首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of vascular networks during embryogenesis and early stages of development encompasses complex and tightly regulated growth of blood vessels, followed by maturation of some vessels, and spatially controlled disconnection and pruning of others. The adult vasculature, while more quiescent, is also capable of adapting to changing physiological conditions by remodeling blood vessels. Numerous studies have focused on understanding key factors that drive vessel growth in the adult in response to ischemic injury. However, little is known about the extent of vessel rarefaction and its potential contribution to the final outcome of vascular recovery. We addressed this topic by characterizing the endogenous phases of vascular repair in a mouse model of hindlimb ischemia. We showed that this process is biphasic. It encompasses an initial rapid phase of vessel growth, followed by a later phase of vessel rarefaction. In healthy mice, this process resulted in partial recovery of perfusion and completely restored the ability of mice to run voluntarily. Given that the ability to revascularize can be compromised by a cardiovascular risk factor such as diabetes, we also examined vascular repair in diabetic mice. We found that paradoxically both the initial growth and subsequent regression of collateral vessels were more pronounced in the setting of diabetes and resulted in impaired recovery of perfusion and impaired functional status. In conclusion, our findings demonstrate that the formation of functional collateral vessels in the hindlimb requires vessel growth and subsequent vessel rarefaction. In the setting of diabetes, the physiological defect was not in the initial formation of vessels but rather in the inability to sustain newly formed vessels.  相似文献   

2.
Tumor blood vessels have multiple structural and functional abnormalities. They are unusually dynamic, and naturally undergo sprouting, proliferation, remodeling or regression. The vessels are irregularly shaped, tortuous, and lack the normal hierarchical arrangement of arterioles, capillaries and venules. Endothelial cells in tumors have abnormalities in gene expression, require growth factors for survival and have defective barrier function to plasma proteins. Pericytes on tumor vessels are also abnormal. Aberrant endothelial cells and pericytes generate defective basement membrane. Angiogenesis inhibitors can stop the growth of tumor vessels, prune existing vessels and normalize surviving vessels. Loss of endothelial cells is not necessarily accompanied by simultaneous loss of pericytes and surrounding basement membrane, which together can then provide a scaffold for regrowth of tumor vessels. Rapid vascular regrowth reflects the ongoing drive for angiogenesis and bizarre microenvironment in tumors that promote vascular abnormalities and thereby create therapeutic targets.  相似文献   

3.
Molecular regulation of angiogenesis and lymphangiogenesis   总被引:13,自引:0,他引:13  
Blood vessels and lymphatic vessels form extensive networks that are essential for the transport of fluids, gases, macromolecules and cells within the large and complex bodies of vertebrates. Both of these vascular structures are lined with endothelial cells that integrate functionally into different organs, acquire tissue-specific specialization and retain plasticity; thereby, they permit growth during tissue repair or in disease settings. The angiogenic growth of blood vessels and lymphatic vessels coordinates several biological processes such as cell proliferation, guided migration, differentiation and cell-cell communication.  相似文献   

4.
Surgery or radiation therapy of metastatic cancer often damages lymph nodes, leading to secondary lymphedema. Here we show, using a newly established mouse model, that collecting lymphatic vessels can be regenerated and fused to lymph node transplants after lymph node removal. Treatment of lymph node-excised mice with adenovirally delivered vascular endothelial growth factor-C (VEGF-C) or VEGF-D induced robust growth of the lymphatic capillaries, which gradually underwent intrinsic remodeling, differentiation and maturation into functional collecting lymphatic vessels, including the formation of uniform endothelial cell-cell junctions and intraluminal valves. The vessels also reacquired pericyte contacts, which downregulated lymphatic capillary markers during vessel maturation. Growth factor therapy improved the outcome of lymph node transplantation, including functional reconstitution of the immunological barrier against tumor metastasis. These results show that growth factor-induced maturation of lymphatic vessels is possible in adult mice and provide a basis for future therapy of lymphedema.  相似文献   

