, but they increased in IR-50. After paraquat treatment, superoxide dismutase (SOD) activity remained high in Xiangnuo no. 1, while it declined in IR-50. Activities of catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) declined with oxidative stress in both cultivars, but Xiangnuo no. 1 had higher GR activity than IR-50. Under paraquat induced oxidative stress, ascorbic acid (AsA) and reduced glutathione (GSH) concentrations remained high in Xiangnuo no. 1, but decreased in IR-50. The results indicated that higher activities of SOD and GR and higher contents of AsA and GSH in Xiangnuo no. 1 under paraquat induced oxidative stress were associated with its tolerance to paraquat, while paraquat induced damage to IR-50 was related to decreased activities of SOD, APX and GR and contents of AsA and GSH. F v/F m, Φ PSII, and qP remained high in Xiangnuo no. 1, while they decreased greatly in IR-50 under paraquat induced oxidative stress.  相似文献   

7.
As a major antioxidant in plants, ascorbic acid (AsA) plays a very important role in the response to aluminum (Al) stress. However, the effect of AsA on the mitigation of Al toxicity and the mechanism of nitrate nitrogen (NO3 ?–N) uptake by plants under Al stress are unclear. In this study, a hydroponic experiment was conducted using peak 1 A rice (sterile line, Indica) with weaker resistance to Al and peak 1 superior 5 rice (F1 hybrid, Indica) with stronger resistance to Al to study the effects of exogenous AsA on the physiological and biochemical responses to NO3 ?–N uptake by rice roots exposed to 50 μmol L?1 Al. Al stress induced increases in the concentrations of H2O2 and malondialdehyde (MDA) and in the activities of antioxidant enzymes [such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX)]. Plasma membrane (PM) H+-ATPase and H+-pump activities, endogenous AsA content and NO3 ?–N uptake in rice roots decreased under Al stress. After treatment with 2 mmol L?1 exogenous AsA combined with Al, concentrations of H2O2 and MDA in roots notably decreased, and endogenous AsA content and activities of SOD, POD, CAT, and APX in rice roots increased significantly; furthermore, the interaction of PM H+-ATPase and the 14-3-3 protein was also enhanced significantly compared with that in control plants without AsA treatment, which clearly increased NO3 ?–N uptake. Based on all of these data, the application of AsA significantly reduced the accumulation of H2O2 and MDA and increased the activities of PM H+-ATPase and the H+-pump by increasing the endogenous AsA content, the antioxidant enzyme activities, and the interaction of PM H+-ATPase and the 14-3-3 protein in the roots of the two rice cultivars under Al stress, thereby improving the uptake of NO3 ?–N in rice.  相似文献   

8.
Salinity has been shown to be a major factor contributing to low nitrogen availability in plants. To verify the changes in nitrogen metabolism activity as affected by the exogenous application of proline under salt stress and its relation to salt tolerance, in vitro rice shoot apices were used as a model to study the growth performance and changes in nitrogen assimilation activities in two Malaysian rice cultivars MR 220 and MR 253. Results revealed that salt stress greatly reduced the plant height, shoot nitrate (NO3 ?) content, shoot glutamine synthetase (GS), and root nitrate reductase (NR) activities in both cultivars. Supplementation of proline significantly increased the plant height, number of roots, root NO3 ? content, root NR, and root GS activities under salt stress in both cultivars with greater enhancement in MR 253 than MR 220. The results also indicated that MR 253 possessed higher nitrite reductase (NiR) and glutamate synthase (NADH–GOGAT) activities as compared with MR 220 in all tested treatments. It was suggested that the NO3 ? content, NR, and GS activities played important roles in regulating nitrogen metabolism under salt stress. Taken together, it was concluded that the ability of proline in mitigating salt stress-induced damages was correlated with the changes in nitrogen assimilation activities.  相似文献   

