首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effects of naphthalene on microbial communities in the bottom boundary layer of the Delaware Bay estuary were investigated in microcosms using denaturing gradient gel electrophoresis (DGGE) and fluorescent in situ hybridization (FISH) with oligonucleotide probes. Three days after the addition of naphthalene, rates of bacterial production and naphthalene mineralization were higher than in no-addition controls and than in cases where glucose was added. Analyses using both DGGE and FISH indicated that the bacterial community changed in response to the addition of naphthalene. FISH data indicated that a few major phylogenetic groups increased in response to the glucose addition and especially to the naphthalene addition. DGGE also demonstrated differences in community composition among treatments, with four phylotypes being unique to naphthalene-amended treatments and three of these having 16S rRNA genes similar to known hydrocarbon degraders. The bacterial community in the naphthalene-amended treatment was distinct from the communities in the glucose-amended treatment and in the no-addition control. These data suggest that polycyclic aromatic hydrocarbons may have large effects on microbial community structure in estuaries and probably on microbially mediated biogeochemical processes.  相似文献   

2.
Crude oil is a complex mixture of different hydrocarbons. While diverse bacterial communities can degrade oil, the specific roles of individual members within such communities remain unclear. To identify the key bacterial taxa involved in aerobic degradation of specific hydrocarbons, microcosm experiments were established using seawater from Stanford le Hope, Thames estuary, UK, adjacent to a major oil refinery. In all microcosms, hydrocarbon degradation was significant within 10 weeks, ranging from > 99% of low-molecular-weight alkanes (C(10)-C(18)), 41-84% of high-molecular-weight alkanes (C(20)-C(32)) and pristane, and 32-88% of polycyclic aromatic hydrocarbons (PAHs). Analysis of 16S rRNA sequences from clone libraries and denaturing gradient gel electrophoresis (DGGE) indicated that, except when incubated with fluorene, PAH-degrading communities were dominated by Cycloclasticus. Moreover, PAH-degrading communities were distinct from those in microcosms containing alkanes. Degradation of the branched alkane, pristane, was carried out almost exclusively by Alcanivorax. Bacteria related to Thalassolituus oleivorans (99-100% identity) were the dominant known alkane degraders in n-alkane (C(12)-C(32)) microcosms, while Roseobacter-related bacteria were also consistently found in these microcosms. However, in contrast to previous studies, Thalassolituus, rather than Alcanivorax, was dominant in crude oil-enriched microcosms. The communities in n-decane microcosms differed from those in microcosms supplemented with less volatile alkanes, with a phylogenetically distinct species of Thalassolituus out-competing T. oleivorans. These data suggest that the diversity and importance of the genus Thalassolituus is greater than previously established. Overall, these experiments demonstrate how degradation of different petroleum hydrocarbons is partitioned between different bacterial taxa, which together as a community can remediate petroleum hydrocarbon-impacted estuarine environments.  相似文献   

3.
Libraries of 16S rRNA genes cloned from methanogenic oil degrading microcosms amended with North Sea crude oil and inoculated with estuarine sediment indicated that bacteria from the genera Smithella (Deltaproteobacteria, Syntrophaceace) and Marinobacter sp. (Gammaproteobacteria) were enriched during degradation. Growth yields and doubling times (36 days for both Smithella and Marinobacter) were determined using qPCR and quantitative data on alkanes, which were the predominant hydrocarbons degraded. The growth yield of the Smithella sp. [0.020 g(cell-C)/g(alkane-C)], assuming it utilized all alkanes removed was consistent with yields of bacteria that degrade hydrocarbons and other organic compounds in methanogenic consortia. Over 450 days of incubation predominance and exponential growth of Smithella was coincident with alkane removal and exponential accumulation of methane. This growth is consistent with Smithella's occurrence in near surface anoxic hydrocarbon degrading systems and their complete oxidation of crude oil alkanes to acetate and/or hydrogen in syntrophic partnership with methanogens in such systems. The calculated growth yield of the Marinobacter sp., assuming it grew on alkanes, was [0.0005 g(cell-C)/g(alkane-C)] suggesting that it played a minor role in alkane degradation. The dominant methanogens were hydrogenotrophs (Methanocalculus spp. from the Methanomicrobiales). Enrichment of hydrogen-oxidizing methanogens relative to acetoclastic methanogens was consistent with syntrophic acetate oxidation measured in methanogenic crude oil degrading enrichment cultures. qPCR of the Methanomicrobiales indicated growth characteristics consistent with measured rates of methane production and growth in partnership with Smithella.  相似文献   

