首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
We have little knowledge of how climatic variation (and by proxy, habitat variation) influences the phylogenetic structure of tropical communities. Here, we quantified the phylogenetic structure of mammal communities in Africa to investigate how community structure varies with respect to climate and species richness variation across the continent. In addition, we investigated how phylogenetic patterns vary across carnivores, primates, and ungulates. We predicted that climate would differentially affect the structure of communities from different clades due to between-clade biological variation. We examined 203 communities using two metrics, the net relatedness (NRI) and nearest taxon (NTI) indices. We used simultaneous autoregressive models to predict community phylogenetic structure from climate variables and species richness. We found that most individual communities exhibited a phylogenetic structure consistent with a null model, but both climate and species richness significantly predicted variation in community phylogenetic metrics. Using NTI, species rich communities were composed of more distantly related taxa for all mammal communities, as well as for communities of carnivorans or ungulates. Temperature seasonality predicted the phylogenetic structure of mammal, carnivoran, and ungulate communities, and annual rainfall predicted primate community structure. Additional climate variables related to temperature and rainfall also predicted the phylogenetic structure of ungulate communities. We suggest that both past interspecific competition and habitat filtering have shaped variation in tropical mammal communities. The significant effect of climatic factors on community structure has important implications for the diversity of mammal communities given current models of future climate change.  相似文献   

3.
The management of multi-functional landscapes warrants better knowledge of environment-richness associations at varying disturbance levels and habitat gradients. Intensive land-use patterns for agricultural purposes lead to fragmentation of natural habitat resulting in biodiversity loss that can be measured using landscape metrics to assess mammalian richness. Since carnivores and herbivores are likely to show different responses to disturbance, we calculated carnivore, non-carnivore, and total mammal species richness from camera surveys using a first order Jackknife Estimator. Richness was compared along a habitat gradient comprising coastal forest, Acacia thicket, and highland in KwaZulu-Natal, South Africa. We used standardized OLS regression models to identify climatic and disturbance variables, and landscape metrics as predictors of species richness. The estimated total and non-carnivore species richness were highest in coastal forest, while carnivore species richness was highest in highland followed by coastal forest and Acacia thicket. Average monthly maximum temperature was a significant predictor of all richness groups, and precipitation of the wettest month and isothermality determined total and non-carnivore species richness, respectively. These climatic variables possibly limit species distribution because of physiological tolerance of the species. Total mammal richness was determined by mean shape (+) and habitat division (−) while diversity (+) and patch richness (−) explained carnivore species richness. Mean shape index (+) influenced non-carnivore richness. However, habitat division and patch richness negatively influenced total mammal richness. Though habitat patch size and contiguity had a weak positive prediction, these metrics demonstrated the importance of habitat connectivity for maintaining mammal richness. The identification of these climatic and landscape patterns is important to facilitate future landscape management for mammal conservation in forest-mosaics.  相似文献   

4.
Aim To examine the relationship between ecoregions, as a proxy for regional climate and habitat type, and mammalian community structure, defined by species composition and richness (e.g. taxonomic structure) and ecological diversity (e.g. ecological structure) of non‐volant species. Location Madagascar. Methods Faunal lists of non‐volant mammal species occurring in 35 communities from five World Wildlife Fund ecoregions were collected from published and unpublished sources. Species were assigned to ecological groups defined by trophic status, locomotor habits, activity cycle and body mass. We used Mantel tests, cluster analysis and principal coordinates analysis to evaluate geographic patterning in taxonomic composition and species richness. We used stepwise multiple discriminant analysis to characterize patterns in the ecological diversity of the mammalian communities from each ecoregion. Communities from transitional habitats (e.g. representing more than one ecoregion) were used to test the predictive power of the analyses. Results Non‐volant mammal communities divided into clusters that correspond to ecoregions. There was a strong distance effect in the taxonomic structure of communities across the island and within both humid and dry forest communities, but this effect was weak within humid forest communities. Mammalian species richness was significantly lower in dry forest than in humid forest communities. The ecological structure of communities was also correlated with ecoregions. Changes in the relative percentages of omnivory, arboreal quadrupedalism, terrestrial/arboreal quadrupedalism and two body mass classes accounted for 98.1% of the variation in ecological structure. Transitional communities were projected in intermediate positions by the discriminant model. Main conclusions Our analysis demonstrates that the broad‐scale habitat and climate variables captured by the ecoregion model have shaped the assembly of non‐volant mammal communities in Madagascar over evolutionary time. The spatial pattern is consistent with ecological sorting of species ranges along environmental gradients. Historical processes, such as recent extinction and migration, may have also affected the structure of mammal communities, although these factors have played a secondary role.  相似文献   