9.
Wheat blast caused by the hemibiotroph fungal pathogen Magnaporthe oryzae Triticum (MoT) pathotype is a destructive disease of wheat in South America, Bangladesh and Zambia. This study aimed to determine and compare the activities of antioxidant enzymes in susceptible (wheat, maize, barley and swamp rice grass) and resistant (rice) plants when interacting with MoT. The activities of reactive oxygen species-detoxifying enzymes; catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione S-transferase (GST), peroxidase (POX) were increased in all plants in response to MoT inoculation with a few exceptions. Interestingly, an early and very high activity of CAT was observed within 24 h after inoculation in wheat, barley, maize and swamp rice grass with lower H2O2 concentration. In contrast, an early and high accumulation of H2O2 was observed in rice at 48 hai with little CAT activity only at a later stage of MoT inoculation. The activities of APX, GST and POD were also high at an early stage of infection in rice. However, these enzymes activities were very high at a later stage in wheat, barley, maize and swamp rice grass. The activity of GPX gradually decreased with the increase of time in rice. Taken together, our results suggest that late and early inductions of most of the antioxidant enzyme activities occurs in susceptible and resistant plants, respectively. This study demonstrates some insights into physiological responses of host and non-host plants when interacting with the devastating wheat blast fungus MoT, which could be useful for developing blast resistant wheat.  相似文献   

10.
Pigeonpea [Cajanus cajan (L.) Millsp.] is a waterlogging-sensitive legume crop. We studied the effect of waterlogging stress on hydrogen peroxide (H2O2) content, lipid peroxidation and antioxidant enzyme activities in two pigeonpea genotypes viz., ICPL-84023 (waterlogging resistant) and MAL-18 (waterlogging susceptible). In a pot experiment, waterlogging stress was imposed for 6 days at early vegetative stage (20 days after sowing). Waterlogging treatment significantly increased hydrogen peroxide accumulation and lipid peroxidation, which indicated the extent of oxidative injury posed by stress conditions. Enzyme activities of peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD) and polyphenol oxidase (PPO) increased in pigeonpea roots as a consequence of waterlogged conditions, and all the enzyme activities were significantly higher in waterlogged ICPL-84023 than in MAL-18. POX activity was the maximum immediately after imposing stress, therefore, it was suggested to be involved in early scavenging of H2O2, while rest of the enzymes (CAT, APX, SOD and PPO) were more important in late responses to waterlogging. Present study revealed that H2O2 content is directly related to lipid peroxidation leading to oxidative damage during waterlogging in pigeonpea. Higher antioxidant potential in ICPL-84023 as evidenced by enhanced POX, CAT, APX, SOD and PPO activities increased capacity for reactive oxygen species (ROS) scavenging and indicated relationship between waterlogging resistance and antioxidant defense system in pigeonpea.  相似文献   

11.
选用马铃薯‘Favorita’品种,采用淹水及淹水后恢复通气的方法,研究了缺氧及氧恢复条件对马铃薯块茎亚细胞水平线粒体中活性氧(R0s)及抗氧化酶的影响。结果表明:缺氧胁迫会导致块茎线粒体中超氧阴离子(0;)的发生速率、过氧化氢(H202)及丙二醛(MDA)的含量先升高后下降,其中在缺氧第1天时分别比对照升高43.95%、49.18%、69.20%,在缺氧第3天时各项指标均达到最大值:而缺氧胁迫下超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、过氧化氢酶(CAT)活性呈现先降低、后升高、再降低的趋势,其中缺氧第1天分别比对照降低28.35%、31.48%、37.36%。氧恢复时07发生速率,H:O:及MDA含量,SOD、APX、CAT的活性同样呈现先升高后降低的趋势,其中与缺氧1d未恢复对照相比,氧恢复1d分别提高144.69%、63.45%、59.07%、39.29%、11.45%、2.88%。另外,上述各项指标因缺氧胁迫与氧恢复时间的不同而有较大的变化。由此推测:氧恢复比缺氧胁迫更能促进马铃薯块茎线粒体ROS的爆发,加剧膜脂过氧化,并增强线粒体抗氧化酶的短时防御性能。  相似文献   