4.
应用样品直接稀释涂布平板、-1℃富集培养和-20℃冷冻24h后富集培养等3种方法,从北极加拿大海盆和格陵兰海的高纬度海域(77°30′N~81°12′N)海冰中分离到37株嗜冷菌。根据其16S rDNA全长序列所进行的系统发育分析表明,分离菌株分属于γ_变形细菌群(γ_Proteobacteria)的Colwellia、Marinobacter、Shewanella、Thalassomonas、Glaciecola、Marinomonas、Pseudoalteromonas和嗜纤维菌_曲挠杆菌_拟杆菌群(Cytophaga_Flexibacter_Bacteroide,CFB)的Flavobacterium、Psychroflexus等9个属。其中有9株菌的16S rDNA序列与已明确鉴定种的相似性在93.4%~96.9%,为潜在的新种。北极加拿大海盆海冰细菌BSi20002与南极威德尔海海冰细菌Marinobactersp.ANT8277的16S rDNA序列相似性为100%,表明在种水平上南、北两极也存在相同的细菌。分离的嗜冷菌在4℃条件下能产生多种大分子物质水解酶类,其中62.6%、51.4%和40.5%的菌株分别能水解Tween_80、明胶和淀粉。  相似文献   

5.
Degradation of petroleum hydrocarbons was monitored in microcosms with diesel fuel-contaminated Arctic tundra soil incubated for 48 days at low temperatures (-5, 0, and 7 degrees C). An additional treatment was incubation for alternating 24-h periods at 7 and -5 degrees C. Hydrocarbons were biodegraded at or above 0 degrees C, and freeze-thaw cycles may have actually stimulated hydrocarbon biodegradation. Total petroleum hydrocarbon (TPH) removal over 48 days in the 7, 0, and 7 and -5 degrees C treatments, respectively, was 450, 300, and 600 microg/g of soil. No TPH removal was observed at -5 degrees C. Total carbon dioxide production suggested that TPH removal was due to biological mineralization. Bacterial metabolic activity, indicated by RNA/DNA ratios, was higher in the middle of the experiment (day 21) than at the start, in agreement with measured hydrocarbon removal and carbon dioxide production activities. The total numbers of culturable heterotrophs and of hydrocarbon degraders did not change significantly over the 48 days of incubation in any of the treatments. At the end of the experiment, bacterial community structure, evaluated by ribosomal intergenic spacer length analysis, was very similar in all of the treatments but the alternating 7 and -5 degrees C treatment.  相似文献   

6.
In order to better understand the ecology of microorganisms responsible for secondary production in the Southern Ocean the activity of Flavobacteria communities on diatom detritus in seawater mesocosms was investigated. Seawater was collected from different parts of the Southern Ocean including the Polar Front Zone (PFZ), ice-edge area of the Antarctic Zone (AZ), and a site in the AZ ice pack. Detritus from the cosmopolitan marine diatom Nitzschia closterium Ehrenberg was resuspended in mesocosms containing seawater filtered to remove particulate organic matter, including particle-associated bacteria and most eukaryotes, but retaining native planktonic bacterial assemblages. Mesocosms were incubated at 2 degrees C and samples analysed for changes in community composition using denaturing gradient gel electrophoresis (DGGE), real-time PCR and fluorescent in-situ hybridization (FISH). DGGE banding patterns and FISH images demonstrated rapid bacterial colonization of the detritus, dominated by members of class gamma-Proteobacteria, alpha-Proteobacteria and Flavobacteria. Real-time PCR data indicated members of class Flavobacteria were involved in initial colonization of detrital aggregate, however relative abundance stayed at similar levels found for the original native particle-associated populations. 16S rRNA gene DGGE banding patterns and sequence analysis demonstrated significant variation in Flavobacteria community structure occurred in the first 20 days of the experiment before community stabilization occurred. The community structures between the three mesocosms also markedly differed and major colonizers were primarily derived from detectable members of the initial particle-associated Flavobacteria community, however the abundant uncultured Flavobacteria agg58 clone-related and DE cluster 2 clades, previously identified in Southern Ocean seawater were not observed to colonize the detritus.  相似文献   

