首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transient global brain ischemia induces dysfunctions of mitochondria including disturbance in mitochondrial protein synthesis and inhibition of respiratory chain complexes. Due to capacity of mitochondria to release apoptogenic proteins, ischemia-induced mitochondrial dysfunction is considered to be a key event coupling cerebral blood flow arrest to neuronal cell death. Ischemic preconditioning (IPC) represents an important phenomenon of adaptation of central nervous system (CNS) to sub-lethal short-term ischemia, which results in increased tolerance of CNS to the lethal ischemia. In this study we have determined the effect of ischemic preconditioning on ischemia/reperfusion-associated inhibition of mitochondrial protein synthesis and activity of mitochondrial respiratory chain complexes I and IV in the hippocampus of rats. Global brain ischemia was induced by 4-vessel occlusion in duration of 15 min. Rats were preconditioned by 5 min of sub-lethal ischemia and 2 days later, 15 min of lethal ischemia was induced. Our results showed that IPC affects ischemia-induced dysfunction of hippocampal mitochondria in two different ways. Repression of mitochondrial translation induced during reperfusion of the ischemic brain is significantly attenuated by IPC. Slight protective effect of IPC was documented for complex IV, but not for complex I. Despite this, protective effect of IPC on ischemia/reperfusion-associated changes in integrity of mitochondrial membrane and membrane proteins were observed. Since IPC exhibited also inhibitory effect on translocation of p53 to mitochondria, our results indicate that IPC affects downstream processes connecting mitochondrial dysfunction to neuronal cell death.  相似文献   

2.
Experiments were performed to investigate the effects of 60 min severe global ischemia followed by 30 min reperfusion on the antioxidant enzymatic system in the isolated perfused rat heart. Ischemia induced a significant increase of cytoplasmic and mitochondrial selenium-dependent glutathione peroxidase (EC 1.11.1.9) activity. In reperfused hearts, only the mitochondrial form showed a further significant increase. Glutathione reductase (EC 1.6.4.2) was increased in ischemic hearts, whilst the reperfused hearts showed a decrease towards the level found in aerobic hearts. Mitochondrial superoxide dismutase (EC 1.15.1.1) activity was depressed in ischemic as well as in reperfused hearts, though the cytoplasmic form was unmodified. Catalase (EC 1.11.1.6), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and glutathione transferase (EC 2.5.1.18) activities were unchanged throughout the experiment. Ischemia and reperfusion induced a significant fall in tissue-reduced glutathione content concomitant with an increase of its oxidized form. We have also studied the mitochondrial inner membrane proteins for both molecular weight, with Coomassie blue, and thiol status, with monobromobimane stain, using a sodium dodecyl sulfate polyacrylamide gel electrophoresis technique. Neither ischemia nor reperfusion effected any relevant modification of the molecular weight of the mitochondrial inner-membrane proteins either in the presence or absence of a reducing agent. However, two of these proteins with an apparent molecular weight of 52 0000 and 12 000 showed a decrease in the monobromobimane stain, probably due to the oxidation of their thiol groups.  相似文献   

3.
Schild L  Reiser G 《The FEBS journal》2005,272(14):3593-3601
From in vivo models of stroke it is known that ischemia/reperfusion induces oxidative stress that is accompanied by deterioration of brain mitochondria. Previously, we reported that the increase in Ca2+ induces functional breakdown and morphological disintegration in brain mitochondria subjected to hypoxia/reoxygenation (H/R). Protection by ADP indicated the involvement of the mitochondrial permeability transition pore in the mechanism of membrane permeabilization. Until now it has been unclear how reactive oxygen species (ROS) contribute to this process. We now report that brain mitochondria which had been subjected to H/R in the presence of low micromolar Ca2+ display low state 3 respiration (20% of control), loss of cytochrome c, and reduced glutathione levels (75% of control). During reoxygenation, significant mitochondrial generation of hydrogen peroxide (H2O2) was detected. The addition of the membrane permeant superoxide anion scavenger TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) suppressed the production of H2O2 by brain mitochondria metabolizing glutamate plus malate by 80% under normoxic conditions. TEMPOL partially protected brain mitochondria exposed to H/R and low micromolar Ca2+ from decrease in state 3 respiration (from 25% of control to 60% of control with TEMPOL) and permeabilization of the inner membrane. Membrane permeabilization was obvious, because state 3 respiration could be stimulated by extramitochondrial NADH. Our data suggest that ROS and Ca2+ synergistically induce permeabilization of the inner membrane of brain mitochondria exposed to H/R. However, permeabilization can only partially be prevented by suppressing mitochondrial generation of ROS. We conclude that transient deprivation of oxygen and glucose during temporary ischemia coupled with elevation in cytosolic Ca2+ concentration triggers ROS generation and mitochondrial permeabilization, resulting in neural cell death.  相似文献   

