首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Feeding induced by opiates injected into the paraventricular hypothalamus   总被引:1,自引:0,他引:1  
S McLean  B G Hoebel 《Peptides》1983,4(3):287-292
Injection of morphine or d-ala-2-met-5-enkephalinamide (DALA) into the paraventricular nucleus of the hypothalamus (PVN) produced a dose dependent increase in feeding in rats. DALA increased feeding within 45 minutes; morphine within 90 minutes. Naloxone injected into the PVN diminished the effect. DALA increased water intake only when food was available, suggesting the primary effect was on feeding. In summary, an enkephalin analogue induced feeding, and an opiate receptor blocker attenuated it; therefore the PVN may contain opiate receptors that facilitate feeding.  相似文献   

2.
The kinetics of four 11C-labelled enkephalin peptides: Tyr-Gly-Gly-Phe-Met (Met-enkephalin), Tyr-D-Met-Gly-Phe-Pro-NH2 [D-Met2,Pro5)-enkephalinamide), Tyr-D-Ala-Gly-Phe-Met-NH2 (DALA) and Tyr-D-Ala-D-Ala-Phe-Met-NH2 (TAAFM) all labelled at the methyl group of methionine was studied in the Rhesus monkey. After intravenous administration, the regional kinetics in the head, lungs, liver and kidneys were followed by means of positron emission tomography (PET). The total radioactivity in blood and urine was measured and the composition of 11C-labelled peptide fragments in plasma in vivo and in vitro was analysed by liquid chromatography. With PET, an increased radioactivity was observed in the brain and pituitary over the 60-90 min investigation period after i.v. injection of the peptides. The highest radioactivities were noted for Met-enkephalin, followed by DALA and D-Met2, Pro5-enkephalinamide, while very low radioactivities were found for TAAFM. The uptake of Met-enkephalin- and DALA-derived radioactivity was of the same order as has previously been shown for morphine in the brain and considerably higher than that of D-Met2,Pro5-enkephalinamide and TAAFM, respectively. A large fraction of the brain radioactivity derived from Met-enkephalin and DALA probably emanated from [11C]methionine as indicated by plasma and urine analysis. Met-Enkephalin was rapidly eliminated from plasma in vitro with an half-life of less than two minutes, whereas DALA was stable suggesting clearance by other tissues than plasma. In conclusion, both Met-enkephalin and DALA, were rapidly hydrolyzed in vivo to [11C]methionine. [11C]Methionine was probably taken up in the brain, as the radioactivity increased with time in different brain regions as measured with PET.D-Met2,Pro5-Enkephalinamide and TAAFM were virtually stable in vivo and at least part of the radioactivity observed in the brain may have represented the intact peptide.  相似文献   

3.
An intravenous administration of (D-ala2, met5)-enkephalinamide (DALA) caused a significant elevation of plasma ACTH and corticosterone at 10 to 20 min after injection in unanesthetized freely moving rats. An intraperitoneal administration of cyproheptadine tended to reduce plasma ACTH and corticosterone levels at 60 min after injection, but it did not attenuate the DALA-induced ACTH and corticosterone elevation. A large dose of naloxone (1-10 mg/kg body weight) caused a significant elevation in plasma corticosterone, but naloxone at 10 mg/kg body weight reduced the basal ACTH level and DALA-induced ACTH elevation. When both DALA and naloxone were injected, the steroidogenic effect was attenuated. Neither DALA nor naloxone affected the basal ACTH release and CRF-induced ACTH stimulation in rat anterior pituitary cell cultures. These results suggest that DALA acts at the extra-hypophyseal level to stimulate ACTH and corticosterone and that the naloxone stimulatory effect on steroidogenesis acts on the adrenal gland or is mediated by stimulating corticosterone stimulating factors other than ACTH.  相似文献   

4.
A R Gintzler  J A Scalisi 《Life sciences》1982,31(20-21):2363-2366
Ilea taken from guinea pigs that had been chronically exposed to morphine exhibit a greater tolerance to morphine and normorphine than to the opioid peptides D-ala2-D-leu5-enkephalin (DADLE) or D-met2-pro5-enkephalinamide (DMPE). This differential tolerance strongly implies the existence of at least two different types of opioid receptor in the guinea pig myenteric plexus or two different mechanisms of interaction between opioids and their receptor complex. Since DADLE is considered to be the prototypic ligand for the delta receptor, the above results imply the presence of delta receptors in the guinea pig myenteric plexus and furthermore, that this subtype of opioid receptor is associated with the modulation of release of enteric acetylcholine.  相似文献   

