首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Green crab (Scylla serrata) alkaline phosphatase (EC 3.1.3.1) is a metalloenzyme, each active site in which contains a tight cluster of two zinc ions and one magnesium ion. Unfolding and inactivation of the enzyme during denaturation in guanidinium chloride (GuHCl) solutions of different concentrations have been compared. The kinetic theory of the substrate reaction during irreversible inhibition of enzyme activity previously described by Tsou [(1988),Adv. Enzymol. Related Areas Mol. Biol. 61, 381–436] has been applied to a study on the kinetics of the course of inactivation of the enzyme during denaturation by GuHCl. The rate constants of unfolding and inactivation have been determined. The results show that inactivation occurs before noticeable conformational change can be detected. It is suggested that the active site of green crab alkaline phosphatase containing multiple metal ions is also situated in a limited region of the enzyme molecule that is more fragile to denaturants than the protein as a whole.  相似文献   

2.
The inhibition of alkaline phosphatase from green crab (Scylla serrata) by L-cysteine has been studied. The results show that L-cysteine gives a mixed-type inhibition. The progress-of-substrate-reaction method previously described by Tsou [(1988), Adv. Enzymol. Related Areas Mol. Biol. 61, 391–436] was used to study the inactivation kinetics of the enzyme by L-cysteine. The microscopic rate constants were determined for reaction of the inhibitor with the free enzyme and the enzyme–substrate complex (ES) The results show that inactivation of the enzyme by L-cysteine is a slow, reversible reaction. Comparison of the inactivation rate constants of free enzyme and ES suggests that the presence of the substrate offers marked protection of this enzyme against inactivation by L-cysteine.  相似文献   

3.
Green crab (Scylla Serrata) alkaline phosphatase (EC 3.1.3.1.) is a metalloenzyme, the each active site in which contains a tight cluster of two zinc ions and one magnesium ion. The kinetic theory of the substrate reaction during irreversible inhibition of enzyme activity previously described by Tsou has been applied to a study on the kinetics of the course of inactivation of the enzyme by ethylenediaminetetraacetic acid disodium (EDTA). The kinetics of the substrate reaction with different concentrations of the substrate p-nitrophenyl phosphate (PNPP) and inactivator EDTA suggested a complexing mechanism for inactivation by, and substrate competition with, EDTA at the active site. The inactivation kinetics are single phasic, showing the initial formation of an enzyme-EDTA complex is a relatively rapid reaction, followed a slow inactivation step that probably involves a conformational change of the enzyme. Zinc ions are finally removed from the enzyme. The presence of metal ions apparently stabilizes an active-site conformation required for enzyme activity.  相似文献   

4.
The inactivation of alkaline phosphatase from green crab (Scylla serrata) by N-bromosuccinimide has been studied using the kinetic method of the substrate reaction during modification of enzyme activity previously described by Tsou [(1988),Adv. Enzymol. Related Areas Mol. Biol. 61, 381–436]. The results show that inactivation of the enzyme is a slow, reversible reaction. The microscopic rate constants for the reaction of the inactivator with free enzyme and the enzyme-substrate complex were determined. Comparison of these rate constants indicates that the presence of substrate offers marked protection of this enzyme against inactivation by N-bromosuccinimide. The above results suggest that the tryptophan residue is essential for activity and is situated at the active site of the enzyme.  相似文献   

5.
Green crab (Scylla serrata) alkaline phosphatase (EC 3.1.3.1) is a metalloenzyme, which catalyzes the nonspecific hydrolysis of phosphate monoesters. The kinetics of inhibition of the enzyme by sodium (2, 2-bipyridine) oxodiperoxovanadate, pV(bipy), has been studied. The time course of the hydrolysis of p-nitrophenyl-phosphate catalyzed by the enzyme in the presence of different pV(bipy) concentrations showed that at each pV(bipy) concentration, the rate decreased with increasing time until a straight line was approached, the straight line slopes are the same for all concentrations. The results suggest that the inhibition of the enzyme by pV(bipy) is a slow, reversible reaction with fractional remaining activity. The microscopic rate constants are determined for the reaction of inhibitor with the enzyme.  相似文献   