5.
Studies of species diversity patterns across regional environmental gradients seldom consider the impact of habitat type on within-site (alpha) and between-site (beta) diversity. This study is designed to identify the influence of habitat type across geographic and environmental space, on local patterns of species richness and regional turnover patterns of ant diversity in the northeastern United States. Specifically, I aim to 1) compare local species richness in paired open and forested transects and identify the environmental variables that best correlate with richness; and 2) document patterns of beta diversity throughout the region in both open and forested habitat. I systematically sampled ants at 67 sites from May to August 2010, spanning 10 degrees of latitude, and 1000 meters of elevation. Patterns of alpha and beta diversity across the region and along environmental gradients differed between forested and open habitats. Local species richness was higher in the low elevation and warmest sites and was always higher in open habitat than in forest habitat transects. Richness decreased as temperature decreased or elevation increased. Forested transects show strong patterns of decreasing dissimilarity in species composition between sites along the temperature gradient but open habitat transects did not. Maximum temperature of the warmest month better predicted species richness than either latitude or elevation. I find that using environmental variables as key predictors of richness yields more biologically relevant results, and produces simpler macroecological models than commonly used models which use only latitude and elevation as predictors of richness and diversity patterns. This study contributes to the understanding of mechanisms that structure the communities of important terrestrial arthropods which are likely to be influenced by climatic change.  相似文献   

6.
Land use intensification can greatly reduce species richness and ecosystem functioning. However, species richness determines ecosystem functioning through the diversity and values of traits of species present. Here, we analyze changes in species richness and functional diversity (FD) at varying agricultural land use intensity levels. We test hypotheses of FD responses to land use intensification in plant, bird, and mammal communities using trait data compiled for 1600+ species. To isolate changes in FD from changes in species richness we compare the FD of communities to the null expectations of FD values. In over one-quarter of the bird and mammal communities impacted by agriculture, declines in FD were steeper than predicted by species number. In plant communities, changes in FD were indistinguishable from changes in species richness. Land use intensification can reduce the functional diversity of animal communities beyond changes in species richness alone, potentially imperiling provisioning of ecosystem services.  相似文献   

7.
Circumtropical patterns in butterflyfish communities   总被引:2,自引:0,他引:2  
Synopsis Butterflyfish species richness increases along a longitudinal circumtropical gradient from lows of 3–5 species in the tropical Atlantic and Eastern Pacific to highs of 40 or more in the Indo-Pacific region. Biomass of the fishes increases as species richness increases, and single-site (alpha) diversity increases as does between-site (beta) diversity. There is no evidence of density compensation in richer communities, but at the level of islands and regions, habitat breadth diminishes as species richness increases. Morphologically, species are added to communities both at the boundaries and in the middle of morphospace.  相似文献   

8.
Studies on the effects of habitat fragmentation on small mammals often lead to confounding results as they only consider taxonomic groups in their analysis and neglect functional diversity of the communities. Here we describe the structure and composition of small mammal communities at 22 sites, ranging from 41 to 7035 ha, in a hyper‐fragmented landscape of an Amazonia‐Cerrado ecotone. Also, in considering a taxonomic and habitat guild approach, we report the effects of habitat structures and patch spatial attributes on richness, abundance and species composition. Small mammal richness reported in southern Amazonia (N = 23 species) is greater than most previous studies in the tropics. All rare small mammals captured in this study were forest interior species. Richness of forest interior species was positively related to larger patches, as shown by the species–area relationship. However, 52% of the small mammal species were in forest fragments smaller than 50 ha, highlighting the importance of preserving both large and small forest fragments in a landscape with accelerated habitat reduction. Richness of edge‐tolerant species was not associated with the tested variables, yet edge‐tolerant species were more abundant in degraded environments. Marsupials were positively associated with vertical habitat structures, while rodents were more strongly related to a ground‐level habitat structure. The landscape studied is extremely variable and has contributed to the difficulty in detecting clear patterns, particularly when considering only one approach. Because of the complementary outputs when analysing either taxonomic groups or habitat guilds, we recommend the use of multi‐taxa studies of different guilds to assist decision makers in designing conservation strategies and appropriate management of small mammal populations.  相似文献   

