首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The APN1 gene of Saccharomyces cerevisiae encodes the major apurinic/apyrimidinic endonuclease and 3'-repair DNA diesterase in yeast cell extracts. The Apn1 protein is a homolog of Escherichia coli endonuclease IV, which functions in the repair of some oxidative and alkylation damages in that organism. We show here that yeast strains lacking Apn1 (generated by targeted gene disruption or deletion-replacement) are hypersensitive to both oxidative (hydrogen peroxide and t-butylhydroperoxide) and alkylating (methyl- and ethylmethane sulfonate) agents that damage DNA. These cellular hypersensitivities are correlated with the accumulation of unrepaired damages in the chromosomal DNA of apn1 mutant yeast cells. Hydrogen peroxide-treated APN1+ but not apn1 mutant cells regenerate high-molecular-weight DNA efficiently after the treatment. The DNA strand breaks that accumulate in the Apn1-deficient mutant contain lesions that block the action of DNA polymerase but can be removed in vitro by purified Apn1. An analogous result with DNA from methylmethane sulfonate-treated cells corresponded to the accumulation of unrepaired DNA apurinic sites in the apn1 mutant cells. The rate of spontaneous mutation in apn1 mutant S. cerevisiae was 6- to 12-fold higher than that measured for wild-type yeast cells. This increase indicates that under normal growth conditions, the production of DNA damages that are targets for Apn1 is substantial and that such lesions can be mutagenic when left unrepaired.  相似文献   

2.
The DNA strand breaks resulting from exposure to the free radicals generated by ionizing radiation or oxidizing agents are refractory to DNA repair synthesis because of deoxyribose fragments that block their 3' termini. The restoration of normal 3'-OH nucleotide primers is the essential first step in the excision repair of these radical-induced strand breaks. We have used a synthetic DNA substrate containing 3'-phosphoglycolaldehyde esters to identify and purify to physical homogeneity the major yeast diesterase that removes such nucleotide fragments. Yeast 3'-phosphoglycolaldehyde diesterase had Mr = 40,500 upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A similar molecular weight estimate from gel filtration indicated that the active species is a nearly globular monomer. Purification of the enzyme removed a tightly bound metal, but the activity of the purified enzyme could be restored by the addition of Co2+, Mn2+, Ni2+, or Zn2+, with Co2+ the most effective cofactor. Even 3 microM Co2+ stimulated near-maximal activity, and this metal also conferred significant thermal stability on the purified protein. This is a novel enzyme, whose N-terminal amino acid sequence does not show any significant similarity to published sequences, and which is not the product of any gene in the RAD52 epistasis group.  相似文献   

3.
Treatment of an end-labeled DNA restriction fragment with the nonprotein chromophore of neocarzinostatin induced lesions which, after treatment with endonuclease IV or putrescine, were expressed as site-specific double-strand breaks. Analysis of the termini at cleavage sites in each strand showed that the neocarzinostatin-induced lesions consisted of an apurinic/apyrimidinic site plus a closely opposed break in the complementary strand. The break always occurred opposite the base two positions upstream from the apurinic/apyrimidinic site and had the 3'-phosphate and 5'-aldehyde termini characteristic of neocarzinostatin-induced breaks. This positioning suggests that neocarzinostatin simultaneously attacks two DNA sugars on opposite edges of the minor groove. The sequence specificity for formation of apurinic/apyrimidinic sites with closely opposed breaks reflected that of neocarzinostatin-induced mutagenesis. The potent mutagenicity of these lesions may be attributable to the presence of closely opposed damage in both DNA strands.  相似文献   

4.
Agents that act via oxygen-derived free radicals form DNA strand breaks with fragmented sugar residues that block DNA repair synthesis. Using a synthetic DNA substrate with a single type of sugar fragment, 3'-phosphoglycolaldehyde esters, we show that in Escherichia coli extracts the only EDTA-resistant diesterase for these damages depends on the bacterial nfo (endonuclease IV) gene. Endonuclease IV was purified to physical homogeneity (Mr = 31,000) from an E. coli strain carrying the cloned nfo gene and in which the enzyme had been induced with paraquat. Although heat-stable and routinely assayed in the presence of EDTA, endonuclease IV was inactivated in the absence of substrate at 23-50 degrees C by either EDTA or 1,10-phenanthroline, suggesting the presence of an essential metal tightly bound to the protein. Purified endonuclease IV released phosphoglycolaldehyde, phosphate, and intact deoxyribose 5-phosphate from the 3'-end of DNA, all with apparent Km of 5-10 nM. The optimal KCl or NaCl concentration for 3'-phosphoglycolaldehyde release was 50-100 mM. The purified enzyme had endonuclease activity against partially depurinated DNA but lacked significant nonspecific nuclease activities. Endonuclease IV also activated H2O2-damaged DNA for repair synthesis by DNA polymerase I. Thus, endonuclease IV can act on a variety of oxidative damages in DNA, consistent with a role for the enzyme in combating free-radical toxicity.  相似文献   