5.
The effects of double endorphins DALA2, DYNO2, CASO2 on pain threshold in the rats were compared with those of DALA (D-Ala2-Met5-enkephalinamide). Marked differences in the analgesic potency of the investigated peptides were noted. The most potent analgesic effect was exerted by DALA2. DYNO2 was weaker than DALA and DALA2 due to lack of glycine residue in position 3, probably responsible for the receptor affinity and analgesic activity in vivo. The weak analgesic activity of CASO2 in vivo corresponds with the weak opiate agonistic action of this peptide in vitro [see 7]. All investigated peptides induced changes in animal behaviour when injected i.c.v. The results indicated that among peptides in the novel group of double endorphins, DALA2 is of special interest because of a potent and long lasting analgesic action.  相似文献   

6.
The analgesic effects of intracerebroventricular injections of Met-enkelphalin and five of its analogs in a dose of 10 μg each were quantified with a hot plate test in rats. Two analogs showed analgesic effect. ?D-Ala2, Met5⊥-enkephalinamide and short-lasting analgesic effect. ?D-Ala2, Met5⊥-enkelphalinamide had a weak (DALA) had a striking and long-lasting analgesic effect. However, sulfation of tyrosine residue totally abolished the analgesic action of DALA. The analgesic effect of DALA was not affected by preinjection of its sulfated analog.  相似文献   

7.
Previous studies have suggested that the release of dopamine (DA) in the rat brain may be sensitive to modulation by opioid agents, including the endogenous opioid peptides (enkephalins and endorphins). The present study examined the effects of morphine and the enkephalin analogue D-Ala2-Met5-enkephalinamide (DALA) on the release of radiolabeled DA from superfused slices of rat brain regions. The release of preloaded [3H]DA was evoked from slices of the caudate-putamen (CP) by application of potassium (K+), nicotine (NIC), or L-glutamic acid (L-GLU). The release of [3H]DA from slices of the nucleus accumbens (NA), olfactory tubercle (OT), and substantia nigra (SN) was evoked by L-GLU. Both K+ and NIC evoked a concentration-related release of [3H]DA from CP slices. K+-induced release was only partially dependent on calcium (Ca2+), while NIC-evoked release was completely Ca2+ independent. Neither morphine nor DALA influenced the release of [3H]DA evoked by K+ or NIC. L-GLU produced a concentration-dependent release of [3H]DA from slices of CP, NA, OT, and SN. In all four brain regions, this release was (a) Ca2+-dependent, (b) strongly inhibited by low concentrations of magnesium (Mg2+), (c) greater than the release evoked by D-GLU, (d) attenuated by the putative L-GLU receptor antagonist glutamic acid diethylester (GDEE), and (e) insensitive to tetrodotoxin (TTX) except in the SN. Morphine produced a significant inhibition of L-GLU-evoked [3H]DA release from all four regions. Naloxone, which by itself had no significant effect on the L-GLU-evoked release of [3H]DA, blocked the inhibitory effect of morphine on this release in the CP but not in the other regions. Levorphanol and dextrorphan were equipotent in reducing the glutamate-stimulated release of [3H]DA from CP slices. DALA had no effect on L-GLU-induced release in any of the brain regions examined. The results indicate that L-GLU provokes regional release of DA by acting at a Mg2+-sensitive glutamate receptor. This release is selectively modified by morphine through a mechanism which is insensitive to naloxone.  相似文献   

8.
Two enkephalin analogs, [D-Met2, Thz5]-enkephalinamide and [D-Thr2, Thz5]-enkephalinamide, have been synthesized by the solid-phase method. When injected centrally, [D-Thr2, Thz5]-enkephalinamide is 3.5 times more potent than the [D-Met2, Thz5] analog. However, the two are equipotent and 4.2–4.8 times more potent than morphine when injected intravenously.  相似文献   

9.
An intra-third ventricular administration of (D-Ala2,Met5)-enkephalinamide (DALA) did not elevate plasma ACTH and corticosterone levels in unanesthetized freely moving rats, but intra-third ventricular administration of DALA and methionine (Met)-enkephalin potentiated a mild stress (hanging for 10 or 30 sec)-induced plasma ACTH and corticosterone elevations in unanesthetized freely moving rats. DALA and Met-enkephalin seemed to stimulate CRF release from the median eminence to increase plasma ACTH, as the CRF concentration in the median eminence area was reduced after injection in these stressed rats. When hypothalamic tissues were perifused in vitro, DALA (1-100 ng/ml) reduced the release of CRF. These results suggest that the opiates seem to have a dual effect on the CRF-ACTH system depending on which action overrides the other.  相似文献   

