首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using trinitrobenzenesulphonic acid (TNBS) as a probe we have observed that phosphatidylethanolamine (PE) formed by base-exchange is initially concentrated in the cytosolic leaflet of the membrane bilayer. At 2 min, the specific activity of the PE in this leaflet was 3-times that of the PE in the cisternal leaflet. After 30 min, the specific activities of the two pools of PE, determined with either phospholipase C or TNBS, were similar. Transbilayer movement of PE was slow at low temperature, prevented by EDTA and restored by the addition of calcium ions after EDTA treatment. Trypsin treatment of microsomes, under conditions in which the vesicles remained closed, inhibited the incorporation of ethanolamine into PE by 87%. The cytosolic location of the ethanolamine base-exchange enzyme is consistent with the initial concentration of newly synthesised PE at this site prior to its transmembrane movement to the cisternal leaflet.  相似文献   

2.
The compartmentation of membrane phosphatidylethanolamine (PE) formed by base-exchange reaction in rat brain microsomal vesicles has been investigated. After labelling membrane PE by base-exchange in vitro, microsomal vesicles were treated with trinitrobenzenesulfonic acid (TNBS). The amount of membrane PE reacting with TNBS depends on the duration and the temperature of the reaction as well as on the TNBS concentration. It was found that almost all of the labelled PE molecules, but only about 24% of membrane PE, were accessible to TNBS, under very mild reaction conditions. It is concluded that PE labelled by base-exchange is completely localized in the cytoplasmic leaflet of microsomal vesicles.  相似文献   

3.
The ethanolamine base-exchange activity of rat brain microsomes has been studied after treating the membranes with the non-ionic detergent n-octyl-beta-D-glucopyranoside. The detergent could solubilize membrane lipid and protein. The concentrations of the detergent and of membrane protein were both important for this effect. The presence of disaggregating concentrations of octylglucopyranoside in the base-exchange incubation mixture strongly inhibited the incorporation of radioactive ethanolamine into lipid; however, the removal of the detergent through dialytic procedures before assaying the base-exchange reaction restored the enzymic activity almost completely. As shown by exposing the membranes to trinitrobenzenesulfonic acid (TNBS), the phosphatidylethanolamine (PE) which was newly synthesized by base-exchange was also compartmented in the microsomal membrane. The treatment with the detergent after the base-exchange reaction abolished the compartmentation of the newly synthesized lipid. However, if microsomes were solubilized and the detergent was removed by dialysis before the assay of base-exchange, the reassembly of membranes occurred with a recovery of the compartmentation of the newly synthesized PE. The presence of Ca2+ in the dialytic medium was important for the preservation of base-exchange activity, probably affecting the reassembly of membrane components.  相似文献   

4.
The transbilayer fatty acid distribution of diacylglycerophosphoethanolamine and the translocation of newly synthesized phosphatidylethanolamine molecules labelled with different fatty acids has been investigated in chick brain microsomes using trinitrobenzensulfonic acid. The determination of the fatty acid composition of diacylglycerophosphoethanolamine in both the outer and the inner leaflet of the microsomal vesicles revealed a similar distribution indicating that both leaflets share the same molecular species. The in vitro incorporation of radioactive fatty acids (16:0, 18:1 and 20:4(n-6] into ethanolamine phospholipids, known to be catalyzed by the lyosphosphatidylethanolamine acyl transferase, showed that the radioactive diacylglycerophosphoethanolamine molecules appeared first in the outer leaflet and were thereafter transferred to the inner leaflet. The apparent rate of translocation of the newly synthesized ethanolamine phospholipid molecules was the highest for those labelled with 16:0 and the lowest for those labelled with 20:4(n-6). The results indicate that the active site of the acyl-CoA:lysophosphatidylethanolamine acyltransferases is located on the outer leaflet of the microsomal vesicles and that the different newly synthesized molecular species of diacylglycerophosphoethanolamine may be translocated from the outer to the inner leaflet at different rates.  相似文献   