5.
In Saccharomyces cerevisiae, the apurinic/apyrimidinic (AP) endonucleases Apn1 and Apn2 act as alternative pathways for the removal of various 3'-terminal blocking lesions from DNA strand breaks and in the repair of abasic sites, which both result from oxidative DNA damage. Here we demonstrate that Tpp1, a homologue of the 3' phosphatase domain of polynucleotide kinase, is a third member of this group of redundant 3' processing enzymes. Unlike Apn1 and Apn2, Tpp1 is specific for the removal of 3' phosphates at strand breaks and does not possess more general 3' phosphodiesterase, exonuclease, or AP endonuclease activities. Deletion of TPP1 in an apn1 apn2 mutant background dramatically increased the sensitivity of the double mutant to DNA damage caused by H2O2 and bleomycin but not to damage caused by methyl methanesulfonate. The triple mutant was also deficient in the repair of 3' phosphate lesions left by Tdp1-mediated cleavage of camptothecin-stabilized Top1-DNA covalent complexes. Finally, the tpp1 apn1 apn2 triple mutation displayed synthetic lethality in combination with rad52, possibly implicating postreplication repair in the removal of unrepaired 3'-terminal lesions resulting from endogenous damage. Taken together, these results demonstrate a clear role for the lesion-specific enzyme, Tpp1, in the repair of a subset of DNA strand breaks.  相似文献   

6.
Ionizing radiation, oxidative stress and endogenous DNA-damage processing can result in a variety of single-strand breaks with modified 5' and/or 3' ends. These are thought to be one of the most persistent forms of DNA damage and may threaten cell survival. This study addresses the mechanism involved in recognition and processing of DNA strand breaks containing modified 3' ends. Using a DNA-protein cross-linking assay, we followed the proteins involved in the repair of oligonucleotide duplexes containing strand breaks with a phosphate or phosphoglycolate group at the 3' end. We found that, in human whole cell extracts, end-damage-specific proteins (apurinic/apyrimidinic endonuclease 1 and polynucleotide kinase in the case of 3' ends containing phosphoglycolate and phosphate, respectively) which recognize and process 3'-end-modified DNA strand breaks are required for efficient recruitment of X-ray cross-complementing protein 1-DNA ligase IIIalpha heterodimer to the sites of DNA repair.  相似文献   

7.
DNA deoxyribophosphodiesterase.   总被引:17,自引:0,他引:17       下载免费PDF全文
A previously unrecognized enzyme acting on damaged termini in DNA is present in Escherichia coli. The enzyme catalyses the hydrolytic release of 2-deoxyribose-5-phosphate from single-strand interruptions in DNA with a base-free residue on the 5' side. The partly purified protein appears to be free from endonuclease activity for apurinic/apyrimidinic sites, exonuclease activity and DNA 5'-phosphatase activity. The enzyme has a mol. wt of approximately 50,000-55,000 and has been termed DNA deoxyribophosphodiesterase (dRpase). The protein presumably is active in DNA excision repair to remove a sugar-phosphate residue from an endonucleolytically incised apurinic/apyrimidinic site, prior to gap filling and ligation.  相似文献   

8.
Yeast Rad27 is a 5'-->3' exonuclease and a flap endo-nuclease. Apn1 is the major apurinic/apyrimidinic (AP) endonuclease in yeast. The rad27 deletion mutants are highly sensitive to methylmethane sulfonate (MMS). By examining the role of Rad27 in different modes of DNA excision repair, we wish to understand why the cytotoxic effect of MMS is dramatically enhanced in the absence of Rad27. Base excision repair (BER) of uracil-containing DNA was deficient in rad27 mutant extracts in that (i) the Apn1 activity was reduced, and (ii) after DNA incision by Apn1, hydrolysis of 1-5 nucleotides 3' to the baseless sugar phosphate was deficient. Thus, some AP sites may lead to unprocessed DNA strand breaks in rad27 mutant cells. The severe MMS sensitivity of rad27 mutants is not caused by a reduction of the Apn1 activity. Surprisingly, we found that Apn1 endonuclease sensitizes rad27 mutant cells to MMS. Deleting the APN1 gene largely restored the resistance of rad27 mutants to MMS. These results suggest that unprocessed DNA strand breaks at AP sites are mainly responsible for the MMS sensitivity of rad27 mutants. In contrast, nucleotide excision repair and BER of oxidative damage were not affected in rad27 mutant extracts, indicating that Rad27 is specifically required for BER of AP sites in DNA.  相似文献   