12.
Manganese (Mn) is an essential element for plant growth but in excess, specially in acidic soils, it can become phytotoxic. In order to investigate whether oxidative stress is associated with the expression of Mn toxicity during early seedling establishment of rice plants, we examined the changes in the level of reactive oxygen species (ROS), oxidative stress induced an alteration in the level of non-enzymic antioxidants and activities of antioxidative enzymes in rice seedlings grown in sand cultures containing 3 and 6 mM MnCl2. Mn treatment inhibited growth of rice seedlings, the metal increasingly accumulated in roots and shoots and caused damage to membranes. Mn treated plants showed increased generation of superoxide anion (O2 .−), elevated levels of H2O2 and thiobarbituric acid reactive substances (TBARS) and decline in protein thiol. The level of nonprotein thiol, however, increased due to Mn treatment. A decline in contents of reduced ascorbate (AsA) and glutathione (GSH) as well as decline in ratios of their reduced to oxidize forms was observed in Mn-treated seedlings. The activities of antioxidative enzymes superoxide dismutase (SOD) and its isoforms Mn SOD, Cu/Zn SOD, Fe SOD as well as guaiacol peroxidase (GPX) increased in the seedlings due to Mn treatment however, catalase (CAT) activity increased in 10 days old seedlings but it declined by 20 days under Mn treatment. The enzymes of Halliwell-Asada cycle, ascorbate peroxidase (APX) monodehydoascorbate reductase (MDHAR), dehyroascorbate reductase (DHAR) and glutathione reductase (GR) increased significantly in Mn treated seedlings over controls. Results suggest that in rice seedlings excess Mn induces oxidative stress, imbalances the levels of antioxidants and the antioxidative enzymes SOD, GPX, APX and GR appear to play an important role in scavenging ROS and withstanding oxidative stress induced by Mn.  相似文献   

13.
Two-month-old healthy seedlings of a true mangrove, Bruguiera parviflora, raised from propagules in normal nursery conditions were subjected to varying concentrations of NaCl for 45 d under hydroponic culture conditions to investigate the defence potentials of antioxidative enzymes against NaCl stress imposed oxidative stress. Changes in the activities of the antioxidative enzymes catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (POX), glutathione reductase (GR) and superoxide dismutase (SOD) were assayed in leaves to monitor the temporal regulation. Among the oxidative stress triggered chemicals, the level of H2O2 was significantly increased while total ascorbate and total glutathione content decreased. The ratio of reduced to oxidized glutathiones, however, increased due to decreased levels of oxidized glutathione in the leaf tissue. Among the five antioxidative enzymes monitored, the APX, POX, GR and SOD specific activities were significantly enhanced at high concentration (400 mM NaCl), while the catalase activities declined, suggesting both up and downregulations of antioxidative enzymes occurred due to NaCl imposed osmotic and ionic stress. Analysis of the stress induced alterations in the isoforms of CAT, APX, POX, GR and SOD revealed differential regulations of the isoforms of these enzymes. In B. parviflora one isoform of each of Mn-SOD and Cu/Zn-SOD while three isoforms of Fe-SOD were observed by activity staining gel. Of these, only Mn-SOD and Fe-SOD2 content was preferentially elevated by NaCl treatment, whereas isoforms of Cu/Zn-SOD, Fe-SOD1 and Fe-SOD3 remained unchanged. Similarly, out of the six isoforms of POX, the POX-1,-2,-3 and -6 were enhanced due to salt stress but the levels of POX-4 and -5 remained same as in control plants suggesting preferential upregulation of selective POX isoforms. Activity staining gel revealed only one prominent band of APX and this band increased with increased salt concentration. Similarly, two isoforms of GR (GR1 and GR2) were visualized on activity staining gel and both these isoforms increased upon salt stress. In this mangrove four CAT-isoforms were identified, among which the prominent CAT-2 isoform level was maximally reduced again suggesting differential downregulation of CAT isoforms by NaCl stress. The results presented in this communication are the first report on the resolutions of isoforms APX, POX and GR out of five antioxidative enzymes studied in the leaf tissue of a true mangrove. The differential changes in the levels of the isoforms due to NaCl stress may be useful as markers for recognizing salt tolerance in mangroves. Further, detailed analysis of the isoforms of these antioxidative enzymes is required for using the various isoforms as salt stress markers. Our results indicate that the overproduction of H2O2 by NaCl treatment functions as a signal of salt stress and causes upregulation of APX, POX, GR and deactivations of CAT in B. parviflora. The concentrations of malondialdehyde, a product of lipid peroxidation and lipoxygenase activity remained unchanged in leaves treated with different concentrations of NaCl, which again suggests that the elevated levels of the antioxidant enzymes protect the plants against the activated oxygen species thus avoiding lipid peroxidation during salt stress.  相似文献   

