首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of the effect of several 1,4-DHP Ca(2+) channel antagonists on experimental and clinical diabetes shows that structurally similar Ca(2+) channel antagonists can exert opposite effects on Ca(2+) influx, glucose homeostasis and insulin secretion. The influence of the Ca(2+) channel antagonists on pancreatic beta cell functions is dependent on lipophilicity, interactions with the cell membrane lipid bilayer, with SNAREs protein complexes in cell and vesicle membranes, with intracellular receptors, bioavailability and time of elimination from several organs and the bloodstream. In the present work we studied the effect at several doses of new compounds synthesized in the Latvian Institute of Organic Synthesis on blood glucose levels in normal and STZ-induced diabetic rats. The compounds tested were: 1,4-DHP derivatives cerebrocrast (1), etaftoron (2), OSI-1190 (3), OSI-3802 (4), OSI-2954 (5) and known 1,4-DHP derivatives: niludipine (6), nimodipine (7) and nicardipine (8) which possess different lipophilicities. Analysis of the structure-function relationships of the effect of 1,4-DHP derivatives on glucose metabolism showed that cerebrocrast could evoke qualitative differences in activity. Insertion of an OCHF(2) group in position 2 of the 4-phenylsubstituent and propoxyethylgroup R in ester moieties in positions 3 and 5 of the DHP structure, as well as an increase in the number of carbon atoms in the ester moiety, significantly modified the properties of the compound. Thereby cerebrocrast acquired high lipophilicity and membranotropic properties. Cerebrocrast, in a single administration at low doses (0.05 and 0.5 mg x kg(-1), p.o.), significantly decreased the plasma level of glucose in normal rats and in STZ-induced diabetic rats returned plasma glucose to basal levels. This effect was characterized by a slow onset and a powerful long-lasting influence on glucose metabolism, especially in STZ-induced diabetic rats.  相似文献   

2.
Morphological and functional changes of rat pancreatic islets caused by administration of streptozotocin (STZ) and the bioavailability of insulin formulations administered to STZ-induced diabetic rats with fasting (12 h) or non-fasting were investigated. Islets isolated from normal rats maintained a good three-dimensional structure and the islet yield was 962.5±86.5 islet equivalent number (IEQ, islets converted to an average diameter of 150 μm). In the diabetic group (>500 mg/ml blood glucose), the islet yield was only 44.4±8.3 IEQ and the islet was severely damaged. The minimum reduction of blood glucose of each formulation, such as insulin solution, microcrystal, and insulin microcrystal capsule, was shown to be 11.3, 11.0, and 16.3 mg/dl, respectively, at 6 h in fasting with diabetic rats. These results indicated that the administration of insulin formulations to the fasting groups increased the severe hypoglycemic effect of insulin action more than in non-fasting diabetic rats. The diabetic rat with fasting has a regulatory disorder in maintaining the blood glucose level. Accordingly, the validity of pharmacological availability as an optimal modeling of insulin formulations is best in non-fasting STZ-induced diabetic rats.  相似文献   