4.
5.
Non-synaptosomal and synaptosomal mitochondrial membrane-linked enzymatic activities, NADH-cytochrome c reductase rotenone insensitive (marker of the outer membrane) and cytochrome oxidase (marker of the inner membrane), were measured in rat brain hippocampus and striatum immediately after and 1, 4, and 7 days following the induction of complete transient ischemia (15 min) by the four vessel occlusion method. Furthermore citrate synthetase activity was measured with and without Triton X-100 in order to qualitatively evaluate the membrane permeability. Nonsynaptosomal mitochondrial membranes showed reduction of both activities only in the late reperfusion phase: NADH-CCRRi decreased in striatal mitochondria after 4–7 days and only after 7 days in the hippocampus. COX activity decreased only in striatal mitochondria 7 days after ischemia. Non-synaptosomal mitochondrial membrane permeability did not show changes. Synaptosomal mitochondria showed a decrease of NADH-CCRRi only at 7 days of reperfusion both in hippocampus and striatum, while COX activity decreased only during ischemia and returned to normal levels in the following days in the two areas considered. In summary, free mitochondria showed insensitiveness to ischemia but they risulted damaged in the late reperfusion phase, while mitochondria from the synaptic terminal showed ischemic damage, partially restored during reperfusion. The striatal mitochondria showed a major susceptibility to ischemia/repefusion damage, showing changes earlier than the hippocampal ones.  相似文献   

6.
Protein disulfide isomerase (PDI) family proteins are classified as enzymatic chaperones for reconstructing misfolded proteins. Previous studies have shown that several PDI members possess potential proapoptotic functions. However, the detailed molecular mechanisms of PDI-mediated apoptosis are not completely known. In this study, we investigated how two members of PDI family, PDI and PDIA3, modulate apoptotic signaling. Inhibiting PDI and PDIA3 activities pharmacologically alleviates apoptosis induced by various apoptotic stimuli. Although a decrease of PDIA3 expression alleviates apoptotic responses, overexpression of PDIA3 exacerbates apoptotic signaling. Importantly, Bak, but not Bax, is essential for PDIA3-induced proapoptotic signaling. Furthermore, both purified PDI and PDIA3 proteins induce Bak-dependent, but not Bax-dependent, mitochondrial outer membrane permeabilization in vitro, probably through triggering Bak oligomerization on mitochondria. Our results suggest that both of PDI and PDIA3 possess Bak-dependent proapoptotic function through inducing mitochondrial outer membrane permeabilization, which provides a new mechanism linking ER chaperone proteins and apoptotic signaling.  相似文献   

7.
Stroke and circulatory arrest cause interferences in blood flow to the brain that result in considerable tissue damage. The primary method to reduce or prevent neurologic damage to patients suffering from brain ischemia is prompt restoration of blood flow to the ischemic tissue. However, paradoxically, restoration of blood flow causes additional damage and exacerbates neurocognitive deficits among patients who suffer a brain ischemic event. Mitochondria play a critical role in reperfusion injury by producing excessive reactive oxygen species (ROS) thereby damaging cellular components, and initiating cell death. In this review, we summarize our current understanding of the mechanisms of mitochondrial ROS generation during reperfusion, and specifically, the role the mitochondrial membrane potential plays in the pathology of cerebral ischemia/reperfusion. Additionally, we propose a temporal model of ROS generation in which posttranslational modifications of key oxidative phosphorylation (OxPhos) proteins caused by ischemia induce a hyperactive state upon reintroduction of oxygen. Hyperactive OxPhos generates high mitochondrial membrane potentials, a condition known to generate excessive ROS. Such a state would lead to a “burst” of ROS upon reperfusion, thereby causing structural and functional damage to the mitochondria and inducing cell death signaling that eventually culminate in tissue damage. Finally, we propose that strategies aimed at modulating this maladaptive hyperpolarization of the mitochondrial membrane potential may be a novel therapeutic intervention and present specific studies demonstrating the cytoprotective effect of this treatment modality.  相似文献   