14.
The effect of foliar pretreatment by hydrogen peroxide (H2O2) at low concentrations of 0, 5, 10, and 15 mM on the chilling tolerance of two Zoysia cultivars, manilagrass (Zoysia matrella) and mascarenegrass (Zoysia tenuifolia), was studied. The optimal concentration for H2O2 pretreatment was 10 mM, as demonstrated by the lowest malondialdehyde (MDA) content and electrolyte leakage (EL) levels and higher protein content under chilling stress (7°C/2°C, day/night). Prior to initiation of chilling, exogenous 10 mM H2O2 significantly increased catalase (CAT), ascorbate peroxidase (APX), glutathione-dependent peroxidases (GPX), and glutathione-S-transferase (GST) activities in manilagrass, and guaiacol peroxidase (POD), APX, and glutathione reductase (GR) activities in mascarenegrass, suggesting that H2O2 may act as a signaling molecule, inducing protective metabolic responses against further oxidative damage due to chilling. Under further stress, optimal pretreatments alleviated the increase of H2O2 level and the decrease of turfgrass quality, and improved CAT, POD, APX, GR, and GPX activities, with especially significant enhancement of APX and GPX activities from the initiation to end of chilling. These antioxidative enzymes were likely the important factors for acquisition of tolerance to chilling stress in the two Zoysia cultivars. Our results showed that pretreatment with H2O2 at appropriate concentration may improve the tolerance of warm-season Zoysia grasses to chilling stress, and that manilagrass had better tolerance to chilling, as evaluated by lower MDA and EL, and better turfgrass quality, regardless of the pretreatment applied.  相似文献   

15.
Rice (Oryza sativa L.) seedlings stressed with CdCl2 (0.5 mM or 50 μM) showed typical Cd toxicity (leaf chlorosis, decrease in chlorophyll content, or increase in H2O2 and malondialdehyde contents). Rice seedlings pretreated with heat shock at 45°C (HS) for 2 or 3 h were protected against subsequent Cd stress. Rice seedlings pretreated with HS had similar Cd concentration in leaves caused by CdCl2 as those non-HS. The content of H2O2 increased in leaves 1 h after HS exposure. However, APX and GR activities were higher in HS-treated leaves than their respective control, and it occurred after 2 h of HS treatment. Pretreatment of rice seedlings with H2O2 under non-HS conditions resulted in an increase in APX, GR, and CAT activities and protected rice seedlings from subsequent Cd stress. HS-induced H2O2 production and protection against subsequent Cd stress can be counteracted by imidazole, an inhibitor of NADPH oxidase complex. Results of the present study suggest that early accumulation of H2O2 during HS signals the increase in APX and GR activities, which in turn prevents rice seedlings from Cd-caused oxidative damage.  相似文献   