3.
Type 2 diabetes is associated with obesity, insulin resistance, hyperglycemia, hyperphagia, polyuria, body weight gain, excessive secretion of glucocorticoids (GCs), thymus involution, adrenal gland hypertrophy, diabetic nephropathy, etc. We examined the effect of cerebrocrast, a new antidiabetic agent (synthesized in the Latvian Institute of Organic Synthesis), on body weight, food and water intake, urine output, and on changes of organ weight: that is, kidney, thymus, adrenal gland of normal rats. Cerebrocrast was administered at doses of 0.05 and 0.5 mg kg−1 per os (p.o.) once a day for three consecutive days, and its effects were observed from 3 to 27 days after the last administration. Cerebrocrast, during the experimental period, decreased body weight by an average of approximately 32.3%, food intake by about 10–15% at the beginning of the experiments and by 22.6% at the end of the experiments, especially at a dose of 0.5 mg kg−1. Water intake and urine output in comparison with controls were decreased. The daily food intake decreased about 1.0 and 2.1 g by administering single cerebrocrast doses of 0.05 and 0.5 mg kg−1 body weight (b.w.), respectively, but by administering for three consecutive days, food intake decreased by about 2.2 and 3.4 g, respectively. The weekly body weight gain decreased by administering a single dose of cerebrocrast by 2.61 and 2.51 g, respectively, and by triple administration it decreased by 4.36 and 3.07 g, respectively. Cerebrocrast has long‐lasting effects on these parameters and on thymus and adrenal gland weight. As cerebrocrast decreased glucose levels in normal and streptozotocin (STZ)‐induced diabetic rats, it also promoted glucose uptake by the brain, intensified insulin action and formation de novo of insulin receptors. We can conclude that cerebrocrast may regulate food intake and body weight through glucose sensing by proopiomelanocortin (POMC) neurons, that are involved in control of glucose homeostasis, stimulation of α‐melanocyte‐stimulating hormone (α‐MSH) secretion, activation of MC4‐Rs and inhibition of neuropeptide Y (NPY) in the ARC of the hypothalamus, affecting the kidney, and causing decreased urine output and water intake. Moreover, it could stimulate secretion of vasopressin. By administration of cerebrocrast thymus mass was increased, thereby preventing the action of GCs. As cerebrocrast inhibited L‐ and T‐type calcium channels, it can prevent vasoconstriction of kidney arterioles and aldosterone secretion that have significant roles in the development of hypertension and diabetic nephropathy. These properties of cerebrocrast are important for treatment of Type 2 diabetes and its consequent development of hypertension and diabetic nephropathy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Morphological and functional changes of rat pancreatic islets caused by administration of streptozotocin (STZ) and the bioavailability of insulin formulations administered to STZ-induced diabetic rats with fasting (12 h) or non-fasting were investigated. Islets isolated from normal rats maintained a good three-dimensional structure and the islet yield was 962.5+/-86.5 islet equivalent number (IEQ, islets converted to an average diameter of 150 microm). In the diabetic group (>500 mg/ml blood glucose), the islet yield was only 44.4+/-8.3 IEQ and the islet was severely damaged. The minimum reduction of blood glucose of each formulation, such as insulin solution, microcrystal, and insulin microcrystal capsule, was shown to be 11.3, 11.0, and 16.3 mg/dl, respectively, at 6 h in fasting with diabetic rats. These results indicated that the administration of insulin formulations to the fasting groups increased the severe hypoglycemic effect of insulin action more than in non-fasting diabetic rats. The diabetic rat with fasting has a regulatory disorder in maintaining the blood glucose level. Accordingly, the validity of pharmacological availability as an optimal modeling of insulin formulations is best in non-fasting STZ-induced diabetic rats.  相似文献   

5.
Both IDDM and NIDDM are characterized by deviations in peripheral T and B lymphocyte count, Thelper:Tsuppressor ratio, as well as by impaired Tsuppressor function. These abnormalities may promote insulin antibody and other antibody production, contributing to overt diabetes mellitus development in early stage of the disease. In the present study we explored the effects of cerebrocrast (1,4‐dihydropyridine derivative) administration on Con A‐ and IL‐2‐stimulated tissue lymphocyte blast transformation activity and on the thymus and lymph node mass in normal and streptozotocin (STZ)‐induced diabetic rats. It was established that cerebrocrast, administered four times at the doses of 0·05 and 0·5 mg kg−1, has long‐term (up to 14 days) effects on the immune system and protects against the toxic effect of STZ in STZ‐induced diabetic rats, preventing thymus and lymph node mass loss. We conclude that cerebrocrast administration leads to the increase in number and activity of Thelper and Tsuppressor lymphocytes. Glycolysis and DNA synthesis in these cells is augmented under the influence of cerebrocrast administration. We propose that the increase in lymphocyte suppressive activity caused by cerebrocrast administration may prevent the development of IDDM and NIDDM in patients with pre‐diabetes, but in patients with early and overt diabetes mellitus the drug administration may prevent the overexpression of insulin antibodies and other antibodies. The effect of cerebrocrast on the de novo production of insulin and IL‐2 receptors may be beneficial for IDDM and NIDDM patients. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
The aim of this study was to evaluate the possible protective effects of the volatile oil of Nigella sativa (NS) seeds on insulin immunoreactivity and ultrastructural changes of pancreatic β-cells in STZ-induced diabetic rats. STZ was injected intraperitoneally at a single dose of 50 mg/kg to induce diabetes. The rats in NS treated groups were given NS (0.2 ml/kg) once a day orally for 4 weeks starting 3 days prior to STZ injection. To date, no ultrastructural changes of pancreatic β-cells in STZ induced diabetic rats by NS treatment have been reported. Islet cell degeneration and weak insulin immunohistochemical staining was observed in rats with STZ-induced diabetes. Increased intensity of staining for insulin, and preservation of β-cell numbers were apparent in the NS-treated diabetic rats. The protective effect of NS on STZ-diabetic rats was evident by a moderate increase in the lowered secretory vesicles with granules and also slight destruction with loss of cristae within the mitochondria of β-cell when compared to control rats. These findings suggest that NS treatment exerts a therapeutic protective effect in diabetes by decreasing morphological changes and preserving pancreatic β-cell integrity. Consequently, NS may be clinically useful for protecting β-cells against oxidative stress.  相似文献   