5.
应用化学修饰的小干扰RNA(small interference RNA,siRNA)抑制裸鼠乳腺癌移植瘤血管内皮生长因子受体-2基因(VEGFR2,又称kinase insert domain-containing receptor, KDR)的表达, 探讨抑制肿瘤血管生成对人乳腺癌(MCF-7)裸鼠移植瘤生长的影响.雌裸鼠皮下种植MCF 7 细胞,肿瘤长至一定大小时, 随机分为对照组(A)、转染试剂对照组(B)、小剂量治疗组(C)及大剂量治疗组(D).肿瘤局部分别注射葡萄糖溶液、In vivo jetPEITM转染试剂和In vivo jetPEITM转染试剂包裹的KDRsiRNA.22 d后处死全部动物, 取肿瘤, 测其大小及重量, HE 及免疫组化染色,微血管密度计数,同时用RT-PCR检测KDR基因的表达水平.结果显示,siRNA治疗组瘤组织的增长受到明显抑制;HE染色显示,治疗组肿瘤中心区出现大面积细胞坏死;免疫组化结果显示,染色阳性血管数明显低于对照组;同时RT-PCR结果表明,治疗组KDR表达下调.对照组各指标无显著变化.因此,化学修饰的siRNA介导的RNAi可以降低人乳腺癌裸鼠移植瘤血管中KDR 表达, 抑制血管生成进而抑制肿瘤的生长,是潜在的肿瘤治疗新方法.  相似文献   

6.
Under regeneration of organs, wound healing, tumour growth, inflammatory processes, under many compensatory and adaptive reactions in the organism of mature persons and animals, an inevitable formation of new blood vessels (neovasculogenesis) takes place. Modern notions on mechanisms of neovasculogenesis are based on the fact that new formation of vessels in a mature organism includes processes of migration and replication of endothelial cells according to the principle: "endothelium from endothelium". The literature data on neovasculogenesis in the mature organism are summarized and compared with the authors' investigations. Characterization of new blood vessels growth is presented; ultrastructural organization of endotheliocytes in growing capillaries, formation of barrier-transport properties in the newly formed vessels, role of inductors and inhibitors of neovasculogenesis in creation of new vascular formations are considered.  相似文献   

7.
The present study was aimed to localise lymphatic vessels and their growth factors in human and mouse skeletal muscle with immunohistochemistry and specific antibodies (VEGFR-3, LYVE-1, VEGF-C and VEGF-D). The largest lymphatic vessels were found in perimysial connective tissue next to the arteries and veins, as has been shown earlier with electron microscopy. As a new finding, we also found small LYVE-1 positive vessels in the capillary bed between muscle fibres. These vessels were located next to CD31 positive blood capillaries and were of the same size, but fewer in number. In addition, we described the localisation of the two main lymphangiogenic growth factor proteins, vascular endothelial growth factor-C and -D. Both proteins were expressed in skeletal muscle at mRNA and protein levels. VEGF-D was located under the sarcolemma in some of the muscle fibres, in the endothelia of larger blood vessels and in fibroblasts. VEGF-C protein was localised to the nerves and muscle spindles, to fibroblasts and surrounding connective tissue, but was not found in muscle fibres or endothelial cells. Our results are the first to suggest the presence of lymphatic capillaries throughout the skeletal muscle, and to present the localisation of VEGF-C and -D in the muscles. Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

8.
The present study was performed to provide data to support the notion previously believed but not proved experimentally or theoretically, that blood vessels are formed by the selection of capillaries in the network. In an attempt to understand the mechanism of formation of blood vessel branching structures, the transformation of a capillary network to a branching system in the wall of quail yolk sac was successively recorded by a series of photographs, and a computer simulation was carried out for the process of in vivo vascularization based on the photographs. The simulation demonstrated that a positive feedback system participated in the formation of a branching structure. That is, vessels which had been much used were enlarged, whereas less used vessels were reduced in their size and finally extinguished. The enlarged vessels became major components of the branching system. As the body of an embryo grew, it was observed that polygonal capillary networks enlarged, which led each polygon of the network to divide into a few finer polygons. Then, some of the capillary vessels were again selected and formed a branching system. This process repeated during the body growth, indicating that the vascular system developed adaptively to the body growth. A region where the growth was fast, received much blood flow and produced finer networks of capillaries. Thus, it was experimentally demonstrated for the first time that capillaries in the network are successively selected by a positive feedback mechanism and form blood vessels.  相似文献   

9.