5.
The Ca2+ dependent incorporation of [14C]ethanolamine, L-[14C]serine and [14C]choline into phosphatidylethanolamine, phosphatidylserine and phosphatidylcholine, respectively, were investigated in membrane preparations from rat heart. The ethanolamine and serine base-exchange enzyme-catalyzed reactions were associated with the sarcolemma and sarcoplasmic reticulum. There was a 17.2-fold and 6.8-fold enrichment, respectively, of the serine and the ethanolamine base-exchange enzyme activities in the sarcolemma compared to the starting whole homogenate. The sarcoplasmic reticulum was enriched in the ethanolamine and serine base-exchange enzyme activities. The choline base-exchange enzyme activity of all membranes fractions was negligible compared to the ethanolamine or serine base-exchange enzyme activities. The apparent Km for the ethanolamine and serine base-exchange enzyme in sarcolemma was 14 microM and 25 microM, respectively. The pH optimum for these base-exchange activities was 7.5-8.0. There was a dependence upon Ca2+ for these reactions with a 1 or 4 mM concentration required for maximal activity. The properties of the sarcoplasmic reticulum base-exchange enzymes were similar to the sarcolemmal base-exchange enzymes.  相似文献   

6.
Abstract: Enrichment in the base-exchange activities was found in the micro-somal fraction of rat brain, with less activity being associated with nuclei, mitochondria and synaptosomes. The distribution of the choline base exchange in microsomal subfractions differed from that for serine and ethanolamine and these three activities seemed asymmetrically distributed in the microsomes. Choline exchange activity was trypsin-sensitive and presumably was located on the cytoplasmic side of the microsomes, while serine and ethanolamine exchange activities were trypsin-insensitive and were assumed to be located on the luminal side of the microsomes. Treatment of rat brain microsomes with phospholipases A, C and D produced significant losses of membrane-bound base exchange activities. Some activity was restored in phospholipase C-treated microsomes by exogenous phospholipid, but significant restoration was not observed in phospholipase A-treated microsomes by such additions. Exogenous phospholipid stimulated choline and ethanolamine exchange activities, but not serine exchange activity of phospholipase D-treated microsomes. The exchange activities of rat brain microsomes differed in their responses to treatment with phospholipases, choline exchange activity in general being more sensitive than either serine or ethanolamine activities.  相似文献   

7.
In brain, phosphatidylethanolamine can be synthesized from free ethanolamine either by a pathway involving the formation of CDP-ethanolamine and its transfer to diglyceride, or by base-exchange of ethanolamine with existing phospholipids. Although de novo synthesis from serine has also been demonstrated, the metabolic pathway involved is not known. The enzyme phosphatidylserine decarboxylase appears to be involved in the synthesis of much of the phosphatidylethanolamine in liver, but the significance of this route in brain has been challenged. Our in vitro studies demonstrate the existence of phosphatidylserine decarboxylase activity in rat brain and characterize some of its properties. This enzyme is localized in the mitochondrial fraction, whereas the enzymes involved in base-exchange and the cytidine pathway are localized to microsomal membranes. Parallel in vivo studies showed that after the intracranial injection of L-[G-3H]serine, the specific activity of phosphatidylserine was greater in the microsomal fractions than in the mitochondrial fraction, whereas the opposite was true for phosphatidylethanolamine. When L-[U-14C]serine and [1-3H]ethanolamine were simultaneously injected, the 14C/3H ratio in mitochondrial phosphatidylethanolamine was 10 times that in microsomal phosphatidylethanolamine. The results demonstrate that serine is incorporated into the base moiety of phosphatidylethanolamine primarily through the decarboxylation of phosphatidylserine in brain mitochondria. A minimal value of 7% for the contribution of phosphatidylserine decarboxylase to whole-brain phosphatidylethanolamine synthesis can be estimated from the in vivo data.  相似文献   