7.
北极表层海水中氯代十六烷降解菌的多样性   总被引:1,自引:0,他引:1  
[目的]为了研究北极地区表层海水中氯代十六烷(C16H33Cl)降解菌的多样性,并获得新的卤代烃降解菌资源.[方法]以C16H33Cl为唯一碳源和能源在4℃和250℃下对表层海水样品进行富集,通过平板分离鉴定可培养菌株,并验证其降解能力;同时利用变性梯度凝胶电泳(DGGE)分析降解菌群结构.[结果]从12个北极表层海水样品中富集分离得到112株可培养菌株.经过降解实验验证,发现19株菌株能够降解氯代十六烷,其中食烷菌(Alcanivorax)、红球菌(Rhodococcus)表现出很好的乳化和降解现象,海杆菌(Marinobacter)也有较好的降解效果.DGGE分析显示,富集驯化的降解菌群中主要优势菌为Alcanivorax,Parvibaculum和Thioclava属的菌株.[结论]北极海水中卤代烃降解菌主要是α-proteobacteria,γ-proteobacteria,Actinobacteria和Bacteroidetes.文章首次报道了北极海水卤代烷烃降解菌多样性,研究结果对于认识北极环境中的降解菌资源与生物多样性有参考价值.  相似文献   

8.
We studied the role of aerobic and anaerobic petroleum hydrocarbon degradation at a boreal, light-weight fuel and lubrication oil contaminated site undergoing natural attenuation. At the site, anoxic conditions prevailed with high concentrations of CH4 (up to 25% v/v) and CO2 (up to 18% v/v) in the soil gas throughout the year. Subsurface samples were obtained mainly from the anoxic parts of the site and they represented both the unsaturated and saturated zone. The samples were incubated in microcosms at near in situ conditions (i.e. in situ temperature 8 degrees C, aerobic and anaerobic conditions, no nutrient amendments) resulting in the removal of mineral oil (as determined by gas chromatography) aerobically as well as anaerobically. In the aerobic microcosms on average 31% and 27% of the initial mineral oil was removed during a 3- and 4-month incubation, respectively. In the anaerobic microcosms, on average 44% and 15% of the initial mineral oil was removed during a 12- and 10-month anaerobic incubation, respectively, and e.g. n-alkanes from C11 to C15 were removed. A methane production rate of up to 2.5 microg CH4 h(-1) g(-1) dwt was recorded in these microcosms. In the aerobic as well as anaerobic microcosms, typically 90% of the mineral oil degraded belonged to the mineral oil fraction that eluted from the gas chromatograph after C10 and before C15, while 10% belonged to the fraction that eluted after C15 and before C40. Our results suggest that anaerobic petroleum hydrocarbon degradation, including n-alkane degradation, under methanogenic conditions plays a significant role in the natural attenuation in boreal conditions.  相似文献   

9.
Degradation of oil on beaches is, in general, limited by the supply of inorganic nutrients. In order to obtain a more systematic understanding of the effects of nutrient addition on oil spill bioremediation, beach sediment microcosms contaminated with oil were treated with different levels of inorganic nutrients. Oil biodegradation was assessed respirometrically and on the basis of changes in oil composition. Bacterial communities were compared by numerical analysis of denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified 16S rRNA genes and cloning and sequencing of PCR-amplified 16S rRNA genes. Nutrient amendment over a wide range of concentrations significantly improved oil degradation, confirming that N and P limited degradation over the concentration range tested. However, the extent and rate of oil degradation were similar for all microcosms, indicating that, in this experiment, it was the addition of inorganic nutrients rather than the precise amount that was most important operationally. Very different microbial communities were selected in all of the microcosms. Similarities between DGGE profiles of replicate samples from a single microcosm were high (95% ± 5%), but similarities between DGGE profiles from replicate microcosms receiving the same level of inorganic nutrients (68% ± 5%) were not significantly higher than those between microcosms subjected to different nutrient amendments (63% ± 7%). Therefore, it is apparent that the different communities selected cannot be attributed to the level of inorganic nutrients present in different microcosms. Bioremediation treatments dramatically reduced the diversity of the bacterial community. The decrease in diversity could be accounted for by a strong selection for bacteria belonging to the alkane-degrading Alcanivorax/Fundibacter group. On the basis of Shannon-Weaver indices, rapid recovery of the bacterial community diversity to preoiling levels of diversity occurred. However, although the overall diversity was similar, there were considerable qualitative differences in the community structure before and after the bioremediation treatments.  相似文献   