16.
Salinization usually plays a primary role in soil degradation, which consequently reduces agricultural productivity. In this study, the effects of salinity on growth parameters, ion, chlorophyll, and proline content, photosynthesis, antioxidant enzyme activities, and lipid peroxidation of two cotton cultivars, [CCRI-79 (salt tolerant) and Simian 3 (salt sensitive)], were evaluated. Salinity was investigated at 0 mM, 80 mM, 160 mM, and 240 mM NaCl for 7 days. Salinity induced morphological and physiological changes, including a reduction in the dry weight of leaves and roots, root length, root volume, average root diameter, chlorophyll and proline contents, net photosynthesis and stomatal conductance. In addition, salinity caused ion imbalance in plants as shown by higher Na+ and Cl contents and lower K+, Ca2+, and Mg2+ concentrations. Ion imbalance was more pronounced in CCRI-79 than in Simian3. In the leaves and roots of the salt-tolerant cultivar CCRI-79, increasing levels of salinity increased the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR), but reduced catalase (CAT) activity. The activities of SOD, CAT, APX, and GR in the leaves and roots of CCRI-79 were higher than those in Simian 3. CAT and APX showed the greatest H2O2 scavenging activity in both leaves and roots. Moreover, CAT and APX activities in conjunction with SOD seem to play an essential protective role in the scavenging process. These results indicate that CCRI-79 has a more effective protection mechanism and mitigated oxidative stress and lipid peroxidation by maintaining higher antioxidant activities than those in Simian 3. Overall, the chlorophyll a, chlorophyll b, and Chl (a+b) contents, net photosynthetic rate and stomatal conductance, SOD, CAT, APX, and GR activities showed the most significant variation between the two cotton cultivars.  相似文献   

17.
Water deficit is the major yield‐limiting factor of crop plants. The exposure of plants to this abiotic stress can result in oxidative damage due to the overproduction of reactive oxygen species. The aim of this work was to study the antioxidant‐stress response of drought‐tolerant (SP83‐2847 and SP83‐5073) and drought‐sensitive (SP90‐3414 and SP90‐1638) sugarcane varieties to water‐deficit stress, which was imposed by withholding irrigation for 3, 10 and 20 days. The drought‐sensitive varieties exhibited the lowest leaf relative water content and highest lipid peroxidation, hydrogen peroxide (H2O2) and proline contents during the progression of the drought‐stress condition. The antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPOX) and glutathione reductase (GR) activities changed according to variety and stress intensity. SP83‐2847 exhibited higher CAT and APX activities than the other varieties in the early stage of drought, while the activities of GPOX and GR were the highest in the other varieties at the end of the drought‐stress period. A Cu/Zn SOD isoenzyme was absent at the end of drought period from the SP90‐3414‐sensitive variety. The results indicate that lipid peroxidation and early accumulation of proline may be good biochemical markers of drought sensitivity in sugarcane.  相似文献   

18.
The control of reactive oxygen species (ROS) and the stability of photosynthetic pigments under stress conditions are hypothesized to contribute to drought tolerance. Here we studied how ascorbic peroxidase (APX), superoxide dismutase (SOD), catalase (CAT) isozyme activities and chlorophyll a, b (Chl a, b) and carotenoids (Car) contents responded to water stress and whether they related to presence of a terminal drought tolerance QTL in pearl millet. We used PRLT2/89-33 (QTL donor), H77/833-2 (sensitive), and near-isogenic lines (QTL-NILs) introgressed with the QTL in H77/833-2 background. Under water stress there was no significant change in the total APX activity; only the proportional APX5 activity increased, with higher band intensity in tolerant genotypes. There were no significant changes in total activities of CAT and SOD under water stress, with similar band intensities in all genotypes, and a new CAT isozyme was induced in all genotypes. The photosynthetic pigment content decreased under water stress, although not differently in any genotype. Under water stress, the activities of most APX, CAT and SOD isozymes were closely related to the total chlorophyll/carotenoids ratio. Overall, besides APX5, water stress did not lead to major changes in the profile of isoenzymes involved in ROS scavenging. Similarly, the pigment content under stress did not discriminate genotypes according to the presence/absence of the QTL. This absence of discrimination for the ROS scavenging enzymes and for the pigment content under stress suggests that these traits may not play a key role in terminal drought tolerance in pearl millet.  相似文献   