Background  

The growth of new blood vessels in adult life requires the initiation of endothelial cell migration and proliferation from pre-existing vessels in addition to the recruitment and differentiation of circulating endothelial progenitor cells. Signals emanating from growth factors and the extracellular matrix are important in regulating these processes.  相似文献   

10.
The potential for avoiding acquired resistance to therapy has been proposed as one compelling theoretical advantage of antiangiogenic therapy based on the normal genetic status of the target vasculature. However, previous work has demonstrated that tumors may resume growth after initial inhibition if antiangiogenic blockade is continued for an extended period. The mechanisms of this recurrent growth are unclear. In these studies, we characterized molecular changes in vasculature during apparent resumption of xenograft growth after initial inhibition by vascular endothelial growth factor blockade, "metronome" topotecan chemotherapy, and combined agents in a xenograft murine model of human Wilms' tumor. Tumors that grew during antiangiogenic blockade developed as viable clusters surrounding strikingly remodeled vessels. These vessels displayed significant increases in diameter and active proliferation of vascular mural cells and expressed platelet-derived growth factor-B, a factor that functions to enhance vascular integrity via stromal cell recruitment. In addition, remodeled vessels were marked by expression of ephrinB2, required for proper assembly of stromal cells into vasculature. Thus, enhanced vascular stability appears to characterize tumor vessel response to chronic antiangiogenesis, features that potentially support increased perfusion and recurrent tumor growth.  相似文献   

11.
The immunohistochemical properties of selective lymph vessel markers, and NO synthase (NOS) and cyclo-oxygenase (COX) activities, were examined in two kinds of human lymphatic endothelial cells isolated from collecting (macro-) and initial (micro-) lymph vessels. The constitutively expressed genes in the two kinds of lymphatic endothelial cells were also evaluated by using oligonucleotide microarray analysis and RT-PCR. We also investigated the effects of oxygen concentration in culture conditions or growth factors such as basic fibroblast growth factor (bFGF), VEGF-A, and VEGF-C on proliferation activities of the two kinds of human lymphatic endothelial cells. Immunoreactivity to LYVE-1 and the RT-PCR expression level of LYVE-1 mRNA in endothelial cells of micro-lymph vessels were stronger than those of macro-lymph vessels. Immunoreactivity to VEGF R1 was also observed as significantly stronger in the micro-lymph vessels. In contrast, the immunoreactivity to Prox-1 and the RT-PCR expression level of Prox-1 mRNA in endothelial cells of macro-lymph vessels were stronger than those of micro-lymph vessels. Similarly, immunoreactivity to ecNOS, iNOS, COX1, and COX2 was also found as significantly higher than in macro-lymph vessels. In contrast, the increase of O(2) concentration ranging from 5% to 21% caused a significant reduction of the proliferation activity of endothelial cells in macro-lymph vessels. In conclusion, these findings suggest marked heterogeneity in the immunohistochemical, genomic, and proliferation activity of human lymphatic endothelial cells between micro-(initial) and macro-(collecting) lymph vessels.  相似文献   