8.
The sidedness of the biosynthesis of phosphatidylcholine and its transbilayer movement in brain microsomes were investigated. Microsomes were labelled in vitro or in vivo either through Kennedy's pathway or by the base-exchange reaction. The vesicles were treated with phospholipase C under conditions where only the phospholipids present in the external leaflet were hydrolyzed. The incubation of microsomes with CDP-[14C]choline or [14C]choline showed that most of the newly synthesized phosphatidylcholine molecules were localized in the external leaflet. With time a few molecules were transferred into the inner leaflet. When phosphatidylcholine was labelled in vivo by intraventricular injection of [3H]choline the specific activities of the phosphatidylcholine in the outer leaflet were higher than those in the inner leaflet after short times of labelling but became similar after long times of labelling. The results suggest that in brain microsomes the synthesis of phosphatidylcholine through Kennedy's pathway or by the base-exchange reaction takes place on the external leaflet which corresponds to the cytoplasmic one in situ. The transfer of these molecules from the outer leaflet to the inner one is a slow process and the mechanisms that control the transbilayer movement of the phosphatidylcholine seem to be independent of those that control their biosynthesis.  相似文献   

9.
By experimenting with the aminoalcohols [3-3H]serine and [2-14C]ethanolamine we have been able to relate the effects of ethanol upon the biosynthesis of radioactive aminophospholipids (APL) in rat-liver microsomes and their distribution within the bilayer. The translocation of newly synthesized molecules of aminophospholipids labeled with different fatty acids was also investigated. The synthesis of phosphatidylserine (PS) and phosphatidylethanolamine (PE) by base-exchange reaction (BES) was inhibited in membranes exposed to ethanol in direct response to its concentration. In addition, 100 mM ethanol specifically inhibited the transport of newly synthesized PS to the inner leaflet, resulting in similar levels of PS in both leaflets of the bilayer. The inhibition of PE synthesis by ethanol caused a decrease in its distribution in both inner and outer leaflets. An in vitro study of the incorporation of radioactive palmitate and oleate into the PS and PE of microsomes incubated with ethanol showed a decrease in the radioactivity levels of PE, suggesting that ethanol was specifically inhibiting the corresponding acyltransferase. It specifically altered the transbilayer movement of newly acylated phospholipids, modifying the distribution of palmitoyl- and oleoyl-acylated PS and PE in both leaflets. These results demonstrate for the first time that ethanol interferes with both the synthesis and intramembrane transport of aminophospholipids in endoplasmic reticulum (ER) membranes. Bearing in mind that if a membrane is to function properly its structure must be in optimum condition; it is evident that the observed processes may be responsible to some degree for the pathophysiological effects of alcohol upon cells.  相似文献   

10.
Rat brain microsomal membranes disaggregated by exposure to octyl glucoside were recovered by centrifugation after dialytic removal of the detergent. The composition of the dialysis medium (divalent cations, pH) was important to this effect; indeed, the reaggregation process which occurred during the dialytic step required the presence of either Ca2+ or Mg2+ and a slightly acidic pH. The lipid protein/ratio and choline and ethanolamine base-exchange of recovered particles depended on the conditions of dialysis although their lipid composition did not. The lipid composition of membranes was also varied by adding PE or PC to octyl glucoside-microsome suspensions. This treatment produced reaggregates possessing a low content of cholesterol and varying PC/PE ratios. Both choline and ethanolamine base-exchange activities were related to this parameter.  相似文献   

11.
The activity of UDPgalactose-asialo-mucin galactosyltransferase (EC 2.4.1.74) in microsomal and Golig subfractions was stimulated 2.4-fold after disruption of the membrane permeability barrier by hypotonic incubation. In the presence of Triton X-100, galactose transfer to asialo-mucin was increased 12-fold in rough microsomes and 5-fold in smooth microsomes both with and without hypotonic incubation; while in the Golgi subfractions no stimulation by detergent was observed. These experiments indicate differences in enzyme-lipid or enzyme-protein interactions in microsomes and Golgi membranes. Furthermore, these results strongly support the conclusion that the UDP-galactose-asialo-mucin galactosyltransferase activity in microsomal fractions is not due to contamination by Golgi vesicles but represents an enzyme activity endogenous to the endoplasmic reticulum.  相似文献   