7.
The hypoglycemic effect of the crude extracellular polysaccharides (EPS) produced from submerged mycelial culture of an edible mushroom Laetiporus sulphureus var. miniatus in streptozotocin (STZ)-induced diabetic rat was investigated. Hypoglycemic effect of EPS was evaluated in STZ-induced diabetic rats, and its possible mechanism was suggested by the results of western blot analysis and immunohistochemical staining. The results revealed that orally administrated EPS, when given 48 h after STZ treatment exhibited an excellent hypoglycemic effect, lowering the average plasma glucose level in EPS-fed rats to 43.5% of STZ-treated rats. The plasma levels of total cholesterol and triglyceride were significantly increased upon STZ treatment and they were markedly reduced by oral administration of EPS to near-normal levels. The results of immunohistochemical staining of the pancreatic tissues showed that EPS treatment considerably increased the insulin antigenesity of diabetic islet β-cells, suggesting the possibility of β-cell proliferation or regeneration by EPS therapy. Moreover, immunoblotting study revealed that protein levels of iNOS was increased and SOD2, catalase, GPx were significantly increased after EPS treatments, suggesting alleviated oxidative stress mediated by STZ. Orally administrated EPS exhibited considerable hypoglycemic effect in STZ-induced diabetic rats and that these EPS may be useful for the management of diabetes mellitus.  相似文献   

8.
Lee JS 《Life sciences》2006,79(16):1578-1584
In the current study, the effect of soy protein and genistein, one of the main isoflavones in soybeans, on blood glucose, lipid profile, and antioxidant enzyme activities in streptozotocin (STZ)-induced diabetic rats was investigated. Male Sprague-Dawley rats were divided into nondiabetic control, STZ, STZ-genistein supplemented group (STZ-G; 600 mg/kg diet), and STZ-isolated soy protein supplemented group (STZ-ISP; 200 g/kg diet). Diabetes was induced by a single injection of STZ (50 mg/kg BW) freshly dissolved in 0.1 mol/L citrate buffer (pH 4.5) into the intraperitonium. Diabetes was confirmed by measuring the fasting blood glucose concentration 48-h post-injection. The rats with blood glucose level above 350 mg/dL were considered to be diabetic. Genistein and ISP were supplemented in the diet for 3 weeks. The supplementation of genistein and ISP increased the plasma insulin level but decreased the HbA(IC) level of the STZ-induced diabetic rats. The supplementation of genistein and ISP increased the glucokinase level of the STZ-induced diabetic rats. A significant reduction in glucose-6-phosphatase was observed in the groups treated with genistein and ISP in comparison with the diabetic control group. Hepatic superoxide dismutase, catalase, and glutathione peroxidase activities of the STZ-induced diabetic rats were significantly decreased in comparison with the control rats. Administering genistein and ISP to the STZ-induced diabetic rats significantly increased those enzyme activities. The concentration of thiobarbituric acid reactive substances in the STZ-induced diabetic rats was significantly elevated, while the genistein and ISP supplement decreased it to the control concentration. Genistein and ISP supplements seem to be beneficial for correcting the hyperglycemia and preventing diabetic complications.  相似文献   