9.
Competitive exclusion and habitat filtering influence community assembly, but ecologists and evolutionary biologists have not reached consensus on how to quantify patterns that would reveal the action of these processes. Currently, at least 22 α‐diversity and 10 β‐diversity metrics of community phylogenetic structure can be combined with nine null models (eight for β‐diversity metrics), providing 278 potentially distinct approaches to test for phylogenetic clustering and overdispersion. Selecting the appropriate approach for a study is daunting. First, we describe similarities among metrics and null models across variance in phylogeny size and shape, species abundance, and species richness. Second, we develop spatially explicit, individual‐based simulations of neutral, competitive exclusion, or habitat filtering community assembly, and quantify the performance (type I and II error rates) of all 278 metric and null model combinations against each assembly process. Many α‐diversity metrics and null models are at least functionally equivalent, reducing the number of truly unique metrics to 12 and the number of unique metric + null model combinations to 72. An even smaller subset of metric and null model combinations showed robust statistical performance. For α‐diversity metrics, phylogenetic diversity and mean nearest taxon distance were best able to detect habitat filtering, while mean pairwise phylogenetic distance‐based metrics were best able to detect competitive exclusion. Overall, β‐diversity metrics tended to have greater power to detect habitat filtering and competitive exclusion than α‐diversity metrics, but had higher type 1 error in some cases. Across both α‐ and β‐diversity metrics, null model selection affected type I error rates more than metric selection. A null model that maintained species richness, and approximately maintained species occurrence frequency and abundance across sites, exhibited low type I and II error rates. This regional null model simulates neutral dispersal of individuals into local communities by sampling from a regional species pool. We introduce a flexible new R package, metricTester, to facilitate robust analyses of method performance.  相似文献   

10.
Patterns of fish community composition in a south-central Chile river were investigated along the altitudinal-spatial and environmental gradient and as a function of anthropogenic factors. The spatial pattern of fish communities in different biocoenotic zones of the Chillan River is influenced by both natural factors such a hydrologic features, habitat, and feeding types, and also by water quality variables which can reduce the diversity and abundance of sensitive species. A principal component analysis incorporating both water quality parameters and biomarker responses of representative fish species was used to evaluate the status of fish communities along the spatial gradient of the stream. The abundance and diversity of the fish community changed from a low in the upper reaches where the low pollution-tolerant species such as salmonid dominated, to a reduced diversity in the lower reaches of the river where tolerant browser species such as cypriniformes dominated. Even though the spatial pattern of fish community structure is similar to that found for the Chilean Rivers, the structure of these communities is highly influenced by human disturbance, particularly along the lower reaches of the river. Handling editor: C. Sturmbauer  相似文献   

11.
Although both niche‐based and neutral processes are involved in community assembly, most models on the effects of habitat loss are stochastic, assuming neutral communities mainly affected by ecological drift and random extinction. Given that habitat loss is considered the most important driver of the current biodiversity crisis, unraveling the processes underlying the effects of habitat loss is critical from both a theoretical and an applied perspective. Here we unveil the importance of niche‐based and neutral processes to species extinction and community assembly across a gradient of habitat loss, challenging the predictions of neutral models. We draw on a large dataset containing the distribution of 3653 individuals of 42 species, representing 35% of the small mammal species of the Atlantic Forest hotspot, obtained in 68 sites across three continuously‐forested landscapes and three adjacent 10 000‐ha fragmented landscapes differing in the amount of remaining forest (50%, 30% and 10%). By applying a null‐model approach, we investigated β‐diversity patterns by detecting deviations of observed community similarity from the similarity between randomly assembled communities. Species extinction following habitat loss was decidedly non‐random, in contrast to the notion that fragmented communities are mainly driven by ecological drift. Instead, habitat loss led to a strong biotic homogenization. Moreover, species composition changed abruptly at the same level of landscape‐scale habitat loss that has already been associated with a drastic decline in species richness. Habitat loss, as other anthropogenic disturbances, can thus be seen as a strong ecological filter that increases (rather than decreases) the importance of deterministic processes in community assembly. As such, critical advances for the development of conservation science lie on the incorporation of the relevant niche traits associated with extinction proneness into models of habitat loss. The results also underscore the fundamental importance of pro‐active measures to prevent human‐modified landscapes surpassing critical ecological thresholds.  相似文献   