12.
Nitric oxide (NO) has been demonstrated to play an important role in angiogenesis, and also to be involved in collateral vessel growth. The expression of endothelial NO synthase (eNOS) is moderated partly by blood flow-induced mechanical factors, i.e., shear stress. The purpose of this study was to evaluate how the expression of eNOS correlates with the development of collateral vessels in dog heart, induced by chronic occlusion of the left circumflex artery. Immunoconfocal microscopy using an antibody against eNOS was used to detect expression of eNOS in different stages of arteriogenesis. Collateral vessels were classified into normal, growing and mature vessels by using the cytoskeleton marker desmin. Expression of the growth factors bFGF and metallproteinase-2 (MMP-2) was also examined. The data show that in normal arteriolar vessels, expression of eNOS is very low, but in growing collateral vessel there is a 6.2-fold increase, which, however, returned to normal levels in mature collateral vessels. The expression of eNOS was localized only in endothelium, either in normal or growing vessels. bFGF was very weakly stained in normal vessels, but highly expressed in growing collateral vessels. MMP-2 was strongly stained in neointima, but very weak in endothelium. In addition, we also examined expression of iNOS because iNOS may be induced in vessel injury or in disease states, but it was not detected in either normal or growing collateral vessels. Our findings indicate that the expression pattern of eNOS is closely associated with the development of collateral vessels, suggesting that eNOS plays an important role in arteriogenesis.  相似文献   

13.
IntroductionDupuytren’s contracture (DC) is a chronic fibroproliferative disease of the hand, which is characterized by uncontrolled proliferation of atypical myofibroblasts at the cellular level. We hypothesized that specific areas of the DC tissue are sustaining the cell proliferation and studied the potential molecular determinants that might contribute to the formation of such niches.MethodsWe studied the expression pattern of cell proliferation marker Ki67, phosphorylated AKT (Ak mouse strain thymoma) kinase, DC-associated growth factors (connective tissue growth factor (CTGF), basic fibroblast growth factor (bFGF), insulin-like growth factor 2 (IGF-2)) and extracellular matrix components (laminins, fibronectin, collagen IV) in DC tissue and normal palmar fascia using immunofluorescence microscopy and quantitative real-time polymerase chain reaction (qPCR).ResultsWe found that proliferative cells in the DC nodules were concentrated in the immediate vicinity of small blood vessels and localized predominantly in the myofibroblast layer. Correspondingly, the DC-associated blood vessels contained increased levels of phosphorylated AKT, a hallmark of activated growth factor signaling. When studying the expression of potential activators of AKT signaling we found that the expression of bFGF was confined to the endothelium of the small blood vessels, IGF-2 was present uniformly in the DC tissue and CTGF was expressed in the DC-associated sweat gland acini. In addition, the blood vessels in DC nodules contained increased amounts of laminins 511 and 521, which have been previously shown to promote the proliferation and stem cell properties of different cell types.ConclusionsBased on our findings, we propose that in the DC-associated small blood vessels the presence of growth factors in combination with favorable extracellular matrix composition provide a supportive environment for sustained proliferation of myofibroblasts and thus the blood vessels play an important role in DC pathogenesis.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0661-y) contains supplementary material, which is available to authorized users.  相似文献   

14.
Solid tumors require blood vessels for growth and dissemination, and lymphatic vessels as additional conduits for metastatic spread. The identification of growth factor receptor pathways regulating angiogenesis has led to the clinical approval of the first antiangiogenic molecules targeted against the vascular endothelial growth factor (VEGF)-VEGF receptor (VEGFR)-2 pathway. However, in many cases resistance to anti-VEGF-VEGFR therapy occurs, and thus far the clinical benefit has been limited to only modest improvements in overall survival. Therefore, novel treatment modalities are required. Here, we discuss the members of the VEGF-VEGFR family as well as the angiopoietin growth factors and their Tie receptors as potential novel targets for antiangiogenic and antilymphangiogenic therapies.  相似文献   