12.
The biosynthesis of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS) by base-exchange reactions, and of PC and PE by the CDP pathways, was assessed in the membrane phospholipids of human leukocytes (neutrophils, lymphocytes, T lymphocytes, non-T lymphocytes, and monocytes). Of the three base-exchange activities, ethanolamine exchange was the highest and choline exchange the lowest in each leukocyte membrane. In the CDP pathways, ethanolaminephosphotransferase (EPT) and cholinephosphotransferase (CPT) had comparable activities. Among subpopulations of leukocytes, T lymphocytes showed the highest levels of each enzyme activity, and neutrophils showed the least. In contrast to the enzymes of the CDP pathways, each base-exchange activity was directly proportional to the Ca2+ concentration, but markedly inhibited by Mg2+. Despite this Ca2+ dependence, the base-exchange activities were increased in a dose-dependent manner by calmodulin antagonists and, except for ethanolamine exchange, inhibited by the addition of calmodulin; EPT and CPT activities were only slightly inhibited by calmodulin antagonists and were unaffected by calmodulin. PE formation in both neutrophil and lymphocyte base-exchange reactions was enhanced in a dose-dependent manner by the presence of low concentrations of bioactive stimulants (zymosan, 0.05-0.2 mg/ml; Con A, 0.5-2 micrograms/ml), while EPT and CPT activities were not increased by these cell stimulants. Taken together, our data suggest that base-exchange activity, the biological significance of which has been hitherto unclear, may be related to cell activation; in contrast, the CDP pathways appear primarily to involve the constitutive biosynthesis of phospholipids. Our data further suggest that ethanolamine required for base-exchange reactions is a precursor of PE, N-transmethylation of which can serve as a source of cell activation, leading to production of arachidonic through PC by mediation of phospholipase A2 activity.  相似文献   

13.
Liver microsomal subfractions and Golgi membranes free from adsorbed and secretory proteins have a characteristic sugar composition. The ratio of mannose to galactose is largest in rough microsomes, smaller in smooth I microsomes, still smaller in smooth II microsomes, and smallest in Golgi membranes. There is about twice as much glucosamine in Golgi membranes and 3 times as much in smooth II microsomes as in the other microsomal subfractions. Golgi membranes are rich in sialic acid in comparison to rough microsomes and it is present at even higher levels in the two smooth microsomal subfractions. Increasing concentrations of deoxycholate preferentially remove protein-bound mannose and glucosamine, while releasing significantly less galactose. About half of the microsomal mannose and galactose can be liberated from the surface of intact microsomal vesicles by treatment with trypsin. When trypsin is added to permeable vesicles where the inside surface can be also attacked, an additional 20% of the total mannose but no additional galactose is liberated.  相似文献   

14.
Liver microsomal subfractions and Golgi membranes free from adsorbed and secretory proteins have a characteristic sugar composition. The ratio of mannose to galactose is largest in rough microsomes, smaller in smooth I microsomes, still smaller in smooth II microsomes, and smallest in Golgi membranes. There is about twice as much glucosamine in Golgi membranes and 3 times as much in smooth II microsomes as in the other microsomal subfractions. Golgi membranes are rich in sialic acid in comparison to rough microsomes and it is present at even higher levels in the two smooth microsomal subfractions. Increasing concentrations of deoxycholate preferentially remove protein-bound mannose and glucosamine, while releasing significantly less galactose. About half of the microsomal mannose and galactose can be liberated from the surface of intact microsomal vesicles by treatment with trypsin. When trypsin is added to permeable vesicles where the inside surface can be also attacked, an additional 20% of the total mannose but no additional galactose is liberated.  相似文献   