12.
Ecological restoration is increasingly applied in tropical forests to mitigate biodiversity loss and recover ecosystem functions. In restoration ecology, functional richness, rather than species richness, often determines community assembly, and measures of functional diversity provide a mechanistic link between diversity and ecological functioning of restored habitat. Vertebrate animals are important for ecosystem functioning. Here, we examine the functional diversity of small‐to‐medium sized mammals to evaluate the diversity and functional recovery of tropical rainforest. We assess how mammal species diversity and composition and functional diversity and composition, vary along a restoration chronosequence from degraded pasture to “old‐growth” tropical rainforest in the Wet Tropics of Australia. Species richness, diversity, evenness, and abundance did not vary, but total mammal biomass and mean species body mass increased with restoration age. Species composition in restoration forests converged on the composition of old‐growth rainforest and diverged from pasture with increasing restoration age. Functional metrics provided a clearer pattern of recovery than traditional species metrics, with most functional metrics significantly increasing with restoration age when taxonomic‐based metrics did not. Functional evenness and dispersion increased significantly with restoration age, suggesting that niche complementarity enhances species' abundances in restored sites. The change in community composition represented a functional shift from invasive, herbivorous, terrestrial habitat generalists and open environment specialists in pasture and young restoration sites, to predominantly endemic, folivorous, arboreal, and fossorial forest species in older restoration sites. This shift has positive implications for conservation and demonstrates the potential of tropical forest restoration to recover rainforest‐like, diverse faunal communities.  相似文献   

13.
Ecological restoration is deemed important for the long‐term conservation of biodiversity, but ecologists still lack an understanding of how habitat availability and habitat quality in a restored system interact to determine species diversity. This problem seems particularly apparent in Tallgrass Prairie and savanna ecoregions, where restored management units represent the majority of extant habitat. In this study, we tested three principal hypotheses, each stating that the diversity of Lepidoptera would be greater in (1) patches of savanna habitat that were larger; (2) patches that were of higher habitat quality; and (3) patches that had greater connectivity to management units of similar physiognomy. Lepidoptera were sampled in 2003 from 13 unmanaged woodland remnants within Neal Smith National Wildlife Refuge, a 2,292‐ha prairie and savanna reconstruction project. We also measured 11 environmental variables within each site to assess variation in habitat quantity and quality. Principal components analysis (PCA) was used to identify major gradients of environmental variation among the 13 sites. Our PCA differentiated among woodlands along three environmental gradients, defined by (1) stand size, shape, topography, and oak dominance; (2) degree of disturbance; and (3) isolation. Total lepidopteran species richness, however, was only predicted by variation in the first principal component. Species richness of Lepidoptera known to be oak specialists was significantly affected by variation along all three PCA gradients. Surprisingly, more isolated woodland remnants contained a greater richness of oak feeders. Our results suggest that approaches to restoring oak savannas should emphasize aspects of both habitat quantity and quality. Beyond making individual management units larger, priority sites for restoration should possess a low importance of trees that are indicative of past habitat disturbance (e.g., Honey locust, White mulberry) even if canopy closure is substantial. Connectivity among restored habitats may benefit savanna moth communities only when habitat linkages contain a flora similar in composition to focal patches.  相似文献   