10.
Nitrate injection into oil fields is an alternative to biocide addition for controlling sulfide production (‘souring’) caused by sulfate-reducing bacteria (SRB). This study examined the suitability of several cultivation-dependent and cultivation-independent methods to assess potential microbial activities (sulfidogenesis and nitrate reduction) and the impact of nitrate amendment on oil field microbiota. Microcosms containing produced waters from two Western Canadian oil fields exhibited sulfidogenesis that was inhibited by nitrate amendment. Most probable number (MPN) and fluorescent in situ hybridization (FISH) analyses of uncultivated produced waters showed low cell numbers (≤103 MPN/ml) dominated by SRB (>95% relative abundance). MPN analysis also detected nitrate-reducing sulfide-oxidizing bacteria (NRSOB) and heterotrophic nitrate-reducing bacteria (HNRB) at numbers too low to be detected by FISH or denaturing gradient gel electrophoresis (DGGE). In microcosms containing produced water fortified with sulfate, near-stoichiometric concentrations of sulfide were produced. FISH analyses of the microcosms after 55 days of incubation revealed that Gammaproteobacteria increased from undetectable levels to 5–20% abundance, resulting in a decreased proportion of Deltaproteobacteria (50–60% abundance). DGGE analysis confirmed the presence of Delta- and Gammaproteobacteria and also detected Bacteroidetes. When sulfate-fortified produced waters were amended with nitrate, sulfidogenesis was inhibited and Deltaproteobacteria decreased to levels undetectable by FISH, with a concomitant increase in Gammaproteobacteria from below detection to 50–60% abundance. DGGE analysis of these microcosms yielded sequences of Gamma- and Epsilonproteobacteria related to presumptive HNRB and NRSOB (Halomonas, Marinobacterium, Marinobacter, Pseudomonas and Arcobacter), thus supporting chemical data indicating that nitrate-reducing bacteria out-compete SRB when nitrate is added.  相似文献   

11.
The influence of grazing by a mixed assemblage of soil protozoa (seven flagellates and one amoeba) on bacterial community structure was studied in soil microcosms amended with a particulate resource (sterile wheat roots) or a soluble resource (a solution of various organic compounds). Sterilized soil was reinoculated with mixed soil bacteria (obtained by filtering and dilution) or with bacteria and protozoa. Denaturing gradient gel electrophoresis (DGGE) of PCR amplifications of 16S rRNA gene fragments, as well as community level physiological profiling (Biolog plates), suggested that the mixed protozoan community had significant effects on the bacterial community structure. Excising and sequencing of bands from the DGGE gels indicated that high-G+C gram-positive bacteria closely related to Arthrobacter spp. were favored by grazing, whereas the excised bands that decreased in intensity were related to gram-negative bacteria. The percentages of intensity found in bands related to high G+C gram positives increased from 4.5 and 12.6% in the ungrazed microcosms amended with roots and nutrient solution, respectively, to 19.3 and 32.9% in the grazed microcosms. Protozoa reduced the average bacterial cell size in microcosms amended with nutrient solution but not in the treatment amended with roots. Hence, size-selective feeding may explain some but not all of the changes in bacterial community structure. Five different protozoan isolates (Acanthamoeba sp., two species of Cercomonas, Thaumatomonas sp., and Spumella sp.) had different effects on the bacterial communities. This suggests that the composition of protozoan communities is important for the effect of protozoan grazing on bacterial communities.  相似文献   