8.
Pretreatment with diazoxide, mitochondrial K(ATP) channel opener, was found to protect the rat heart against ischemia/reperfusion injury. Our aim was also to characterize the effects of diazoxide on the alterations of regulatory myocardial proteins, on mitochondrial ultrastructure, integrity and induction of apoptotic responses. Isolated rat hearts were Langendorff perfused and subjected to index ischemia (II) induced by 25 min global ischemia and 35 min reperfusion. In diazoxide- treated hearts, diazoxide (50 micromol/l) was applied 15 min before II. The levels and activation of specific proteins were determined using specific antibodies, activities of matrix metalloproteinases by zymography using gelatin as a substrate. The ultrastructure of mitochondria was investigated by electron microscopy of ultrathin sections of mitochondrial fractions embedded in Epon812. In rat hearts pretreated with diazoxide we found better recovery of contractile function after II. Electron microscopy studies revealed that application of diazoxide was connected with better preservation of mitochondrial integrity at basal conditions and after II in comparison to control hearts. Ischemia induced activation of caspase-3 as well as decrease of mitochondria-associated Bcl-2 levels but diazoxide treatment did not significantly influence these changes. On the other hand, diazoxide pretreatment reduced the cytosolic levels of pro-apoptotic Bax protein. Western blot analysis revealed that application of diazoxide increased activation of both ERK-1 and ERK-2 as compared with control hearts. ERK-2 activities were also higher in diazoxide-treated hearts after II when compared to control hearts. Moreover, application of diazoxide inhibited the activities of tissue matrix metalloproteinases (MMP-2). The results suggest that the cardioprotection mediated by diazoxide in rats is associated with preservation of mitochondrial integrity and function. The effect of diazoxide on ERK pathway points to the involvement of this signaling cascade in diazoxide-mediated adaptive responses of myocardium to ischemia.  相似文献   

9.
Permeabilization of the mitochondrial membrane has been extensively associated with necrotic and apoptotic cell death. Similarly to what had been previously observed for B16F10-Nex2 murine melanoma cells, PdC (palladacycle compounds) obtained from the reaction of dmpa (N,N-dimethyl-1-phenethylamine) with the dppe [1,2-ethanebis(diphenylphosphine)] were able to induce apoptosis in HTC (hepatoma, tissue culture) cells, presenting anticancer activity in vitro. To elucidate cell site-specific actions of dmpa:dppe that could respond to the induction of apoptosis in cancer cells in the present study, we investigated the effects of PdC on isolated RLM (rat liver mitochondria). Our results showed that these palladacycles are able to induce a Ca2+-independent mitochondrial swelling that was not inhibited by ADP, Mg2+ and antioxidants. However, the PdC-induced mitochondrial permeabilization was partially prevented by pre-incubation with CsA (cyclosporin A), NEM (N-ethylmaleimide) and bongkreic acid and totally prevented by DTT (dithiothreitol). A decrease in the content of reduced thiol groups of the mitochondrial membrane proteins was also observed, as well as the presence of membrane protein aggregates in SDS/PAGE without lipid and GSH oxidation. FTIR (Fourier-transform IR) analysis of PdC-treated RLM demonstrated the formation of disulfide bonds between critical thiols in mitochondrial membrane proteins. Associated with the mitochondrial permeabilization, PdC also induced the release of cytochrome c, which is sensitive to inhibition by DTT. Besides the contribution to clarify the pro-apoptotic mechanism of PdC, this study shows that the catalysis of specific protein thiol cross-linkage is enough to induce mitochondrial permeabilization and cytochrome c release.  相似文献   

10.

Background and Purpose

Mitochondrial dysfunction has been implicated in the cell death observed after cerebral ischemia, and several mechanisms for this dysfunction have been proposed. Reperfusion after transient cerebral ischemia may cause continued and even more severe damage to the brain. Many lines of evidence have shown that mitochondria suffer severe damage in response to ischemic injury. The purpose of this study was to observe the features of mitochondrial dysfunction in isolated mitochondria during the reperfusion period following focal cerebral ischemia.

Methods

Male Wistar rats were subjected to focal cerebral ischemia. Mitochondria were isolated using Percoll density gradient centrifugation. The isolated mitochondria were fixed for electron microscopic examination; calcium-induced mitochondrial swelling was quantified using spectrophotometry. Cyclophilin D was detected by Western blotting. Fluorescent probes were used to selectively stain mitochondria to measure their membrane potential and to measure reactive oxidative species production using flow cytometric analysis.