10.
G A Cohen  V A Doze  D V Madison 《Neuron》1992,9(2):325-335
Opiates and the opioid peptide enkephalin can cause indirect excitation of principal cortical neurons by reducing inhibitory synaptic transmission mediated by GABAergic interneurons. The mechanism by which opioids mediate these effects on interneurons is unknown, but enkephalin hyperpolarizes the somatic membrane potential of a variety of neurons in the brain, including hippocampal interneurons. We now report a new, more direct mechanism for the opioid-mediated reduction in synaptic inhibition. The enkephalin analog D-Ala2-Met5-enkephalinamide (DALA) decreases the frequency of miniature, action potential-independent, spontaneous GABAergic inhibitory postsynaptic currents (IPSCs) without causing a change in their amplitude. Thus, we conclude that DALA inhibits the action potential-independent release of GABA through a direct action on interneuronal synaptic terminals. In contrast, DALA reduces the amplitude of action potential-evoked, GABA-mediated IPSCs, as well as decreases their frequency. This suggests that the opioid-mediated inhibition of non-action potential-dependent GABA release reveals a mechanism that contributes to reducing action potential-evoked GABA release, thereby decreasing synaptic inhibition.  相似文献   

11.
L F Tseng  H H Loh  C H Li 《Life sciences》1978,23(20):2053-2056
[D-Thr2, Thz5]-enkephalinamide administered orally or subcutaneously inhibited the tail-flick response to heat stimuli in mice. On a molar basis, this peptide was found to be 1.5–1.7 times more potent than morphine by oral administration.  相似文献   

12.
H J Haigler  D D Spring 《Life sciences》1978,23(12):1229-1239
[D-Ala2]Met-enkephalinamide (DALA) injected intracerebrally (IC) at low doses into specific sites of the mesencephalic reticular formation (MRF), produced a profound, long-lasting analgesia that was blocked by naloxone, a specific opiate antagonist. Morphine was only half as potent as DALA because morphine, injected IC at similar sites in the MRF, yielded a comparable analgesia only when injected at twice the dose. The analgesic effects of morphine were also antagonized by naloxene. Both DALA and morphine produced specific behavioral effects. Naloxone blocked the behavioral effects of DALA, but not those produced by morphine.  相似文献   

13.
A conditioned place preference paradigm was employed to demonstrate the rewarding property of unilateral injections of 200 ng (D-ala2)-met5-enkephalinamide into the ventral tegmental area of the rat brain. This effect was attenuated in a dose-related manner by systemic injections of the dopamine receptor blocker haloperidol. In addition, selective lesions of the ascending dopamine (DA) pathways ipsilateral to the injection site blocked the rewarding effect when DA levels were reduced by more than 90%. Similar lesions in the contralateral hemisphere had no influence on this behavior. These data suggest that forebrain DA pathways can mediate some of the rewarding properties of opioid drugs.  相似文献   

14.
The intracerebro-ventricular administration of human β-Endorphin (β-EP, 0.1–3 μg/rat) or D-alanine2 methionine enkephalinamide (D-ala, 0.3–30 μg/rat) caused a dose dependent reduction in the urine volume. The oliguria was associated with a decrease in the concentration of Na+ and K+ in the urine of rats previously hydrated by oral administration with 25 ml/kg tap water plus 50 ml/kg 0.5% NaCl. On a molar basis, β-EP proved to be about 5–7 times more potent than D-ala. The effects caused by the peptides were antagonized by the simultaneous intraperitoneal administration of 1 mg/kg naloxone. In rats treated chronically with morphine, no cross-tolerance was demonstrated to the antidiuretic effect of β-EP, but clear cross-tolerance was evident to the changes in urine electrolytes induced by β-EP. Results suggest that morphine and the opiate peptides share a similar mechanism of action.  相似文献   

15.
The analgesic potency of D-Ala2, Met5- and D-Ala2, Leu5-enkephalinamide was increased following substitution of the D-isomers at position five. The substituted analogs were 2.5 times as potent as morphine in producing analgesia in rats when administered intraventricularly and 0.2 as potent as morphine when administered intravenously. D-Ala2, D-Leu5-enkephalinamide produced naloxone-reversible analgesia by the intravenous route in monkeys. The enhanced systemic activity following D-isomer substitutions at position five appeared to be due to some factor other than increased stability to peptidase degradation at the C-terminus.  相似文献   

16.
Intraventricular administration of the endogenous opioid peptide β-endorphin produces a profound state of immobilization in rats characterized by the absence of spontaneous movement, loss of the righting response and extreme generalized muscular rigidity. The immobility syndrome induced by the opioid peptides β-endorphin and D-Met2-Pro5-enkephalinamide was compared with the behavioral profile prodced by subcutaneous and intraventricular administration of the opiates, morphine, methadone and etonitazene. The results indicate a close similarity between the pattern of effects caused by the opiates and opioid peptides. The immobility syndrome could also be produced by injection of β-endorphin into the ventromedial periaqueductal gray, but not into the caudate, globus pallidus, amygdala or dorsolateral periaqueductal gray. The resemblance between the opiate- and β-endorphin-induced profiles suggests that their effects are mediated through common mechanisms.  相似文献   