15.
SUBFRACTIONATION OF SMOOTH MICROSOMES FROM RAT LIVER   总被引:15,自引:10,他引:5       下载免费PDF全文
Total smooth microsomes from rat liver isolated on a Cs+-containing sucrose gradient were concentrated and subsequently fractionated by zone centrifugation on a stabilizing sucrose gradient. The prerequisite for fractionation is to prepare total smooth microsomes in a nonaggregated condition, as well as to utilize a procedure which counteracts enzyme inactivation. The median equilibrium density of the various smooth microsomal vesicles ranges from 1.10 to 1.18. The phospholipid/protein ratio is identical in all subfractions, but cholesterol, on a PLP basis, is enriched in the subfractions with the highest sedimentation velocity. The enzyme distribution pattern reveals a pronounced heterogeneity. A number of NADH- and NADPH-oxidizing enzymes are concentrated in the upper part of the gradient and exhibit a certain degree of separation from G6Pase. Mg++-ATPase and AMPase are enriched in the lower part of the gradient. No specific enrichment of newly synthesized NADPH-cytochrome c reductase activity occurs in any of the subfractions after phenobarbital treatment. These data demonstrate that smooth microsomes, by adequate fractionation procedure, can be separated into subfractious of heterogeneous composition.  相似文献   

16.
The curvature, cholesterol content, and transbilayer distribution of phospholipids significantly influence the functional properties of cellular membranes, yet little is known of how these parameters interact. In this study, the transbilayer distribution of phosphatidylethanolamine (PE) is determined in vesicles with large (98 nm) and small (19 nm) radii of curvature and with different proportions of PE, phosphatidylcholine, and cholesterol. It was found that the mean diameters of both types of vesicles were not influenced by their lipid composition, and that the amino-reactive compound 2,4,6-trinitrobenzenesulphonic acid (TNBS) was unable to cross the bilayer of either type of vesicle. When large vesicles were treated with TNBS, approximately 40% of the total membrane PE was derivatized; in the small vesicles 55% reacted. These values are interpreted as representing the percentage of total membrane PE residing in the outer leaflet of the vesicle bilayer. The large vesicles likely contained approximately 20% of the total membrane lipid as internal membranes. Therefore, in both types of vesicles, PE as a phospholipid class was randomly distributed between the inner and outer leaflets of the bilayer. The proportion of total PE residing in the outer leaflet was unaffected by changes in either the cholesterol or PE content of the vesicles. However, the transbilayer distributions of individual molecular species of PE were not random, and were significantly influenced by radius of curvature, membrane cholesterol content, or both. For example, palmitate- and docosahexaenoate-containing species of PE were preferentially located in the outer leaflet of the bilayer. Membrane cholesterol content affected the transbilayer distributions of stearate-, oleate-, and linoleate-containing species. The transbilayer distributions of palmitate-, docosahexaenoate-, and stearate-containing species were significantly influenced by membrane curvature, but only in the presence of high levels of cholesterol. Thus, differences in membrane curvature and cholesterol content alter the array of PE molecules present on the surfaces of phospholipid bilayers. In cells and organelles, these differences could have profound effects on a number of critical membrane functions and processes.  相似文献   

17.
The curvature, cholesterol content,and transbilayer distribution of phospholipids significantly influence the functional properties of cellular membranes, yet little is known of how these parameters interact. In this study, the transbilayer distribution of phosphatidylethanolamine (PE) is determined in vesicles with large (98 nm) and small (19 nm)radii of curvature and with different proportions of PE, phosphatidylcholine, and cholesterol. It was found that the mean diameters of both types of vesicles were not influenced by their lipid composition, and that the amino-reactive compound 2,4,6-trinitrobenzenesulphonic acid (TNBS) was unable to cross the bilayer of either type of vesicle. When large vesicles were treated with TNBS, ~40% of the total membrane PE was derivatized; in the small vesicles 55% reacted. These values are interpreted as representing the percentage of total membrane PE residing in the outer leaflet of the vesicle bilayer. The large vesicles likely contained ~20% of the total membrane lipid as internal membranes. Therefore, in both types of vesicles, PE as a phospholipid class was randomly distributed between the inner and outer leaflets ofthe bilayer. The proportion oftotal PE residing in the outer leaflet was unaffected by changes in either the cholesterol orPE content of the vesicles. However, the transbilayer distributions of individual molecular species of PE were not random, and were significantly influenced by radius of curvature, membrane cholesterol content, or both. For example, palmitate and docosahexaenoate-containing species of PE were preferentially located in the outer leaflet of the bilayer. Membrane cholesterol content affected the transbilayer distributions of stearate-, oleate-, and linoleate-containing species. The transbilayer distributions ofpalmitate-, docosahexaenoate-, and stearate-containing species were significantly influenced by membrane curvature, but only in the presence of high levels of cholesterol. Thus, differences in membrane curvature and cholesterol content alter the array of PE molecules present on the surfaces of phospholipid bilayers. In cells and organelles, these differences could have profound effects on a number of critical membrane functions and processes.  相似文献   