6.
Green crab (Scylla serrata) alkaline phosphatase is a metalloenzyme that catalyzes the nonspecific hydrolysis of phosphate monoesters. The kinetics of inhibition of the enzyme by vanadate has been studied. The time course of the hydrolysis of p-nitrophenyl phosphate catalyzed by the enzyme in the presence of different Na3VO4 concentrations showed that, at each Na3VO4 concentration, the rate decreased with increasing time until a straight line was approached, the slopes of the straight lines being the same for all concentrations. The results suggest that the inhibition of the enzyme by Na3VO4 is a slow, reversible reaction with fractional residual activity. The microscopic rate constants were determined for the reaction of the inhibitor with the enzyme. As compared with Na2HPO4 (Ki = 0.95 mM), Na2HAsO4 (Ki = 1.10 mM), and Na2WO4 (Ki = 1.55 mM), the results suggest that Na3VO4 (Ki = 0.135 mM) is a considerably more potent inhibitor than other inhibitors.  相似文献   

7.
In Scylla serrata (Forskal), copper is present in detectable quantities in all tissues except the central nervous system. 75% of animal's total copper is found in the haemolymph, hepatopancreas, and cuticle. Both the haemolymph and the hepatopancreas share equally ≈ 60% of the animal's total copper. Copper is found in the TCA-soluble and insoluble fractions of water-soluble tissue extracts and in the chloroform : methanol-soluble and insoluble fractions of water-insoluble residue from the hepatopancreas. No other tissue has all the fractions of copper. In haemolymph copper is present only in the TCA-insoluble fraction. The TCA-soluble fraction is also absent in muscles. The absence of any lipid-bound copper in other tissues and the presence of copper in all fractions from the hepatopancreas indicates that this tissue may play a major role in the mobilization, conservation and detoxication of copper.  相似文献   

8.
The L/B/K type of mammalian alkaline phosphatase (ALP) is inhibited uncompetitively by nucleotides. A combination of adenosine and nicotinamide is more effective than either adenosine or nicotinamide alone, probably because a dinucleotide structure is necessary to trigger a conformational change accompanying binding of structures such as NADH. It has been suggested that a loop region containing residue 429 in the ALP polypeptide is important in the interaction of uncompetitive inhibitors with the enzyme. In the L/B/K isoenzyme, residue 429 is a histidine and is a potential target for modification. In an attempt to learn more about the molecular events accompanying inhibition of ALP by uncompetitive inhibitors, bovine kidney ALP was reacted with oxidized adenosine in the presence of nicotinamide to see if site-directed modification occurs. Kidney ALP was irreversibly inactivated by oxidized adenosine but the reaction was slow. The site modified is likely to be close to the region of binding. Sequence data for the kidney enzyme shows that in the region of residue 429 there are no residues except His429 itself that is likely to react with oxidized adenosine.  相似文献   

9.
Reversible inhibition, irreversible inhibition, and activation of calf intestinal alkaline phosphatase (EC 3.1.3.1) have been studied by capillary electrophoresis. The capillary electrophoretic enzyme-inhibitor assays were based on electrophoretic mixing of inhibitor and enzyme zones in a substrate-filled capillary. Enzyme inhibition was indicated by a decrease in product formation detected in the capillary by laser-induced fluorescence. Reversible enzyme inhibitors could be quantified by Michaelis-Menten treatment of the electrophoretic data. Reversible, competitive inhibition of alkaline phosphatase by sodium vanadate and sodium arsenate has been examined, and reversible, noncompetitive inhibition by theophylline has been studied. The K(i) values determined for these reversible inhibitors using capillary electrophoresis are within the range of values reported in the literature for the same enzyme-inhibitor combinations. Irreversible inhibition of alkaline phosphatase by EDTA at concentrations of 1.0mM and above has been observed. Activation of alkaline phosphatase has also been observed for EDTA at concentrations from 20 to 400 microM.  相似文献   

10.
Intestinal alkaline phosphatase (IAP) is an enzyme of the brush border of the enterocyte. The activity of IAP biphasically depends on calcium. Although calcium increases IAP activity, when calcium is higher than 20 mmole/L, IAP activity decreases and the amount of an aggregated form increases. The reversibility of the effect of calcium and the aggregation process are unknown. The isoelectric point of the enzyme was higher in the presence of calcium, but was the same for the enzyme and the aggregated form. The treatment with EGTA after calcium addition did not restore the enzymatic activity but produced desaggregation of the enzyme and increase in the monomeric subunits of IAP. It is concluded that the binding of calcium does not produce important modifications on the structure of the protein, that the inhibitory effect is not reversible and that calcium could be involved in the stability of the structure of the enzyme.  相似文献   