9.
The ability of HeLa DNA polymerases to carry out DNA synthesis from incisions made by various endodeoxyribonucleases which recognize or form baseless sites in DNA was examined. DNA polymerase beta carried out limited strand displacement synthesis from 3'-hydroxyl nucleotide termini made by HeLa apurinic/apyrimidinic (AP) endonuclease II at the 5'-side of apurinic sites. Escherichia coli endonuclease III incises at the 3'-side of apurinic sites to produce nicks with 3'-deoxyribose termini which did not efficiently support DNA synthesis with beta-polymerase. However, these nicks could be activated to support limited DNA synthesis by HeLa AP endonuclease II, an enzyme which removes the baseless sugar phosphate from the 3'-termini, thus creating a one-nucleotide gap. With dGTP as the only nucleoside triphosphate present, the beta-polymerase catalyzed one-nucleotide DNA repair synthesis from those gaps which lacked dGMP. In contrast, HeLa DNA polymerase alpha was unreactive with all of the above incised DNA substrates. Larger patches of DNA synthesis were produced by nick translation from one-nucleotide gaps with HeLa DNA polymerase beta and HeLa DNase V. Moreover, incisions made by E. coli endonuclease III were activated to support DNA synthesis by the DNase V which removed the 3'-deoxyribose termini. HeLa DNase V also stimulated both the rate and extent of DNA synthesis by DNA polymerase beta from AP endonuclease II incisions. In this case the baseless sugar phosphate was removed from the 5'-termini, and nick translational synthesis occurred. Complete DNA excision repair of pyrimidine dimers was achieved with the beta-polymerase, DNase V, and DNA ligase from incisions made in UV-irradiated DNA by T4 UV endonuclease and HeLa AP endonuclease II. Such incisions produce a one-nucleotide gap containing 3'-hydroxyl nucleotide and 5'-thymine: thymidylate cyclobutane dimer termini. DNase V removes pyrimidine dimers primarily as a dinucleotide and then promotes nick translational DNA synthesis.  相似文献   

10.
A new endonuclease from Escherichia coli acting at apurinic sites in DNA.   总被引:27,自引:0,他引:27  
A new DNA endonuclease has been purified 3000-fold from Escherichia coli. The enzyme specifically catalyzes the formation of single strand breaks at apurinic and apyrimidinic sites in DNA, but has no activity on intact or single-stranded DNA. Further, the enzyme shows little or no activity on heavily ultraviolet-irradiated DNA, but cleaves x-irradiated DNA, presumably at apurinic and apyrimidinic sites introduced by the radiation treatment. The enzyme, which is tentatively named endonuclease IV, has no detectable associated exonuclease or DNA N-glycosidase activity and does not seem to be identical with any previously known E. coli endonuclease. Endonuclease IV has no Mg2+ requirement, and is fully active in the presence of EDTA. Enzyme activity is stimulated by 0.2 to 0.3 M NaCl and is unusually salt-resistant. Further, the enzyme is fairly heat-stable, and is not inhibited by tRNA. The sidimentation coefficient, S(o)20,w, is 3.4 S. It seems that endonuclease IV is active in DNA repair.  相似文献   

11.
An endonuclease partially purified from human lymphoblasts, and active against ultraviolet-irradiated DNA, was found to act additionally on DNA damaged by either x-radiation or methylmethanesulfonate. To determine if these activities were truly endonucleolytic, the reaction products were analyzed under conditions that prevented conversion of apurinic or apyrimidinic sites to single-strand breaks. With either ultraviolet- or x-irradiated DNA, strand breakage remained maximal, hence confirming the endonucleolytic character of the enzyme. By contrast, with DNA alkylated with methylmethanesulfonate, strand breakage was sharply reduced. Additional experiments indicated that the activity for alkylated DNA induces strand breaks only in concert with a purified endonuclease specific for apurinic sites, suggesting that it is an N-glycosidase that depurinates alkylated bases. This enzyme was separated from the endonuclease specific for irradiated DNA, by chromatography on DNA-agarose.  相似文献   