12.
Degradation of oil on beaches is, in general, limited by the supply of inorganic nutrients. In order to obtain a more systematic understanding of the effects of nutrient addition on oil spill bioremediation, beach sediment microcosms contaminated with oil were treated with different levels of inorganic nutrients. Oil biodegradation was assessed respirometrically and on the basis of changes in oil composition. Bacterial communities were compared by numerical analysis of denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified 16S rRNA genes and cloning and sequencing of PCR-amplified 16S rRNA genes. Nutrient amendment over a wide range of concentrations significantly improved oil degradation, confirming that N and P limited degradation over the concentration range tested. However, the extent and rate of oil degradation were similar for all microcosms, indicating that, in this experiment, it was the addition of inorganic nutrients rather than the precise amount that was most important operationally. Very different microbial communities were selected in all of the microcosms. Similarities between DGGE profiles of replicate samples from a single microcosm were high (95% +/- 5%), but similarities between DGGE profiles from replicate microcosms receiving the same level of inorganic nutrients (68% +/- 5%) were not significantly higher than those between microcosms subjected to different nutrient amendments (63% +/- 7%). Therefore, it is apparent that the different communities selected cannot be attributed to the level of inorganic nutrients present in different microcosms. Bioremediation treatments dramatically reduced the diversity of the bacterial community. The decrease in diversity could be accounted for by a strong selection for bacteria belonging to the alkane-degrading Alcanivorax/Fundibacter group. On the basis of Shannon-Weaver indices, rapid recovery of the bacterial community diversity to preoiling levels of diversity occurred. However, although the overall diversity was similar, there were considerable qualitative differences in the community structure before and after the bioremediation treatments.  相似文献   

13.
Autotrophic ammonia-oxidizing bacteria were considered to be responsible for the majority of ammonia oxidation in soil until the recent discovery of the autotrophic ammonia-oxidizing archaea. To assess the relative contributions of bacterial and archaeal ammonia oxidizers to soil ammonia oxidation, their growth was analysed during active nitrification in soil microcosms incubated for 30 days at 30 °C, and the effect of an inhibitor of ammonia oxidation (acetylene) on their growth and soil nitrification kinetics was determined. Denaturing gradient gel electrophoresis (DGGE) analysis of bacterial ammonia oxidizer 16S rRNA genes did not detect any change in their community composition during incubation, and quantitative PCR (qPCR) analysis of bacterial amoA genes indicated a small decrease in abundance in control and acetylene-containing microcosms. DGGE fingerprints of archaeal amoA and 16S rRNA genes demonstrated changes in the relative abundance of specific crenarchaeal phylotypes during active nitrification. Growth was also indicated by increases in crenarchaeal amoA gene copy number, determined by qPCR. In microcosms containing acetylene, nitrification and growth of the crenarchaeal phylotypes were suppressed, suggesting that these crenarchaea are ammonia oxidizers. Growth of only archaeal but not bacterial ammonia oxidizers occurred in microcosms with active nitrification, indicating that ammonia oxidation was mostly due to archaea in the conditions of the present study.  相似文献   

14.
The community structure and composition of marine microbial biofilms established on glass surfaces was investigated across three differentially contaminated Antarctic sites within McMurdo Sound. Diverse microbial communities were revealed at all sites using fluorescence in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) techniques. Sequencing of excised DGGE bands demonstrated close affiliation with known psychrophiles or undescribed bacteria also recovered from the Antarctic environment. The majority of bacterial sequences were affiliated to the Gammaproteobacteria, Cytophaga/Flavobacteria of Bacteroidetes (CFB), Verrucomicrobia and Planctomycetales. Principal components analysis of quantitative FISH data revealed distinct differences in community composition between sites. Each of the sites were dominated by different bacterial groups: Alphaproteobacteria, Gammaproteobacteria and CFB at the least impacted site, Cape Armitage; green sulfur and sulfate reducing bacteria near the semi-impacted Scott Base and Planctomycetales and sulfate reducing bacteria near the highly impacted McMurdo Station. The highest abundance of archaea was detected near Scott Base (2.5% of total bacteria). Multivariate analyses (non-metric multidimensional scaling and analysis of similarities) of DGGE patterns revealed greater variability in community composition between sites than within sites. This is the first investigation of Antarctic biofilm structure and FISH results suggest that anthropogenic impacts may influence the complex composition of microbial communities.  相似文献   