14.
Studies on elevation diversity gradients have covered a large number of taxa and regions throughout the world; however, studies of freshwater fish are scarce and restricted to examining their changes along a specific gradient. These studies have reported a monotonic decrease in species richness with increasing elevation, but ignore the high taxonomic differentiation of each headwater assemblage that may generate high β‐diversity among them. Here, we analyzed how fish assemblages vary with elevation among regional elevation bands, and how these changes are related to four environmental clines and to changes in the distribution, habitat use, and the morphology of fish species. Using a standardized field sampling technique, we assessed three different diversity and two structural assemblage measures across six regional elevation bands located in the northern Andes (Colombia). Each species was assigned to a functional group based on its body shape, habitat use, morphological, and/or behavioral adaptations. Additionally, at each sampling site, we measured four environmental variables. Our analyses showed: (1) After a monotonic decrease in species richness, we detected an increase in richness in the upper part of the gradient; (2) diversity patterns vary depending on the diversity measure used; (3) diversity patterns can be attributed to changes in species distribution and in the richness and proportions of functional groups along the regional elevation gradient; and (4) diversity patterns and changes in functional groups are highly correlated with variations in environmental variables, which also vary with elevation. These results suggest a novel pattern of variation in species richness with elevation: Species richness increases at the headwaters of the northern Andes owing to the cumulative number of endemic species there. This highlights the need for large‐scale studies and has important implications for the aquatic conservation of the region.  相似文献   

15.
Habitat heterogeneity contributes to the maintenance of diversity, but the extent that landscape-scale rather than local-scale heterogeneity influences the diversity of soil invertebrates—species with small range sizes—is less clear. Using a Scottish habitat heterogeneity gradient we correlated Collembola and lumbricid worm species richness and abundance with different elements (forest cover, habitat richness and patchiness) and qualities (plant species richness, soil variables) of habitat heterogeneity, at landscape (1 km2) and local (up to 200 m2) scales. Soil fauna assemblages showed considerable turnover in species composition along this habitat heterogeneity gradient. Soil fauna species richness and turnover was greatest in landscapes that were a mosaic of habitats. Soil fauna diversity was hump-shaped along a gradient of forest cover, peaking where there was a mixture of forest and open habitats in the landscape. Landscape-scale habitat richness was positively correlated with lumbricid diversity, while Collembola and lumbricid abundances were negatively and positively related to landscape spatial patchiness. Furthermore, soil fauna diversity was positively correlated with plant diversity, which in turn peaked in the sites that were a mosaic of forest and open habitat patches. There was less evidence that local-scale habitat variables (habitat richness, tree cover, plant species richness, litter cover, soil pH, depth of organic horizon) affected soil fauna diversity: Collembola diversity was independent of all these measures, while lumbricid diversity positively and negatively correlated with vascular plant species richness and tree canopy density. Landscape-scale habitat heterogeneity affects soil diversity regardless of taxon, while the influence of habitat heterogeneity at local scales is dependent on taxon identity, and hence ecological traits, e.g. body size. Landscape-scale habitat heterogeneity by providing different niches and refuges, together with passive dispersal and population patch dynamics, positively contributes to soil faunal diversity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
An ecosystem-level study was conducted in the Guandu wetlands insubtropical coastal Taiwan to examine how salinity influences the abundance,diversity, and structure of biotic communities. We surveyed eight permanentstudy sites, spanning freshwater marshes, to the gate on the dyke, andmesohaline mangroves representing a gradient of the extent of saltwaterincursions. Analyses of abiotic variables showed that salinity was the primarydetermining factor for discriminating habitat types in the wetlands, butcommunities differed in their sensitivity to salinity. The composition of plantand insect communities was most affected by the salinity gradient, suggestingthe utility of these communities for ecological monitoring of saltwaterincursions. However, spatial changes in communities at higher trophic levels,including macrobenthos, mollusks, fish, and birds, could not be explained simplyby the salinity gradient. Instead, changes in these communities were morerelevant to the composition of other biotic communities. Our results show thatspecies richness and diversity of plant communities were higher in the marshesthan in the mangroves. Nevertheless, insect communities censused in themangroves had higher diversity, despite lower abundance and species richness.Macrobenthos surveyed in the mangroves showed higher biomass and number of taxa.Mollusks and fish were also more abundant at sites near the gate compared to themarsh sites. This suggests that maintaining a tidal flux by means of gateregulation is necessary for conserving the spatial heterogeneity andbiodiversity of coastal wetlands.  相似文献   