9.
The purpose of this work was to study the effect of ursodeoxycholic acid (UDCA) on the morphological and functional alterations in pancreatic islet beta-cells in rats with diabetes induced by alloxan (150 mg kg(-1), i.p.). UDCA (40 mg kg(-1), i.g.) was administered daily from the fifth to the 35th day after the alloxan treatment. The treatment of diabetic rats with UDCA improved the pancreatic morphology disturbed by the alloxan treatment: UDCA increased the number of pancreatic islets and beta-cells, the beta-/alpha-cell ratio and decreased the number of alpha-cells. As the morphometric data suggest, the treatment of diabetic animals with UDCA significantly increased the area of beta-cell cytoplasmatic granules stained by paraldehyde-fuchsin. The concentration of blood glucose in diabetic rats was gradually decreased after the UDCA treatment, and at the end of the experiment reached the control value. The treatment with UDCA raised the serum insulin level in diabetic rats about 2.5-fold, but this concentration was significantly lower as compared to the control group. The content of lipid peroxidation end-products, hydroxyalkenals and malondialdehyde, was significantly elevated in the alloxan-treated rats, whereas the treatment with UDCA normalized these parameters. The present data indicate that UDCA acts as an effective antidiabetic agent in alloxan-induced diabetes and its beneficial effects in diabetic rats can be related to the antioxidant properties of UDCA.  相似文献   

10.
The aim of this research was to determine the effects of Momordica charantia (MC) fruit aqueous extract on pancreatic histopathological changes in neonatal STZ-induced type-II diabetic rats. Diabetes mellitus was induced in one day Sprague-Dawley neonatal rats using a single intrapretoneal injection of streptozotocin (STZ) (85 mg/kg body weight) and monitored for 12 weeks thereafter. The diabetic rats were separated into three groups, as follows: the diabetic control group (i.e. nSTZ), the diabetic group (i.e. nSTZ/M) - which was orally given 20 mg/kg of MC fruit extract, and the diabetic group (i.e. nSTZ/G) - that was treated with glibenclamide, 0.1 mg/kg for a period of four weeks. At the end of treatment, the animals were sacrificed and blood samples were collected from the saphenous vein to measure the blood glucose and serum insulin level. The pancreatic specimens were removed and processed for light microscopy, electron microscopy examination and immunohistochemical study. The results of this study showed that MC fruit aqueous extract reduced the blood glucose level as well as glibenclamide and increased the serum insulin level in the treated diabetic rats (P<0.05). The fruit extract of MC alleviated pancreatic damage and increased the number of β-cells in the diabetic treated rats (P<0.05). Our results suggest that oral feeding of MC fruit extract may have a significant role in the renewal of pancreatic β-cells in the nSTZ rats.  相似文献   

11.
This study investigated the beneficial effects and mechanism of action of the juice of Momordica charantia in streptozotocin (STZ)-induced diabetes mellitus in rats. Diabetes mellitus was associated with significant (p < 0.01) time course reductions in body weight, plasma insulin and the number of insulin positive cells per islet and significant (p < 0.01) time course elevation in blood glucose and osmolarity and systolic blood pressure compared to age-matched healthy controls. Oral intake of M. charantia juice by STZ-induced diabetic rats partially reversed all the diabetes-induced effects measured. Daily oral administration of M. charantia juice to STZ-induced diabetic rates significantly (p < 0.01) reduced the Na+- and K+-dependent absorptions of glucose by the brush border membrane vesicles of the jejunum compared to the responses obtained in STZ-induced diabetic rat. Either insulin (100 MM) or the fruit juice lyophilised extract (5 microg x ml(-1)) can stimulate 14C-D-glucose uptake in L6 myotubes. These effects were completely blocked by wortmannin, an inhibitor of phosphatidylinositol 3-kinase. High concentrations (10-200 microg x ml(-1)) of M. charantia juice extract inhibited 14C-D-glucose uptake in L6 myotubes compared to the control response. The effect of M. charantia treatment was also investigated on myelinated fibre abnormalities in the tibial nerve of STZ-induced diabetic and control rats. The results show that diabetes was associated with significant (p < 0.05) reduction in the mean cross-sectional myelinated nerve fibres, axonal area, myelin area and maximal fibre area compared to end controls. Treatment of STZ-induced diabetic rats with M. charantia juice normalised the structural abnormalities of peripheral nerves. The results indicate that M. charantia can exert marked beneficial effects in diabetic rats, and moreover, it can regulate glucose uptake into jejunum membrane brush border vesicles and stimulate glucose uptake into skeletal muscle cells similar to the response obtained with insulin.  相似文献   