15.
Aims:  To investigate the feasibility of applying sorbent material X-Oil® in marine oil spill mitigation and to survey the interactions of oil, bacteria and sorbent.
Methods and Results:  In a series of microcosms, 25 different treatments including nutrient amendment, bioaugmentation with Alcanivorax borkumensis and application of sorbent were tested. Microbial community dynamics were analysed by DNA fingerprinting methods, RISA and DGGE. Results of this study showed that the microbial communities in microcosms with highly active biodegradation were strongly selected in favour of A. borkumensis . Oxygen consumption measurements in microcosms and gas chromatography of oil samples indicated the fast and intense depletion of linear alkanes as well as high oxygen consumption within 1 week followed by consequent slower degradation of branched and polyaromatic hydrocarbons.
Conclusion:  Under given conditions, A. borkumensis was an essential organism for biodegradation, dominating the biofilm microbial community formation and was the reason of emulsification.
Significance and Impact of the Study:  This study strongly emphasizes the pivotal importance of A. borkumensis as an essential organism in the initial steps of marine hydrocarbon degradation. Interaction with the sorbent material X-Oil® proved to be neutral to beneficial for biodegradation and also promoted the growth of yet unknown micro-organisms.  相似文献   

16.
降雨对秦皇岛西浴场细菌总数和可培养菌群组成的影响   总被引:3,自引:0,他引:3  
【目的】研究降雨条件对浴场细菌总数和优势菌群组成的影响。【方法】2014年8月强降雨前后采集秦皇岛西浴场3个站位的海水样品,采用荧光显微镜计数法和平板计数法分别对细菌总数和可培养细菌总数进行计数;对群落结构组成进行分析,并对可培养细菌进行鉴定。【结果】雨前3个站位细菌总数和可培养细菌总数平均值分别为5.6×10~9 CFU/L和8.3×10~7 CFU/L,雨后分别为9.2×109 CFU/L和2.1×10~8 CFU/L。在可培养菌群中,变形菌门(Proteobacteria,雨前占80%,雨后占73%)是主要的微生物类群,其次为拟杆菌门(Bacteroides,雨前占12%,雨后占13%)、厚壁菌门(Firmicutes,雨前占7%,雨后占11%)等;肠杆菌属(Enterobacter spp.,21株)、海杆菌属(Marinobacter spp.,13株)、弓形菌属(Arcobacter spp.,13株)、假单胞菌属(Pseudomonas spp.,10株)、芽孢杆菌属(Bacillus spp.,10株)和弧菌属(Vibrio spp.,6株)为雨前可培养细菌优势属,而雨后可培养细菌优势属为肠杆菌属(22株)、海杆菌属(21株)、芽孢杆菌属(14株)、不动杆菌属(Acinetobacter spp.,11株)、假单胞菌属(9株)和弓形菌属(5株)等。【结论】降雨对细菌总数有显著的影响,同时降雨后浴场微生物群落结构发生了改变。  相似文献   

17.
Cyanobacterial biomass was added to anaerobic sediment to simulate the natural input of complex organic substrate that occurs in nature after algae blooms. Sediments were incubated at 0 degree C, 8 degrees C and 24 degrees C for 13 days. Community dynamics were measured by fluorescence in situ hybridisation (FISH), denaturing gradient gel electrophoresis (DGGE), and sequencing of 16S rDNA PCR products. Metabolic changes were followed by the analysis of total carbon mineralisation, sulfate reduction, and ammonium production rates. The addition of organic material resulted in significant changes in the composition of the microbial community at all temperatures tested. Sulfate reduction was the main mineralisation process detected. However, not sulfate-reducers but rather members of the Cytophaga-Flavobacterium phylogenetic cluster showed the highest increase in the bacterial cells as detected by FISH. We conclude that these organisms play an important role in the anaerobic decomposition of complex organic material perhaps because they are the main catalysts of macromolecule hydrolysis and fermentation. The molecular methods also indicated a stimulation of ribosome synthesis. The detection of a large number of rRNA-rich cells belonging to the Cytophaga-Flavobacterium phylogenetic cluster further supports the importance of their role in the degradation of complex organic material in anaerobic marine sediments. Their detection in high numbers in the field may indicate recent deposition events.  相似文献   