18.
1. The influence of insulin on rat liver membrane lipid composition, fluidity, some enzyme activities and asymmetry of microsomal phospholipids were investigated. 2. The total phospholipids and cholesterol were increased in microsomes and reduced in plasma membranes from insulin-treated rats. 3. Of all the investigated enzymes participating in the lipid metabolism, only the neutral sphingomyelinase activity was observed to be enhanced, whereas the ceramide-phosphatidylethanolamine (PE) synthetase and phospholipase A2 activities remained unchanged. 4. Insulin administration caused translocation of phosphatidylserine (PS) and PE to the outer leaflet and of phosphatidylinositol (PI) to the inner leaflet of microsomal membranes.  相似文献   

19.
1. The response of renal beta-glucuronidase with time to the injection of gonadotrophin was investigated in each submicrosomal fraction of rough and smooth microsomal fractions of mouse kidney homogenate. 2. The increase in beta-glucuronidase activity appeared initially in membranes of the rough microsomal fraction, 24h after injection. 3. Afterwards the newly synthesized enzyme appeared in the contents of the rough microsomal fraction and was subsequently found in the smooth microsomal fraction, reaching a maximum concentration in this fraction at 72h. 4. At this juncture, a decrease in the enzyme activity was observed in rough microsomal contents whereas the lysosomal fraction had reached its maximum value. 5. The time-course of the appearance of beta-glucuronidase in the submicrosomal fractions after the gonadotrophin stimulation suggests that the newly synthesized enzyme at the site of membrane-bound ribosomes is transferred across the membrane into cisternae of the rough endoplasmic reticulum, and then is transported into lysosomes via the smooth endoplasmic reticulum. 6. The properties of microsomal and lysosomal beta-glucuronidases were compared.  相似文献   

20.
1. The distribution of phospholipids between the two leaflets of the lipid bilayer in acetylcholine receptor (AChR)-rich membranes from T. marmorata has been examined with two complementary techniques: chemical derivatization with the membrane-impermeable reagent trinitrobenzenesulphonate (TNBS) and B.cereus phospholipase C hydrolysis. 2. AChR-membranes were reacted with TNBS at 0-4 and 37 degrees C and the accessibility of their aminophospholipids was compared to that of rod outer segment and erythrocyte membranes. The results indicate that more of the total ethanolamine glycerophospholipid (EGP) than of the total phosphatidylserine (PS) is located in the outer monolayer. 3. Nearly half the phospholipid content of AChR membranes is hydrolyzed by phospholipase C with a half-time of ca. 1.6 min at 25 degrees C. Consistent with the TNBS results, more of the total EGP than of the total PS is degraded. Beyond 3 min the reaction slows down, relatively smaller additional amounts of lipids are hydrolyzed, and all phospholipid classes are attacked to a similar extent, indicating that after half the lipid is removed all phospholipids become accessible to the enzyme. 4. The results indicate that the outer leaflet of the bilayer is richer in ethanolamine and choline glycerophospholipids, whereas phosphatidylinositol, most of the sphingomyelin, and ca 65% of the PS are located on the inner leaflet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号