12.
The aromatic amine 9-amino-ellipticine is a synthetic DNA intercalating compound derived from the antitumor agent ellipticine, which cleaves at very low doses DNA containing apurinic sites by beta-elimination through formation of a Schiff base. This compound has been shown to potentiate the cytotoxic effect of alkylating drugs, such as dimethyl sulfate, in E. coli through a mechanism involving apurinic sites. We have studied the ability of 9-amino-ellipticine to inhibit an enzymatic repair system mimicking base-excision repair, in which E. coli exonuclease III only presents an endonuclease for apurinic/apyrimidinic site activity. 10 microM of 9-amino-ellipticine inhibits 70% of apurinic site repair. Other intercalating agents with similar affinities for DNA do not induce any inhibition. In another system designed for the direct assay of the exonuclease III-induced incisions 5' to AP sites 10 microM of 9-amino-ellipticine inhibits 65% of the endonuclease for apurinic/apyrimidinic site activity of E. coli exonuclease III. The 9-amino-ellipticine-induced formation of a 2',3'-unsaturated deoxyribose and cleavage at the 3' side of the apurinic site, and possible creation of an adduct, as suggested by Bertrand and coworkers (1989), on the 3' position of the deoxyribose seem to strongly inhibit the endonuclease for apurinic/apyrimidinic site activity. 9-Amino-ellipticine appears therefore to be the first small ligand which can inhibit, by an irreversible modification of the substrate, the repair of apurinic sites through the base excision-repair pathway at a pharmacological concentration.  相似文献   

13.
Escherichia coli contains multiple enzymes that hydrolyze deoxyribose fragments (phosphoglycolaldehyde, PGA) from the 3' termini of a synthetic DNA substrate. The major such activities are the main bacterial apurinic endonucleases, exonuclease III and endonuclease IV. In a double mutant deficient in both of these oxidation repair enzymes, Mg++-dependent 3'-PGA diesterase was detected at 3% the level found in wild-type bacteria. Gel filtration fractionated this residual diesterase activity into two peaks of Mr 40,000-52,000 (Pool A) and Mr 22,000-30,000 (Pool B) with differing abilities to remove 3'-phosphates from DNA. These multiple repair activities were resolved in 3'-PGA diesterase activity gels. The exonuclease III and endonuclease IV bands were identified using the purified proteins and by their specific absence from strains defective for the respective structural genes. Gel filtration Pool B yielded two activity bands of apparent Mr 25,000 and 28,000, but Pool A did not form a new band in the activity gels. Incubation of activity gels in different transition metals or boiling of the samples before electrophoresis also served to distinguish the various activities. The possible identities of the novel E. coli 3'-PGA diesterases and the importance of multiple repair enzymes for 3' damages are discussed.  相似文献   

14.
The major abasic endonuclease of human cells, Ape1 protein, is a multifunctional enzyme with critical roles in base excision repair (BER) of DNA. In addition to its primary activity as an apurinic/apyrimidinic endonuclease in BER, Ape1 also possesses 3'-phosphodiesterase, 3'-phosphatase, and 3'-->5'-exonuclease functions specific for the 3' termini of internal nicks and gaps in DNA. The exonuclease activity is enhanced at 3' mismatches, which suggests a possible role in BER for Ape1 as a proofreading activity for the relatively inaccurate DNA polymerase beta. To elucidate this role more precisely, we investigated the ability of Ape1 to degrade DNA substrates that mimic BER intermediates. We found that the Ape1 exonuclease is active at both mismatched and correctly matched 3' termini, with preference for mismatches. In our hands, the exonuclease activity of Ape1 was more active at one-nucleotide gaps than at nicks in DNA, even though the latter should represent the product of repair synthesis by polymerase beta. However, the exonuclease activity was inhibited by the presence of nearby 5'-incised abasic residues, which result from the apurinic/apyrimidinic endonuclease activity of Ape1. The same was true for the recently described exonuclease activity of Escherichia coli endonuclease IV. Exonuclease III, the E. coli homolog of Ape1, did not discriminate among the different substrates. Removal of the 5' abasic residue by polymerase beta alleviated the inhibition of the Ape1 exonuclease activity. These results suggest roles for the Ape1 exonuclease during BER after both DNA repair synthesis and excision of the abasic deoxyribose-5-phosphate by polymerase beta.  相似文献   