11.
Effect of extraneous zinc on calf intestinal alkaline phosphatase   总被引:1,自引:0,他引:1  
The effect of extraneous zinc on calf intestinal alkaline phosphatase was studied for quick reversible binding and slow irreversible binding of zinc ions at various concentrations. Under the conditions of slow binding of zinc to CIP increasing Zn2+ (less than 1.0 mM, nM/nE 1.0 × 106) inhibited enzymatic activity, and further increasing Zn2+ resulted in an increase of activity. For quick reversible binding of Zn2+, the effect on CIP activity changed at lower concentrations of substrate, indicating a complex cooperativity between Zn2+ and pNPP. Both protein intrinsic emission fluorescence and ANS-bound protein fluorescence, as well as circular dichroism spectra have shown that the binding of zinc ions changed the enzyme conformation, which was the reason for the changes in enzyme activity induced by extraneous zinc.  相似文献   

12.
白蜡虫碱性磷酸酶功能基团的研究   总被引:9,自引:2,他引:9  
白蜡ricerus pela雌成虫经匀浆,正丁醇抽提,硫酸铵分段盐析,SephadexG-150凝胶过滤等步骤,得到比活力为136.65U/mg蛋白酶制品,用苯甲基磺酰氟、N-溴代琥珀酰亚胺、三硝基苯磺酸、二巯基苏糖醇、对氯汞苯甲酸、琥珀酸酐、溴乙酸、碘乙酸等化学修饰剂在一定条件下选择修饰白蜡虫碱性磷酸酶的几种氨基酸残基,并测定酶活力变化。结果表明:苯甲基磺酰氟、N-溴代琥珀酰亚胺、三硝基苯磺酸、琥珀酸酐、二巯基苏糖醇的修饰能显著抑制酶的活力,活力的降低与修饰剂的浓度有关,氯汞苯甲酸、溴乙酸、碘乙酸的修饰对酶的抑制作用影响较小。初步认为:丝氨酸、赖氨酸和色氨酸残基是白蜡虫碱性磷酸酶的必需功能基团,部分二硫键也是酶的催化功能所必需的。  相似文献   

13.
Sequence analysis of short fragments resulting from trypsin digestion of the thermolabile shrimp alkaline phosphatase (SAP) from Northern shrimp Pandalus borealis formed the basis for amplification of its encoding cDNA. The predicted protein sequence was recognized as containing the consensus alkaline phosphatase motif comprising the active site of this protein family. Protein sequence homology searches identified several eukaryote alkaline phosphatases with which the 475-amino acid SAP polypeptide revealed shares 45% amino acid sequence identity. Residues for potential metal binding seem to be conserved in these proteins. The predicted 54-kDa molecular mass of SAP is smaller than previously reported, but is consistent with our recent SDS-PAGE analysis of the native protein. Compared to its homologs, the shrimp enzyme has a surplus of negatively charged amino acids, while the relative number of prolines is lower and the frequency of aromatic residues is higher than in mesophilic counterparts.  相似文献   

14.
A psychrotolerant Bacillus sp. from Antarctica produced an alkaline phosphatase in the culture supernatant. The strain showed 98.4% 16s rDNA sequence identity with Bacillus sphaericus. The 76 kDa protein was purified 11.1-fold showing alkaline phosphomonoesterase activity. Enzyme was optimally produced at 25 °C and pH 7.0. This cold active alkaline phosphatase is heat labile and gets completely inactivated at 60 °C in 50 min and is active in broad pH range.  相似文献   

15.
Vanadate has been recognized as a specific and potent phosphatase inhibitor since its structure is similar to that of phosphate. In this study, we measured the inhibition of glutathione S-transferase-tagged protein tyrosine phosphatase 1B (GST-PTP1B) and alkaline phosphatase (ALP) by the insulin enhancing compounds, bis(maltolato)oxovanadium(IV) (BMOV). The results showed that the activity of GST-PTP1B was reversibly inhibited by solutions of BMOV with an IC50 value of 0.86 ± 0.02 μM. Steady state kinetic studies showed that inhibition of GST-PTP1B by BMOV was of a mixed competitive and noncompetitive type. In addition, incubation of GST-PTP1B with BMOV showed a time-dependent biphasic inactivation of the protein. On the other hand, the inhibitory behavior of BMOV on ALP activity was reversible and competitive with an IC50 value of 32.1 ± 0.6 μM. Incubation with BMOV did not show biphasic inactivation of ALP. The reversible inhibition of GST-PTP1B by BMOV is more potent than that of ALP, but solutions of BMOV inhibited both enzymes. This data support the suggestion that mechanisms for the inhibitory effects of BMOV on GST-PTP1B and ALP are very different.  相似文献   