15.
VEGF-A and Semaphorin3A: Modulators of vascular sympathetic innervation   总被引:2,自引:0,他引:2  
Sympathetic nerve activity regulates blood pressure by altering peripheral vascular resistance. Variations in vascular sympathetic innervation suggest that vascular-derived cues promote selective innervation of particular vessels during development. As axons extend towards peripheral targets, they migrate along arterial networks following gradients of guidance cues. Collective ratios of these gradients may determine whether axons grow towards and innervate vessels or continue past non-innervated vessels towards peripheral targets. Utilizing directed neurite outgrowth in a three-dimensional (3D) co-culture, we observed increased axon growth from superior cervical ganglion explants (SCG) towards innervated compared to non-innervated vessels, mediated in part by vascular endothelial growth factor (VEGF-A) and Semaphorin3A (Sema3A) which both signal via neuropilin-1 (Nrp1). Exogenous VEGF-A, delivered by high-expressing VEGF-A-LacZ vessels or by rhVEGF-A/alginate spheres, increased sympathetic neurite outgrowth while exogenous rhSema3A/Fc decreased neurite outgrowth. VEGF-A expression is similar between the innervated and non-innervated vessels examined. Sema3A expression is higher in non-innervated vessels. Spatial gradients of Sema3A and VEGF-A may promote differential Nrp1 binding. Vessels expressing high levels of Sema3A favor Nrp1-PlexinA1 signaling, producing chemorepulsive cues limiting sympathetic neurite outgrowth and vascular innervation; while low Sema3A expressing vessels favor Nrp1-VEGFR2 signaling providing chemoattractive cues for sympathetic neurite outgrowth and vascular innervation.  相似文献   

16.
Vasoactive drugs and tumor blood flow   总被引:3,自引:0,他引:3  
Different observations on the reactivity of tumor vessels to vasoactive drugs have suggested a decreased, a similar or an increased reactivity to vasoactive stimuli in the vascular bed of tumors as compared to normal tissues. No adrenergic innervation of newly developed tumor vessels has been found, while preexisting normal vessels incorporated during tumor growth may retain some innervation. In transplantable rat tumors, contractile cells, including smooth muscle cells, have been seen in tumor vessels. From recent experimental studies, it was concluded that the tumor's vascular bed is probably in a state of maximal dilatation and therefore sensitive to vasoconstriction, but less sensitive to pharmacological dilatation. These observations may correspond to regional tumor hypoxia and progressive development of tumor necrosis during tumor growth. The results of experimental tumor studies might question the reliability of diagnostic and therapeutic procedures in clinical oncology, which are based on differences in the reactivity to vasoactive drugs between normal and malignant tissues.  相似文献   

17.
Nitric oxide (NO) has been demonstrated to play an important role in angiogenesis, and also to be involved in collateral vessel growth. The expression of endothelial NO synthase (eNOS) is moderated partly by blood flow-induced mechanical factors, i.e., shear stress. The purpose of this study was to evaluate how the expression of eNOS correlates with the development of collateral vessels in dog heart, induced by chronic occlusion of the left circumflex artery. Immunoconfocal microscopy using an antibody against eNOS was used to detect expression of eNOS in different stages of arteriogenesis. Collateral vessels were classified into normal, growing and mature vessels by using the cytoskeleton marker desmin. Expression of the growth factors bFGF and metallproteinase-2 (MMP-2) was also examined. The data show that in normal arteriolar vessels, expression of eNOS is very low, but in growing collateral vessel there is a 6.2-fold increase, which, however, returned to normal levels in mature collateral vessels. The expression of eNOS was localized only in endothelium, either in normal or growing vessels. bFGF was very weakly stained in normal vessels, but highly expressed in growing collateral vessels. MMP-2 was strongly stained in neointima, but very weak in endothelium. In addition, we also examined expression of iNOS because iNOS may be induced in vessel injury or in disease states, but it was not detected in either normal or growing collateral vessels. Our findings indicate that the expression pattern of eNOS is closely associated with the development of collateral vessels, suggesting that eNOS plays an important role in arteriogenesis. (Mol Cell Biochem 264: 193–200, 2004)  相似文献   