15.
Ionizing radiation and radiomimetic compounds, such as hydrogen peroxide and bleomycin, generate DNA strand breaks with fragmented deoxyribose 3' termini via the formation of oxygen-derived free radicals. These fragmented sugars require removal by enzymes with 3' phosphodiesterase activity before DNA synthesis can proceed. An enzyme that reactivates bleomycin-damaged DNA to a substrate for Klenow polymerase has been purified from calf thymus. The enzyme, which has a Mr of 38,000 on SDS-PAGE, also reactivates hydrogen peroxide-damaged DNA and has an associated apurinic/apyrimidinic (AP) endonuclease activity. The N-terminal amino acid sequence of the purified protein matches that reported previously for a calf thymus enzyme purified on the basis of AP endonuclease activity. Degenerate oligonucleotide primers based on this sequence were used in the polymerase chain reaction to generate from a bovine cDNA library a fragment specific for the 5' end of the coding sequence. Using this cDNA fragment as a probe, several clones containing 1.35 kb cDNA inserts were isolated and the complete nucleotide sequence of one of these determined. This revealed an 0.95 kb open reading frame which would encode a polypeptide of Mr 35,500 and with a N-terminal sequence matching that determined experimentally. The predicted amino acid sequence shows strong homology with the sequences of two bacterial enzymes that repair oxidative DNA damage, ExoA protein of S. pneumoniae and exonuclease III of E. coli.  相似文献   

16.
Mechanism of action of a mammalian DNA repair endonuclease   总被引:17,自引:0,他引:17  
The mechanism of action of a DNA repair endonuclease isolated from calf thymus was determined. The calf thymus endonuclease possesses a substrate specificity nearly identical with that of Escherichia coli endonuclease III following DNA damage by high doses of UV light, osmium tetroxide, and other oxidizing agents. The calf thymus enzyme incises damaged DNA at sites of pyrimidines. A cytosine photoproduct was found to be the primary monobasic UV adduct. The calf thymus endonuclease and E. coli endonuclease III were found to possess similar, but not identical, DNA incision mechanisms. The mechanism of action of the calf thymus endonuclease was deduced by analysis of the 3' and 5' termini of the enzyme-generated DNA scission products with DNA sequencing methodologies and HPLC analysis of the material released by the enzyme following DNA damage. The calf thymus endonuclease removes UV light and osmium tetroxide damaged bases via an N-glycosylase activity followed by a 3' apurinic/apyrimidinic (AP) endonuclease activity. The calf thymus endonuclease also possesses a novel 5' AP endonuclease activity not possessed by endonuclease III. The product of this three-step mechanism is a nucleoside-free site flanked by 3'-and 5'-terminal phosphate groups. These results indicate the conservation of both substrate specificity and mechanism of action in the enzymatic removal of oxidative base damage between prokaryotes and eukaryotes. We propose the name redoxy endonucleases for this group of enzymes.  相似文献   

17.
Apurinic/apyrimidinic endonucleases initiate the repair of abasic sites produced either spontaneously, from attack of bases by reactive oxygen species or as intermediates during base excision repair. The catalytic properties and crystal structure of Leishmania major apurinic/apyrimidinic endonuclease are described and compared with those of human APE1 and bacterial exonuclease III. The purified enzyme is shown to possess apurinic/apyrimidinic endonuclease activity of the same order as eukaryotic and prokaryotic counterparts and an equally robust 3'-phosphodiesterase activity. Consistent with this, expression of the L. major endonuclease confers resistance to both methyl methane sulphonate and H2O2 in Escherichia coli repair-deficient mutants while expression of the human homologue only reverts methyl methane sulphonate sensitivity. Structural analyses and modelling of the enzyme-DNA complex demonstrates a high degree of conservation to previously characterized homologues, although subtle differences in the active site geometry might account for the high 3'-phosphodiesterase activity. Our results confirm that the L. major's enzyme is a key element in mediating repair of apurinic/apyrimidinic sites and 3'-blocked termini and therefore must play an important role in the survival of kinetoplastid parasites after exposure to the highly oxidative environment within the host macrophage.  相似文献   