16.
As with mammalian enzymes, green crab (Scylla serrata) alkaline phosphatase can be activated by Mg2+ through a time-dependent course. The activation is mainly a Vmax effect. Tsou's method was used to study the kinetic course of activation. The results show that the enzyme was activated by a complexing scheme that had not been previously identified: the enzyme first reversibly and quickly binds Mg2+ and then undergoes a slow reversible course to activation, with a relatively high activation energy (78 +/- 4 kJ/mol) and a slow conformational change. The activation reaction is a single molecule reaction, and the apparent activation rate constant is independent of Mg2+ concentration if the concentration is sufficiently high. The microscopic rate constants of activation and the association constant were determined from the measurements. The proposed scheme may also be applied to the Mg2+ activation mechanism for mammalian enzyme, to explain why the activation rate is time-dependent and not diffusion controlled. Substrate binding was also shown to affect the activation rate constant.  相似文献   

17.
Alkaline phosphatase has been extracted from matrix vesicles of a calcifying cartilage with 0.15 M KCl, 0.4 M guanidinium chloride and 0.05 M deoxycholate/50% butanol mixture. The catalytic properties of the three extracts have been compared. Although the highest amount of enzyme activity is extracted with the latter reagent (55%), some of it is also extracted with KCl (11%) and guanidinium (7%). By submitting isolated matrix vesicles to a short time sonication the distribution pattern of the alkaline phosphatase activity in the extracts is clearly modified, as the amount extracted with KCl increases from 14 to 50% and the portion extracted with deoxycholate decreases from 55 to 27% of the total enzyme activity of matrix vesicles. The enzymatic preparations were comparable on the basis of specific activities, affinity for the substrates (p-nitrophenylphosphate, ATP), thermostability, sensitivity to inhibitors and activators. By electrofocusing a value of pI = 4.15 was found for the alkaline phosphatase of matrix vesicles independently of the extraction medium. These results contradict the concept that alkaline phosphatase is exclusively an intrinsic membrane protein.  相似文献   

18.
Placental alkaline phosphatase (PLAP) that had been isolated from human placenta was further purified using subsequent ion-exchange chromatography (IEC), affinity chromatography (AC) and centrifugal membrane concentration (CMC). During the process, the PLAP samples from the different stages of purification were characterized regarding purity and activity. This was accomplished by combining Lowry analysis, enzymatic activity assay, capillary zone electrophoresis (CZE), capillary gel electrophoresis (CGE) and matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI-TOF-MS). The sample obtained after IEC had a rather low specific activity (6.8 U/mg) and appeared to contain several major contaminants, among which was human serum albumin (HSA). AC followed by CMC yielded PLAP with a specific activity of 128 U/mg. The purity and identity of the protein was indicated by MALDI-TOF-MS yielding a spectrum with one major peak at m/z 58 101. Interestingly, CZE of the pure PLAP revealed a cluster of peaks, which probably reflects the presence of various glycoforms and/or oligomers. The same analytical approach was used to characterize commercially available PLAP. This sample showed a moderate specific activity (15 U/mg) and appeared to be highly impure containing various other proteins.  相似文献   

19.
A recent rise in crab aquaculture activities has intensified the generation of waste shells. In the present study, the waste shells were utilized as a source of calcium oxide to transesterify palm olein into methyl esters (biodiesel). Characterization results revealed that the main component of the shell is calcium carbonate which transformed into calcium oxide when activated above 700 °C for 2 h. Parametric studies have been investigated and optimal conditions were found to be methanol/oil mass ratio, 0.5:1; catalyst amount, 5 wt.%; reaction temperature, 65 °C; and a stirring rate of 500 rpm. The waste catalyst performs equally well as laboratory CaO, thus creating another low-cost catalyst source for producing biodiesel. Reusability results confirmed that the prepared catalyst is able to be reemployed up to 11 times. Statistical analysis has been performed using a Central Composite Design to evaluate the contribution and performance of the parameters on biodiesel purity.  相似文献   

20.
Alkaline phosphatase (APase) isoenzymes produced by different strains of Serratia marcescens were examined. Variation of isoenzyme patterns with respect to number and their mobilities in starch gels after electrophoresis were observed. Ten strains gave a 1-isoenzyme pattern with 5 different mobilities; 7 strains gave a 2-isoenzyme pattern with 3 different mobilities; 9 strains gave a 3-isoenzyme pattern with 5 different mobilities; and 3 strains gave a 4-isoenzyme pattern. Three strains synthesized two electrophoretically distinct APases in low phosphate medium. A high concentration of inorganic phosphate induced the synthesis of one of these APase isoenzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号