18.
Bioremediation, mainly by indigenous bacteria, has been regarded as an effective way to clean up oil pollution after an oil spill. In order to obtain a systematic understanding of the succession of bacterial communities associated with oil bioremediation, sediments collected from the Penglai 19-3 oil platform were co-incubated with crude oil. Oil biodegradation was assessed on the basis of changes in oil composition monitored by GC–MS. Changes in the bacterial community structure were detected by two 16S rRNA gene based culture-independent methods, denaturing gradient gel electrophoresis (DGGE) and clone library. The results suggested that crude oil was rapidly degraded during the 30-day bioremediation period. Bacteria affiliated with the genus Pseudomonas dominated all three clone libraries. But dramatic changes were also detected in the process of biodegradation of crude oil. The “professional hydrocarbonocastic bacteria” (e.g., Alcanivorax) became abundant in the two samples during the bioremediation period. Meanwhile, δ-proteobacteria was only detected in the two samples. Information on the bacterial community revealed in this study will be useful in developing strategies for bioremediation of crude oil dispersed in the marine ecosystem.  相似文献   

19.
Changes in the abundance of sympatric Achromatium spp. in response to the artificial manipulation of redox conditions in sediment microcosms was determined by fluorescence in situ hybridization (FISH). Adaptation to different redox conditions was shown to be one mechanism that supported the coexistence of functionally similar Achromatium spp. In sediment microcosms, in which the overlying water was oxygenated, Achromatium community size and composition remained unchanged over time. However, imposition of anoxic conditions induced changes in community structure. Anoxia caused a reduction in the relative abundance of Achromatium sp. RY8 (72 +/- 4% to 49 +/- 2%) and an increase in Achromatium sp. RY5 (19 +/- 5% to 32 +/- 3%) and a newly identified Achromatium sp., RYKS (14 +/- 4% to 27 +/- 2%). In anoxic microcosms supplemented with a single addition of nitrate at different initial concentrations the relative decline in Achromatium sp. RY8 was dependent on the initial nitrate concentration. In these experiments nitrate was rapidly removed. In contrast, when high levels of nitrate were maintained by periodic replacement of the overlying water with nitrate supplemented anoxic water, the composition of the Achromatium community remained stable over time. This suggested that all of the coexisting Achromatium spp. are obligate or facultative anaerobes, but, Achromatium sp. RY8 was more sensitive to sediment redox conditions than the other Achromatium species. Given the heterogeneous nature of sedimentary environments, redox-related niche differentiation may promote coexistence of sympatric Achromatium spp.  相似文献   

20.
石油集输系统中微生物群落结构研究   总被引:1,自引:1,他引:0  
采用16SrRNA基因克隆一变性梯度凝胶电泳分析方法研究了石油集输系统原油和油田产水中的微生物群落结构。变性梯度凝胶电泳图谱显示:油田产水中微生物群落远比原油中的菌群丰富。所有的油田水样和原油样本中都存在与Ochrobactrum sp.和Stenotrophomonas sp.相关的细菌;原油样本中检测出与Burkholderia sp.、Brevundimonas sp.和Propionibacterium sp.相关的细菌,而这些细菌在油田水样中未检出;在油田水样中检出与Hippea sp.、Acidovorax sp.、Arcobacter sp.、Pseudomonas sp.、Thiomicrospira sp.、Brevibacterium sp.、Tissierella sp.和Peptostreptococcus sp.相关的细菌,而这些细菌在原油样本中未检出。用古细菌特异性引物进行检测发现在油田水样中存在与Methanomicrobials和Methanosarcinales相关的产甲烷菌,而这些细菌在原油样本中未检出。在石油集输过程中,油田水样和原油中微生物群落的相似性分别为83.3%和88.2%,说明微生物群落结构较为稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号