18.
The Caenorhabditis elegans genes, exo-3 and apn-1, encode the proteins EXO-3 and APN-1, belonging to the exo III and endo IV families of apurinic/apyrimidinic (AP) endonucleases/3'-diesterases, respectively. Homologues of EXO-3 and APN-1 in E. coli and yeast have been clearly documented to repair AP sites and DNA strand breaks with blocked 3' ends to prevent genomic instability. Herein, we purified the C. elegans EXO-3, expressed as a Gst-fusion protein in yeast, and demonstrated that it possesses strong AP endonuclease and 3'-diesterase activities. However, unlike the E. coli counterpart exonuclease III, EXO-3 shows no significant level of 3' --> 5' exonuclease activity following incision at AP sites. In addition, EXO-3 lacks the ability to directly incise DNA at the 5' side of various oxidatively damaged bases, as observed for the human counterpart Ape1, suggesting that C. elegans evolved a member with tailored functions. Importantly, a variant form of EXO-3, E68A, demonstrates altered magnesium-binding properties, and although the in vitro AP endonuclease is nearly fully recovered in the presence of MgCl2, the 3'-diesterase activity is reduced when compared to the native enzyme. We suggest that Glu68 plays a role in coordinating Mg2+ binding for the enzyme catalytic mechanism. Further analysis reveals that neither purified Gst-EXO-3 nor the E68A variant forms a readily detectable DNA-protein complex with an oligonucleotide substrate containing either an AP site or an alpha,beta-unsaturated aldehyde at its 3' end. However, if the reaction is conducted in the presence of crude extracts derived from either yeast or C. elegans embryos, only E68A forms a distinct slow migrating DNA-protein complex with each of the substrates, suggesting that Glu68 may be required to facilitate the release of EXO-3 from the incised DNA to allow entry of the remaining components of the base-excision repair pathway. Thus, the slow migrating DNA-protein complex formed by the E68A variant could be indicative of a stalled repair process with associated factor(s).  相似文献   

19.
Ionizing radiation (IR) and bleomycin (BLM) are used to treat various types of cancers. Both agents generate cytotoxic double strand breaks (DSB) and abasic (apurinic/apyrimidinic (AP)) sites in DNA. The human AP endonuclease Ape1 acts on abasic or 3'-blocking DNA lesions such as those generated by IR or BLM. We examined the effect of siRNA-mediated Ape1 suppression on DNA repair and cellular resistance to IR or BLM in human B-lymphoblastoid TK6 cells and HCT116 colon tumor cells. Partial Ape1 deficiency (~30% of normal levels) sensitized cells more dramatically to BLM than to IR cytotoxicity. In both cases, expression of the unrelated yeast AP endonuclease, Apn1, largely restored resistance. Ape1 deficiency increased DNA AP site accumulation due to IR treatment but reduced the number of DSB. In contrast, for BLM, there were more DSB under Ape1 deficiency, with little change in the accumulation of AP sites. Although the role of Ape1 in generating DSB was greater for IR, the enzyme facilitated removal of AP sites, which may mitigate the cytotoxic effects of IR. In contrast, BLM generates scattered AP sites, and the DSB have 3'-phosphoglycolate termini that require Ape1 processing. These DSB persist under Ape1 deficiency. Apoptosis induced by BLM (but not by IR) under Ape1 deficiency was partially p53-dependent, more dramatically in TK6 than HCT116 cells. Thus, Ape1 suppression or inhibition may be a more efficacious adjuvant for BLM than for IR cancer therapy, particularly for tumors with a functional p53 pathway.  相似文献   

20.
Recent studies have shown purified preparations of phage T4 UV DNA-incising activity (T4 UV endonuclease or endonuclease V of phage T4) contain a pyrimidine dimer-DNA glycosylase activity that catalyzes hydrolysis of the 5' glycosyl bond of dimerized pyrimidines in UV-irradiated DNA. Such enzyme preparations have also been shown to catalyze the hydrolysis of phosphodiester bonds in UV-irradiated DNA at a neutral pH, presumably reflecting the action of an apurinic/apyrimidinic endonuclease at the apyrimidinic sites created by the pyrimidine dimer-DNA glycosylase. In this study we found that preparations of T4 UV DNA-incising activity contained apurinic/apyrimidinic endonuclease activity that nicked depurinated form I simian virus 40 DNA. Apurinic/apyrimidinic endonuclease activity was also found in extracts of Escherichia coli infected with T4 denV+ phage. Extracts of cells infected with T4 denV mutants contained significantly lower levels of apurinic/apyrimidinic endonuclease activity; these levels were no greater than the levels present in extracts of uninfected cells. Furthermore, the addition of DNA containing apurinic or apyrimidinic sites to reactions containing UV-irradiated DNA and T4 enzyme resulted in competition for pyrimidine dimer-DNA glycosylase activity against the UV-irradiated DNA. On the basis of these results, we concluded that apurinic/apyrimidinic endonuclease activity is encoded by the denV gene of phage T4, the same gene that codes for pyrimidine dimer-DNA glycosylase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号