12.
Ezquer F  Ezquer M  Simon V  Conget P 《PloS one》2011,6(1):e16566
Type 1 diabetes mellitus (T1D) is due to autoimmune destruction of pancreatic beta-cells. Previously, we have shown that intravenously administered bone marrow-derived multipotent mesenchymal stromal cells (MSCs) allows pancreatic islet recovery, improves insulin secretion and reverts hyperglycemia in low doses streptozotocin (STZ)-induced diabetic mice. Here we evaluate whether insulin prophylaxis and the administration of a second dose of cells affect the antidiabetic therapeutic effect of MSC transplantation. Insulitis and subsequent elimination of pancreatic beta-cells was promoted in C57BL/6 mice by the injection of 40 mg/kg/day STZ for five days. Twenty-four days later, diabetic mice were distributed into experimental groups according to if they received or not insulin and/or one or two doses of healthy donor-derived MSCs. Three and half months later: glycemia, pancreatic islets number, insulinemia, glycated hemoglobin level and glucose tolerance were determined in animals that did not received exogenous insulin for the last 1.5 months. Also, we characterized MSCs isolated from mice healthy or diabetic. The therapeutic effect of MSC transplantation was observed in diabetic mice that received or not insulin prophylaxis. Improvements were similar irrespective if they received one or two doses of cells. Compared to MSCs from healthy mice, MSCs from diabetic mice had the same proliferation and adipogenic potentials, but were less abundant, with altered immunophenotype and no osteogenic potential.Our preclinical results should be taken into account when designing phase II clinical trials aimed to evaluate MSC transplantation in patients with T1D. Cells should be isolated form healthy donor, insulin prophylaxis could be maintained and a second dose, after an elapse of two months, appears unnecessary in the medium-term.  相似文献   

13.
Male albino rats with diabetes induced by the administration of streptozotocin (STZ) (45 mg/kg, i.v.) were treated with oral administration of diphenyl diselenide (DPDS) pre-dissolved in soya bean oil. A significant reduction in blood glucose levels was observed in STZ-induced diabetic rats treated with DPDS compared with an untreated STZ diabetic group. The pharmacological effect of DPDS was accompanied by a marked reduction in the level of glycated proteins, and restoration of the observed decreased levels of vitamin C and reduced glutathione (GSH; in liver and kidney tissues) of STZ-treated rats. DPDS also caused a marked reduction in the high levels of thiobarbituric acid reactive substances (TBARS) observed in STZ-induced diabetic group. Finally, the inhibition of catalase, delta aminolevulinic acid dehydratase (e-ALA-D) and isoforms of lactate dehydrogenase (LDH) accompanied by hyperglycemia were prevented by DPDS in all tissues examined. Hence, in comparison with our earlier report, the present findings suggests that, irrespective of the route of administration and the delivery vehicle, DPDS can be considered as an anti-diabetic agent due to its anti-hyperglycemic and antioxidant properties.  相似文献   

14.
Islet alpha- and delta-cells are spared autoimmune destruction directed at beta-cells in type 1 diabetes resulting in an apparent increase of non-beta endocrine cells in the islet core. We determined how islet remodeling in autoimmune diabetes compares to streptozotocin (STZ)-induced diabetes. Islet cell mass, proliferation, and immune cell infiltration in pancreas sections from diabetic NOD mice and mice with STZ-induced diabetes was assessed using quantitative image analysis. Serial sections were stained for various beta-cell markers and Ngn3, typically restricted to embryonic tissue, was only upregulated in diabetic NOD mouse islets. Serum levels of insulin, glucagon and GLP-1 were measured to compare hormone levels with respect to disease state. Total pancreatic alpha-cell mass did not change as autoimmune diabetes developed in NOD mice despite the proportion of islet area comprised of alpha- and delta-cells increased. By contrast, alpha- and delta-cell mass was increased in mice with STZ-induced diabetes. Serum levels of glucagon reflected these changes in alpha-cell mass: glucagon levels remained constant in NOD mice over time but increased significantly in STZ-induced diabetes. Increased serum GLP-1 levels were found in both models of diabetes, likely due to alpha-cell expression of prohormone convertase 1/3. Alpha- or delta-cell mass in STZ-diabetic mice did not normalize by replacement of insulin via osmotic mini-pumps or islet transplantation. Hence, the inflammatory milieu in NOD mouse islets may restrict alpha-cell expansion highlighting important differences between these two diabetes models and raising the possibility that increased alpha-cell mass might contribute to the hyperglycemia observed in the STZ model.  相似文献   