18.
Terrestrial mammals are a key component of tropical forest communities as indicators of ecosystem health and providers of important ecosystem services. However, there is little quantitative information about how they change with local, regional and global threats. In this paper, the first standardized pantropical forest terrestrial mammal community study, we examine several aspects of terrestrial mammal species and community diversity (species richness, species diversity, evenness, dominance, functional diversity and community structure) at seven sites around the globe using a single standardized camera trapping methodology approach. The sites-located in Uganda, Tanzania, Indonesia, Lao PDR, Suriname, Brazil and Costa Rica-are surrounded by different landscape configurations, from continuous forests to highly fragmented forests. We obtained more than 51 000 images and detected 105 species of mammals with a total sampling effort of 12 687 camera trap days. We find that mammal communities from highly fragmented sites have lower species richness, species diversity, functional diversity and higher dominance when compared with sites in partially fragmented and continuous forest. We emphasize the importance of standardized camera trapping approaches for obtaining baselines for monitoring forest mammal communities so as to adequately understand the effect of global, regional and local threats and appropriately inform conservation actions.  相似文献   

19.
Analysing how species modify their trait expression along a diversity gradient brings insight about the role that intraspecific variability plays over species interactions, e.g. competition versus complementarity. Here, we evaluated the functional trait space of nine tree species dominant in three types of European forests (a continental‐Mediterranean, a mountainous mixed temperate and a boreal) growing in communities with different species richness in the canopy, including pure stands. We compiled whole‐plant and leaf traits in 1719 individuals, and used them to quantify species trait hypervolumes in communities with different tree species richness. We investigated changes along the species richness gradient to disentangle species responses to the neighbouring environment, in terms of hypervolume size (trait variance), shape (trait relative importance) and centroid translation (shifts of mean trait values) using null models. Our main results showed differences in trait variance and shifts of mean values along the tree diversity gradient, with shorter trees but with larger crowns in mixed stands. We found constrained functional spaces (trait convergence) in pure stands, suggesting an important intraspecific competition, and expanded functional spaces (trait divergence) in two‐species admixtures, suggesting competition release due to interspecific complementarity. Nevertheless, further responses to increasing species richness were different for each forest type, waning species complementarity in sites with limiting conditions for growth. Our results demonstrate that tree species phenotypes respond to the species richness in the canopy in European forests, boosting species complementarity at low level of canopy diversity and with a site‐specific pattern at greater level of species richness. These outcomes evidence the limitation of functional diversity measures based only on traits from pure stands or general trait database values.  相似文献   

20.
Anthropogenic disturbance may lead to the spread of vector-borne diseases through effects on pathogens, vectors, and hosts. Identifying the type and extent of vector response to habitat change will enable better and more accurate management strategies for anthropogenic disease spread. We compiled and analyzed data from published empirical studies to test for patterns among flea and small mammal diversity, abundance, several measures of flea infestation, and host specificity in 70 small mammal communities of five biomes and three levels of human disturbance: remote/wild areas, agricultural areas, and urban areas. Ten of 12 mammal and flea characteristics showed a significant effect of disturbance category (six), biome (four), or both (two). Six variables had a significant interaction effect. For mammal-flea communities in forest habitats (39 of the 70 communities), disturbance affected all 12 characteristics. Overall, flea and mammal richness were higher in remote versus urban sites. Most measures of flea infestation, including percent of infested mammals and fleas/mammal and fleas/mammal species increased with increasing disturbance or peaked at intermediate levels of disturbance. In addition, host use increased, and the number of specialist fleas decreased, as human disturbance increased. Of the three most common biomes (forest, grassland/savanna, desert), deserts were most sensitive to disturbance. Finally, sites of intermediate disturbance were most diverse and exhibited characteristics associated with increased disease spread. Anthropogenic disturbance was associated with conditions conducive to increased transmission of flea-borne diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号