Results

Signs of damage were observed in the mitochondrial morphology after exposure to reperfusion. The mitochondrial swelling induced by Ca2+ increased gradually with the increasing calcium concentration, and this tendency was exacerbated as the reperfusion time was extended. Cyclophilin D protein expression peaked after 24 hours of reperfusion. The mitochondrial membrane potential was decreased significantly during the reperfusion period, with the greatest decrease observed after 24 hours of reperfusion. The surge in mitochondrial reactive oxidative species occurred after 2 hours of reperfusion and was maintained at a high level during the reperfusion period.

Conclusions

Reperfusion following focal cerebral ischemia induced significant mitochondrial morphological damage and Ca2+-induced mitochondrial swelling. The mechanism of this swelling may be mediated by the upregulation of the Cyclophilin D protein, the destruction of the mitochondrial membrane potential and the generation of excessive reactive oxidative species.  相似文献   

11.
Mammalian Bcl-x(L) protein localizes to the outer mitochondrial membrane, where it inhibits apoptosis by binding Bax and inhibiting Bax-induced outer membrane permeabilization. Contrary to expectation, we found by electron microscopy and biochemical approaches that endogenous Bcl-x(L) also localized to inner mitochondrial cristae. Two-photon microscopy of cultured neurons revealed large fluctuations in inner mitochondrial membrane potential when Bcl-x(L) was genetically deleted or pharmacologically inhibited, indicating increased total ion flux into and out of mitochondria. Computational, biochemical, and genetic evidence indicated that Bcl-x(L) reduces futile ion flux across the inner mitochondrial membrane to prevent a wasteful drain on cellular resources, thereby preventing an energetic crisis during stress. Given that F(1)F(O)-ATP synthase directly affects mitochondrial membrane potential and having identified the mitochondrial ATP synthase β subunit in a screen for Bcl-x(L)-binding partners, we tested and found that Bcl-x(L) failed to protect β subunit-deficient yeast. Thus, by bolstering mitochondrial energetic capacity, Bcl-x(L) may contribute importantly to cell survival independently of other Bcl-2 family proteins.  相似文献   

12.
The influence of hyperbaric oxygen (HBO) treatment on the activities of superoxide dismutase (SOD) and Na+,K+-ATPase was determined during different time periods of reperfusion in rats exposed to global cerebral ischemia. Ischemic animals were either sacrificed or exposed to the first HBO treatment 2, 24, 48 or 168 h after ischemic insult (for SOD activities measurement) or immediately, 0.5, 1, 2, 6, 24, 48, 72 or 168 h after ischemic procedure (for Na+,K+-ATPase activities measurement). Hyperbaric oxygenation procedure was repeated for seven consecutive days. The results of presented experiments demonstrated the statistically significant increase in the hippocampal SOD activity 24 and 48 h after global cerebral ischemia followed by a decrease in the enzymatic activity 168 h after ischemic insult. In the ischemic rats treated with HBO the level of hippocampal SOD activity was significantly higher after 168 h of reperfusion in comparison to the ischemic, non HBO-treated animals. In addition, it was found that global cerebral ischemia induced a statistically significant decrease of the hippocampal Na+,K+-ATPase activity starting from 1 to 168 h of reperfusion. Maximal enzymatic inhibition was obtained 24 h after the ischemic damage. Decline in Na+,K+-ATPase activity was prevented in the animals exposed to HBO treatment within the first 24 h of reperfusion. Our results suggest that global cerebral ischemia induces significant alterations in the hippocampal SOD and Na+,K+-ATPase activities during different periods of reperfusion. Enhanced SOD activity and preserved Na+,K+-ATPase activity within particular periods of reperfusion, could be indicators of a possible benefitial role of HBO treatment in severe brain ischemia.  相似文献   

13.
Mitochondrial membrane permeabilization (MMP) is considered as the “point-of-no-return” in numerous models of programmed cell death. Indeed, mitochondria determine the intrinsic pathway of apoptosis, and play a major role in the extrinsic route as well. MMP affects the inner and outer mitochondrial membranes (IM and OM, respectively) to a variable degree. OM permeabilization culminates in the release of proteins that normally are confined in the mitochondrial intermembrane space (IMS), including caspase activators (e.g. cytochrome c) and caspase-independent death effectors (e.g. apoptosis-inducing factor). Partial IM permeabilization disrupts mitochondrial ion and volume homeostasis and dissipates the mitochondrial transmembrane potential (ΔΨm). The assessment of early mitochondrial alterations allows for the identification of cells that are committed to die but have not displayed yet the apoptotic phenotype. Several techniques to measure MMP by cytofluorometry and fluorescence microscopy have been developed. Here, we summarize the currently available methods for the detection of MMP, and provide a comparative analysis of these techniques.  相似文献   