15.
To elucidate gender-dependent protein regulation and molecular abnormalities in streptozotocin (STZ)-induced diabetes, we compared differentially expressed pancreatic proteins between male and female diabetic rats and their healthy controls using a 2-DE-based proteomic approach. In animal experiments, we found that females exposed to STZ displayed greater susceptibility towards diabetes development due to lower insulin secretion and severe β-cell damage. It was also accompanied with more impaired regulation of sex hormones, lower glucose tolerance, and higher blood glucose levels compared to male diabetic rats. Among 748 detected protein spots ranging in mass from 6 to 240 kDa between pH 3 and 10, a total of 42 proteins showed significant sexually-dimorphic regulation patterns between male and female diabetic rats. Proteomic data revealed that male and female rats displayed prominent gender-dimorphic differential regulation of pancreatic proteins involved in glycolysis, the citric acid cycle, amino acid synthesis, lipid metabolism, insulin biosynthesis, β-cell regeneration, cell signaling, as well as antioxidative and cellular stress defense. In conclusion, the current proteomic study revealed that severely impaired protein regulation in the pancreas, at least in part, is responsible for increased susceptibility of female rats to STZ-induced diabetes.  相似文献   

16.
Recently, various clinical studies have indicated that lipophilic beta-blockers reduce the coronary mortality in diabetic patients; however, systematic studies have not been reported. The objective of the present investigation was to compare the effects of chronic treatment with metoprolol and atenolol on cardiovascular complications in streptozotocin (STZ)-induced diabetic rats. Injection of STZ produced hyperglycemia, hypoinsulinemia, hyperlipidemia, increased blood pressure, cardiac hypertrophy, reduction in heart rate, and structural alterations in cardiac tissues. Metoprolol and atenolol effectively prevented the development of hypertension in diabetic rats. Metoprolol treatment produced a slight but significant reduction in serum glucose levels with elevation in serum insulin levels, while atenolol produced a slight increase in glucose levels but no effect on insulin levels. Moreover, neither metoprolol nor atenolol treatment reduced the elevated cholesterol levels in diabetic rats. Metoprolol treatment significantly prevented STZ-induced increase in triglyceride levels, but atenolol failed to produce this effect. Metoprolol exhibited a minimal improvement in STZ-induced bradycardia, whereas atenolol produced a further reduction in heart rate. Histological examination showed metoprolol treatment also prevented STZ-induced hypertrophy and some of the alterations in cardiomyocytes. In conclusion, our data suggest that metoprolol has some beneficial effects over atenolol with respect to cardiovascular complications associated with diabetes mellitus.  相似文献   

17.
Cordyceps sinensis, a well-known traditional Chinese medicine, possesses anti-tumor, immunostimulant and antioxidant activities; however, the identities of active components have not been determined. In our previous study using antioxidant activity-guided fractionation [Li et al., 2003. A polysaccharide isolated from Cordyceps sinensis, a traditional Chinese medicine, protects PC12 cells against hydrogen peroxide-induced injury. Life Sci. 73, 2503-2513], a polysaccharide of molecular weight approximately 210kDa was isolated from cultured Cordyceps mycelia by ion-exchange and sizing chromatography. The isolated polysaccharide, named CSP-1, which has strong anti-oxidation activity, contains glucose, mannose and galactose in the ratio of 1:0.6:0.75. In the present study, we demonstrated the hypoglycemic effect of CSP-1 on normal and alloxan-diabetic mice and streptozotocin (STZ)-diabetic rats. The basal glucose level did not differ significantly among the normal mice. CSP-1 (at 200 and 400mg/kg body wt./day for 7 days, p.o.), however, significantly reduced the blood glucose level by 12.0+/-3.2% and 22.5+/-4.7% in normal mice, respectively (p<0.05). When administered at a dose of higher than 200mg/kg body wt. daily for 7 days, CSP-1 produced a significant drop in blood glucose level in both STZ-induced diabetic rats and alloxan-induced diabetic mice. The serum insulin levels in diabetic animals were also increased by administration of CSP-1 (p<0.05). CSP-1 with hypoglycemic properties increased circulating insulin level in diabetic animals, which suggests that CSP-1 may stimulate pancreatic release of insulin and/or reduce insulin metabolism.  相似文献   