18.
The involvement of immune mechanisms in tumor angiogenesis is unclear. Here we describe a new mechanism of tumor vasculogenesis mediated by dendritic cell (DC) precursors through the cooperation of beta-defensins and vascular endothelial growth factor-A (Vegf-A). Expression of mouse beta-defensin-29 recruited DC precursors to tumors and enhanced tumor vascularization and growth in the presence of increased Vegf-A expression. A new leukocyte population expressing DC and endothelial markers was uncovered in mouse and human ovarian carcinomas coexpressing Vegf-A and beta-defensins. Tumor-infiltrating DCs migrated to tumor vessels and independently assembled neovasculature in vivo. Bone marrow-derived DCs underwent endothelial-like differentiation ex vivo, migrated to blood vessels and promoted the growth of tumors expressing high levels of Vegf-A. We show that beta-defensins and Vegf-A cooperate to promote tumor vasculogenesis by carrying out distinct tasks: beta-defensins chemoattract DC precursors through CCR6, whereas Vegf-A primarily induces their endothelial-like specialization and migration to vessels, which is mediated by Vegf receptor-2.  相似文献   

19.
The effects of angiogenic growth factors on the growth, vascular architecture and the downstream cytokine signaling of sarcomas are unknown. These are of potential great importance since sarcoma, like endothelium, is of mesodermal origin and therefore could grow in response to these factors. Three human sarcomas (leiomyosarcoma SK-LMS-1, liposarcoma SW872 and fibrosarcoma SW684) and one murine fibrosarcoma (KHT) were grown in nude and C3H/He mice, respectively. Tumor structural vessels, perfused vessels and hypoxia were quantified immunohistochemically. Fast-growing murine KHT tumors had a markedly higher number of structural vessels compared with the human sarcomas. In both murine and human sarcomas, approximately half of the total structural vessels were perfused, and the numbers of perfused vessels decreased with increasing tumor volume. In vitro, basal mRNA expression of several angiogenic growth factors and their receptors differed between two of the human sarcoma cell lines, SK-LMS-1 and SW872. Compared with SK-LMS-1, untreated SW872 cells had higher levels of mRNA expression for FGF11, FGF14, angiopoietin, CD105 and VEGFR1. Two sarcoma cell lines were also treated with 10 ng/ml of six angiogenic growth factors (FGF1, FGF2, FGF7, FGF10, VEGF and SCF) for 24 h, and mRNA expression of endogenous FGF family members (FGF1, FGF2, FGF10, FGF11, FGF13 and FGF14) were quantitatively measured using RNase protection at various times following treatments. Again, SW872 cells were more responsive to exogenous growth factor treatment compared with SK-LMS-1 cells in terms of the elevation of endogenous FGF mRNA expression. In the SW872 cells, all of the exogenous angiogenic growth factor treatments, except for VEGF, upregulated endogenous FGF1, FGF2 and FGF14 mRNA expression. The SK-LMS-1 cells, in contrast, only responded to exogenous FGF1, FGF7 and FGF10, but did not respond to VEGF.  相似文献   

20.
Postnatal neovascularization is essential for wound healing, cancer progression, and many other physiological functions. However, its genetic mechanism is largely unknown. In this report, we study neovascularization in regenerating adult zebrafish fins using transgenic fish that express EGFP in blood vessel endothelial cells. We first describe the morphogenesis of regenerating vessels in wild-type animals and then the phenotypic analysis of a genetic mutation that disrupts blood vessel regeneration. In wild-type zebrafish caudal fins, amputated blood vessels heal their ends by 24 h postamputation (hpa) and then reconnect arteries and veins via anastomosis, to resume blood flow at wound sites by 48 hpa. The truncated vessels regenerate by first growing excess vessels to form unstructured plexuses, resembling the primary capillary plexuses formed during embryonic vasculogenesis. Interestingly, this mode of vessel growth switches by 8 days postamputation (dpa) to growth without a plexus intermediate. During blood vessel regeneration, vessel remodeling begins during early plexus formation and continues until the original vasculature pattern is reestablished at approximately 35 dpa. Temperature-sensitive mutants for reg6 have profound defects in blood vessel regeneration. At the restrictive temperature, reg6 regenerating blood vessels first fail to make reconnections between severed arteries and veins, and then form enlarged vascular sinuses rather than branched vascular plexuses. Reciprocal temperature-shift experiments show that reg6 function is required throughout plexus formation, but not during later growth. Our results suggest that the reg6 mutation causes defects in branch formation and/or angiogenic sprouting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号