14.
Ischemic preconditioning (IPC) represents an important adaptation of CNS to sub-lethal ischemia, which results in increased tolerance of CNS to the lethal ischemia. Ischemia-induced mitochondrial apoptosis is considered to be an important event leading to neuronal cell death after cerebral blood flow arrest. In presented study, we have determined the effect of IPC on ischemia/reperfusion-induced mitochondrial apoptosis. Global brain ischemia was induced by permanent occlusion of vertebral arteries and temporal occlusion of carotid arteries for 15 min. Rats were preconditioned by 5 min of sub-lethal ischemia and 2 days later 15 min of lethal ischemia was induced. With respect to mitochondrial apoptosis initiation, translocation of p53 to mitochondria was observed in hippocampus but not in cerebral cortex. However, level of both apoptotic bax and anti-apoptotic bcl-xl in both hippocampal and cortical mitochondria was unchanged after global brain ischemia. Detection of genomic DNA fragmentation as well as Fluoro-Jade C staining showed that ischemia induces apoptosis in vulnerable CA1 layer of rat hippocampus. IPC abolished completely ischemia-induced translocation of p53 to mitochondria and had significant protective effect on ischemia-induced DNA fragmentation. In addition, significant decrease of Fluoro-Jade C positive cells was observed as well. Our results indicate that IPC abolished almost completely both initiation and execution of mitochondrial apoptosis induced by global brain ischemia.  相似文献   

15.
Mitochondria are both targets and sources of oxidative stress. This dual relationship is particularly evident in experimental paradigms modeling ischemic brain injury. One mitochondrial metabolic enzyme that is particularly sensitive to oxidative inactivation is pyruvate dehydrogenase. This reaction is extremely important in the adult CNS that relies very heavily on carbohydrate metabolism, as it represents the sole bridge between anaerobic and aerobic metabolism. Oxidative injury to this enzyme and to other metabolic enzymes proximal to the electron transport chain may be responsible for the oxidized shift in cellular redox state that is observed during approximately the first hour of cerebral reperfusion. In addition to impairing cerebral energy metabolism, oxidative stress is a potent activator of apoptosis. The mechanisms responsible for this activation are poorly understood but likely involve the expression of p53 and possibly direct effects of reactive oxygen species on mitochondrial membrane proteins and lipids. Mitochondria also normally generate reactive oxygen species and contribute significantly to the elevated net production of these destructive agents during reperfusion. Approaches to inhibiting pathologic mitochondrial generation of reactive oxygen species include mild uncoupling, pharmacologic inhibition of the membrane permeability transition, and simply lowering the concentration of inspired oxygen. Antideath mitochondrial proteins of the Bcl-2 family also confer cellular resistance to oxidative stress, paradoxically through stimulation of mitochondrial free radical generation and secondary upregulation of antioxidant gene expression.  相似文献   

16.
17.
Oxidative stress and neuronal death/survival signaling in cerebral ischemia   总被引:11,自引:0,他引:11  
It has been demonstrated by numerous studies that apoptotic cell death pathways are implicated in ischemic cerebral injury in ischemia models in vivo. Experimental ischemia and reperfusion models, such as transient focal/global ischemia in rodents, have been thoroughly studied and the numerous reports suggest the involvement of cell survival/death signaling pathways in the pathogenesis of apoptotic cell death in ischemic lesions. In these models, reoxygenation during reperfusion provides oxygen as a substrate for numerous enzymatic oxidation reactions and for mitochondrial oxidative phosphorylation to produce adenosine triphosphate. Oxygen radicals, the products of these biochemical and physiological reactions, are known to damage cellular lipids, proteins, and nucleic acids and to initiate cell signaling pathways after cerebral ischemia. Genetic manipulation of intrinsic antioxidants and factors in the signaling pathways has provided substantial understanding of the mechanisms involved in cell death/survival signaling pathways and the role of oxygen radicals in ischemic cerebral injury. Future studies of these pathways could provide novel therapeutic strategies in clinical stroke.  相似文献   