18.
The present studies were undertaken to examine the effects of probucol on the protection against pancreatic beta-cell damage by multiple low-dose streptozotocin (STZ: 40 mg/kg, ip). The degree of hyperglycemia at 7, 14 and 17 days after STZ injection was attenuated by probucol. Serum immunoreactive insulin (IRI) levels were increased in the rats fed probucol containing diet at Day 14 and 17. Serum IRI levels after intraperitoneal injection of 2.0 g/kg glucose was reduced in STZ mice and the reduction of serum IRI levels was attenuated in the rats fed probucol, accompanied with a significant reduction of the degree of hyperglycemia after bolus of glucose. Probucol attenuated the reduction of pancreatic IRI content by STZ. The percentage of Thy 1.2-positive splenocytes was increased by STZ and probucol reduced the percentage of Thy 1.2-positive splenocytes, although there were no differences in the populations of splenocytes, positive with Lyt 2 or L3/T4. These data suggest that probucol has a protective action against pancreatic insulitis by multiple low-dose STZ administration.  相似文献   

19.
Pancreatic regeneration after pancreatectomy has been well documented in the animal models. We have recently reported that STZ diabetic animals operated for partial pancreatectomy showed normoglycemic status after the operation as compared to uncontrolled hyperglycemia and even death in the diabetic sham operated animals. In drug and virus-induced experimental diabetic models there is a high mortality of animals due to uncontrolled destruction of the beta-cells. In order to destroy sufficient beta-cell mass so as to induce diabetes but prevent mortality, we designed present studies to investigate the combined effect of pancreatectomy, nicotinamide, and streptozotocin (STZ) on diabetic status of BALB/c mice. BALB/c mice of either sex were subjected to 50% pancreatectomy. These were then treated with nicotinamide (350 mg/kg body weight) before and after streptozotocin (200 mg/kg body weight) administration. The changes in body weight, blood glucose levels, serum and pancreatic insulin contents of these animals were monitored in experimental and control group for 12 weeks, and follow up studies were made of these animals for further 12 weeks. It was found that there was a drastic loss of body weight, decreased serum and pancreatic insulin levels coupled with sustained and low levels of hyperglycemia in the experimental group as opposed to the control group. The results indicate that partial pancreatectomy followed by nicotinamide and streptozotocin treatment leads to a long-lasting hyperglycemic state, depicting the clinical symptom of NIDDM without mortality. The study probably reveals a new model for experimental diabetes.  相似文献   

20.
The aim of the study was to evaluate the effect of rosiglitazone treatment on islet ghrelin and insulin gene expressions in streptozotocin (STZ)-induced diabetic rats. Animals were divided into four groups. 1. Intact controls. 2. Rosiglitazone-treated controls. 3. STZ-induced diabetes. 4. Rosiglitazone-treated diabetes. Rosiglitazone was given for 7 days at a dose of 20 mg/kg body weight. Ghrelin and insulin gene expressions were investigated by immunohistochemistry and in situ hybridization. There was no statistically significant difference in body weight between STZ-induced diabetic rats and rosiglitazone-treated diabetic rats during the experimental period. Furthermore, there were no significant differences in blood glucose levels and insulin immunoreactive cell numbers between STZ-induced diabetic rats and rosiglitazone-treated diabetic rats. There was a tendency towards a reduction of ghrelin gene expression in diabetic animals compared with intact controls. We found, in addition, that ghrelin immunoreactive and ghrelin mRNA expressing cells were frequent in the epithelial lining of the ducts suggesting ductal epithelium might be the source of the regenerating islet ghrelin cells, as is known for other islet cells. The results show that short-term rosiglitazone pretreatment had no significant effect on ghrelin and insulin gene expressions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号