17.
J Flórez  A Pazos 《Life sciences》1982,31(12-13):1275-1277
Receptor mechanisms for opiate induced respiratory depression and analgesia (tail-flick) were studied by the ED50 ratios and the apparent pA2 values of the interactions of naloxone with the mu-agonists morphine and D-ala2-me-phe4-met (O)ol5-enkephalin (FK-33824), and the delta-agonists D-ala2-D-leu5-enkephalin (DADL) and tyr-D-ser-gly-phe-leu-thr. The apparent pA2 values of morphine, FK-33824 and DADL for analgesia were similar, whereas the apparent pA2 values of the mu-agonists for respiratory depression were significantly lower than those of the delta-agonists. The ratio between the ED50 of FK-33824 in analgesia and respiratory depression was much lower than that of DADL. It is concluded that different receptors mediate the opiate-induced respiratory depression. One difficulty with the delta-receptors being maximally involved in this action is the high degree of antagonism shown by naloxone on the respiratory effects of the delta-agonists.  相似文献   

18.
D'-Ala-2 met-5-enkephalinamide application to the cerebral ganglia of Leucophaea maderae results in a decrease in locomotor activity. The opiate antagonist, naloxone, can block this effect as well as the depressant effect of morphine on locomotor activity. D-Ala-2,leu-5-enkephalinamide and dynorphin enhance locomotor activity following their topical application to the cerebral ganglia. This effect also can be antagonized by concomitant naloxone treatment. Benzomorphans were the most potent ligands tested in their ability to displace [3H]D'-ala-2,met-5-enkephalinamide whereas mu and delta ligands were by comparison less potent. These results suggest the presence of kappa-like opioid receptors in Leucophaea cerebral ganglia. The kappa ligands also are potent in enhancing locomotor activity in addition to being weakly antagonized by naloxone. Again, these results indicate the presence of multiple-opiate receptor types in invertebrates.  相似文献   

19.
3H-Labelled opiate and enkephalin ligands appear to bind with highest affinity to a single site responsible for their analgesic properties. Administered in vivo, naloxazone, an irreversible opiate, selectively inhibits for over 24 hours the high affinity binding of 3H-labelled mu, and kappa opiates and enkephalins. This inhibition of binding gradually resolves over 3 days, perhaps correlating with receptor turnover. Naloxazone treatment also abolishes morphine, D-ala2-met5-enkephalinamide and betah-endorphin analgesia. Although morphine and D-ala2-met5-enkephalinamide bind with similar potencies to the high affinity site, morphine's potency for the low affinity D-ala2-met5-enkephalinamide site is far less than the enkephalin analog. These results imply that all 3H-ligands examined bind with highest affinity to a mu-like receptor while low affinity D-ala2-met5-enkephalinamide binding, with a KD of 6 nM, represents a delta-like receptor.  相似文献   

20.
To assess the relative capacity of the human delta opioid receptor to activate closely related G proteins, fusion proteins were constructed in which the alpha-subunits of either G(i1) or G(o1), containing point mutations to render them insensitive to the actions of pertussis toxin, were linked in-frame with the C-terminus of the receptor. Following transient and stable expression in HEK 293 cells, both constructs bound the antagonist [(3)H]naltrindole with high affinity. D-ala(2),D-leu(5) Enkephalin effectively inhibited forskolin-stimulated adenylyl cyclase activity in intact cells in a concentration-dependent, but pertussis toxin-insensitive, manner. The high-affinity GTPase activity of both constructs was also stimulated by D-ala(2),D-leu(5) enkephalin with similar potency. However, enzyme kinetic analysis of agonist stimulation of GTPase activity demonstrated that the GTP turnover number produced in response to D-ala(2),D-leu(5) enkephalin was more than three times greater for G(i1)alpha than for G(o1)alpha. As the effect of agonist in both cases was to increase V:(max) without increasing the observed K:(m) for GTP, this is consistent with receptor promoting greater guanine nucleotide exchange, and thus activation, of G(i1)alpha compared with G(o1)alpha. An equivalent fusion protein between the human mu opioid receptor-1 and G(i1)alpha produced a similar D-ala(2),D-leu(5) enkephalin-induced GTP turnover number as the delta opioid receptor-G(i1)alpha fusion construct, consistent with agonist occupation of these two opioid receptor subtypes being equally efficiently coupled to activation of G(i1)alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号