18.
Following acute myocardial infarction, re-establishment of coronary perfusion aggravates further injuries in the heart and remote organs including the brain as a consequence of ischemia/reperfusion (I/R) injury. Since pretreatment with metformin attenuated both cardiac and cerebral I/R injury via AMP-activated protein kinase (AMPK) pathways, we hypothesized that metformin given after ischemia mitigates both cardiac and brain pathologies following cardiac I/R. Male Wistar rats were subjected to either cardiac I/R (30 min-ischemia/120 min-reperfusion; n = 30) or sham operation (n = 5). Metformin 200 mg/kg was given intravenously to the cardiac I/R group (n = 10/group), either during ischemia (D-MET) or at the onset of reperfusion (R-MET). Left ventricular ejection fraction (LVEF) and arrhythmia scores were determined. The heart and brain tissues were collected to determine the extent of injury, mitochondrial function, and apoptosis. Additionally, microglial morphology, Alzheimer's proteins, and dendritic spine density were determined in the brain. Cardiac I/R led to not only reduced LVEF, cardiac mitochondrial dysfunction, and arrhythmias, but also brain mitochondrial dysfunction, apoptosis, Alzheimer's protein aggregation, microglial activation, and dendritic spine loss. A single dose of metformin did not alter p-AMPK/AMPK in both organs. In the heart, impaired LVEF, arrhythmias, infarct size expansion, mitochondrial dysfunction, and apoptosis were not alleviated. On the contrary, metformin attenuated brain mitochondrial dysfunction, apoptosis, and Alzheimer's protein levels. Microglial morphology and dendritic spine density were additionally preserved in D-MET group. In conclusion, metformin given during ischemia preferentially provides neuroprotection against brain mitochondrial dysfunction, apoptosis, microglial activation, and dendritic spine loss in an AMPK-independent manner following cardiac I/R injury.  相似文献   

19.
Reperfusion of ischemic myocardial tissue results in an increase in mitochondrial free radical production and declines in respiratory activity. The effects of ischemia and reperfusion on the activities of Krebs cycle enzymes, as well as enzymes involved in electron transport, were evaluated to provide insight into whether free radical events are likely to affect enzymatic and mitochondrial function(s). An in vivo rat model was utilized in which ischemia is induced by ligating the left anterior descending coronary artery. Reperfusion, initiated by release of the ligature, resulted in a significant decline in NADH-linked ADP-dependent mitochondrial respiration as assessed in isolated cardiac mitochondria. Assays of respiratory chain complexes revealed reduction in the activities of complex I and, to a lesser extent, complex IV exclusively during reperfusion, with no alterations in the activities of complexes II and III. Moreover, Krebs cycle enzymes alpha-ketoglutarate dehydrogenase and aconitase were susceptible to reperfusion-induced inactivation with no decline in the activities of other Krebs cycle enzymes. The decline in alpha-ketoglutarate dehydrogenase activity during reperfusion was associated with a loss in native lipoic acid on the E2 subunit, suggesting oxidative inactivation. Inhibition of complex I in vitro promotes free radical generation. alpha-Ketoglutarate dehydrogenase and aconitase are uniquely susceptible to in vitro oxidative inactivation. Thus, our results suggest a scenario in which inhibition of complex I promotes free radical production leading to oxidative inactivation of alpha-ketoglutarate dehydrogenase and aconitase.  相似文献   

20.
If a coronary blood vessel is occluded and the neighboring cardiomyocytes deprived of oxygen, subsequent reperfusion of the ischemic tissue can lead to oxidative damage due to excessive generation of reactive oxygen species. Cardiomyocytes and their mitochondria are the main energy producers and consumers of the heart, and their metabolic changes during ischemia seem to be a key driver of reperfusion injury. Here, we hypothesized that tracking changes in cardiomyocyte metabolism, such as oxygen and ATP concentrations, would help in identifying points of metabolic failure during ischemia and reperfusion. To track some of these changes continuously from the onset of ischemia through reperfusion, we developed a system of differential equations representing the chemical reactions involved in the production and consumption of 67 molecular species. This model was validated and used to identify conditions present during periods of critical transition in ischemia and reperfusion that could lead to oxidative damage. These simulations identified a range of oxygen concentrations that lead to reverse mitochondrial electron transport at complex I of the respiratory chain and a spike in mitochondrial membrane potential, which are key suspects in the generation of reactive oxygen species at the onset of reperfusion. Our model predicts that a short initial reperfusion treatment with reduced oxygen content (5% of physiological levels) could reduce the cellular damage from both of these mechanisms. This model should serve as an open-source platform to test ideas for treatment of the ischemia reperfusion process by following the temporal evolution of molecular concentrations in the cardiomyocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号