19.
This study investigated oxidative stress and the antioxidant response to boron (B) of chickpea cultivars differing in their tolerance to drought. Three‐week‐old chickpea seedlings were subjected to 0.05 (control), 1.6 or 6.4 mm B in the form of boric acid (H3BO3) for 7 days. At the end of the treatment period, shoot length, dry weight, chlorophyll fluorescence, B concentration, malondialdehyte content and the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) were measured. The 1.6 mm B treatment did not cause significant changes in shoot length of cultivars, although shoot length increased in the drought‐tolerant Gökce and decreased in the drought‐sensitive Küsmen after 6.4 mm B treatment. Dry weights of both cultivars decreased with 6.4 mm B treatment. Chlorophyll fluorescence (Fv/Fm) did not change in Gökce at either B level. Nor did it change in Küsmen with 1.6 mm B but Fv/Fm decreased with 6.4 mm B. Boron concentration in the shoots of both cultivars increased significantly with increasing levels of applied B. Significant increases in total SOD activity were observed in shoots of both cultivars given 1.6 and 6.4 mm B. Shoot extracts exhibited five activity bands, two of which were identified as MnSOD and Cu/ZnSOD. In comparison to the control group, all enzyme activities (except APX and SOD) decreased with 1.6 mm B stress. GR activity decreased, while activities of CAT, POX and APX did not change with 6.4 mm B in Küsmen. On the other hand, activities of CAT, APX and SOD increased in Gökce at both B levels. In addition, lipid peroxidation was higher in Küsmen than in Gökce, indicating more damage by B to membrane lipids in the former cultivar. These results suggest that (i) Gökce is tolerant and Küsmen is sensitive to B, and (ii) B tolerance of Gökce might be closely related to increased capacity of the antioxidative system (total SOD, CAT and APX) to scavenge reactive oxygen species and thus suppress lipid peroxidation under B stress. To the best of our knowledge, this is the first report on the antioxidant response of chickpea seedlings to B toxicity.  相似文献   

20.
The growth of the wild-type and three salt tolerant mutants of barnyard grass ( Echinochloa crusgalli L.) under salt stress was investigated in relation to oxidative stress and activities of the antioxidant enzymes superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6), phenol peroxidase (POD: EC 1.11.1.7), glutathione reductase (GR: EC 1.8.1.7) and ascorbate peroxidase (APX: EC 1.11.1.1). The three mutants ( fows B17, B19 and B21) grew significantly better than the wild-type under salt stress (200 m M NaCl) but some salt sensitive individuals were still detectable in the populations of the mutants though in smaller numbers compared with the wild-type. The salt sensitive plants had slower growth rates, higher rates of lipid peroxidation and higher levels of reactive oxygen species (ROS) in their leaves compared with the more tolerant plants from the same genotype. These sensitivity responses were maximized when the plants were grown under high light intensity suggesting that the chloroplast could be a main source of ROS under salt stress. However, the salt sensitivity did not correlate with reduced K +/Na + ratios or enhanced Na + uptake indicating that the sensitivity responses may be mainly because of accumulation of ROS rather than ion toxicity. SOD activities did not correlate to salt tolerance. Salt stress resulted in up to 10-fold increase in CAT activity in the sensitive plants but lower activities were found in the tolerant ones. In contrast, the activities of POD, APX and GR were down regulated in the sensitive plants compared with the tolerant ones. A correlation between plant growth, accumulation of ROS and differential modulation of antioxidant enzymes is discussed. We conclude that loss of activities of POD, APX and GR causes loss of fine regulation of ROS levels and hence the plants experience oxidative stress although they have high CAT activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号